

Key Findings

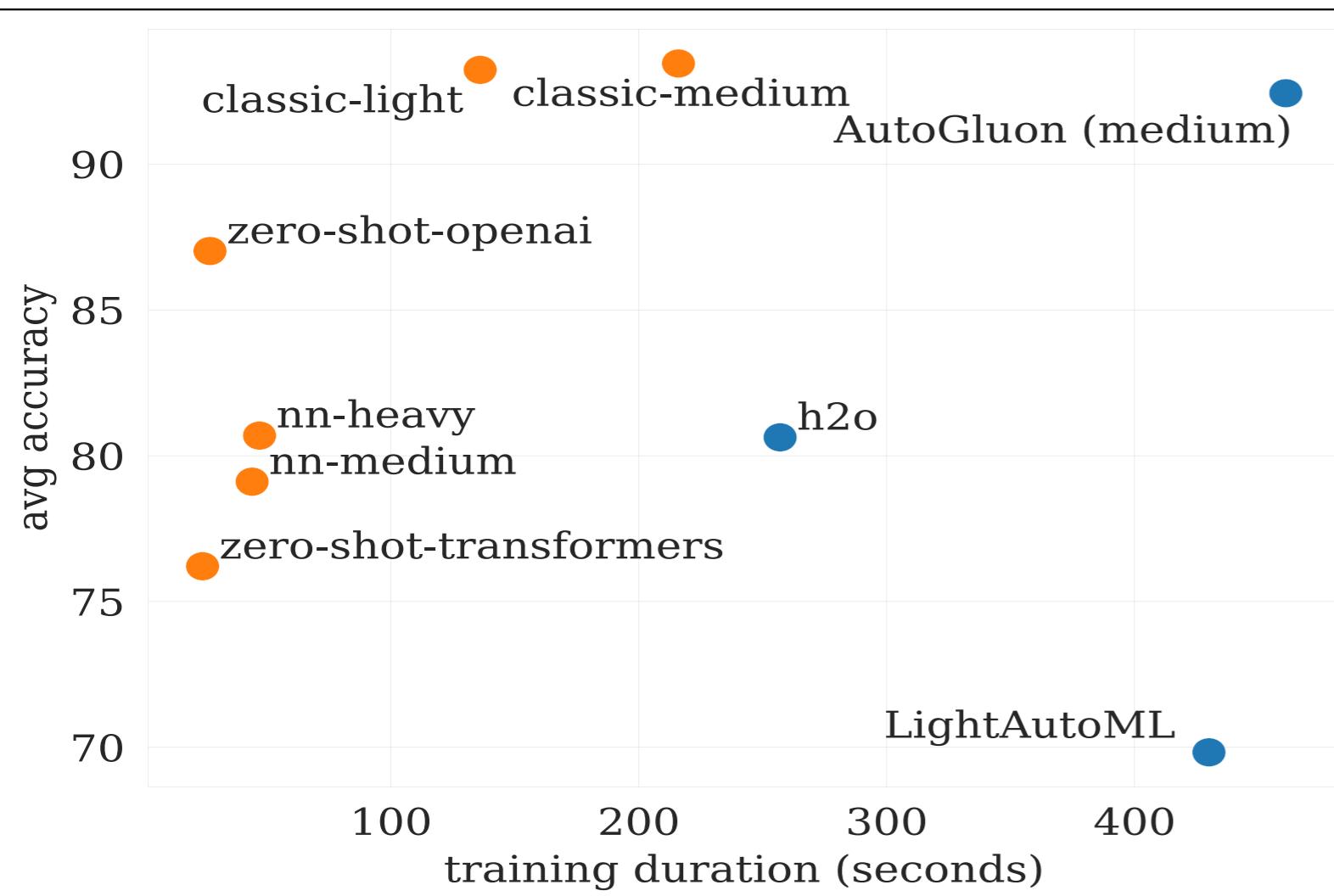
AutoIntent offers end-to-end automation with

- embedding model selection
- decision threshold tuning
- multi-label classification
- out-of-scope detection

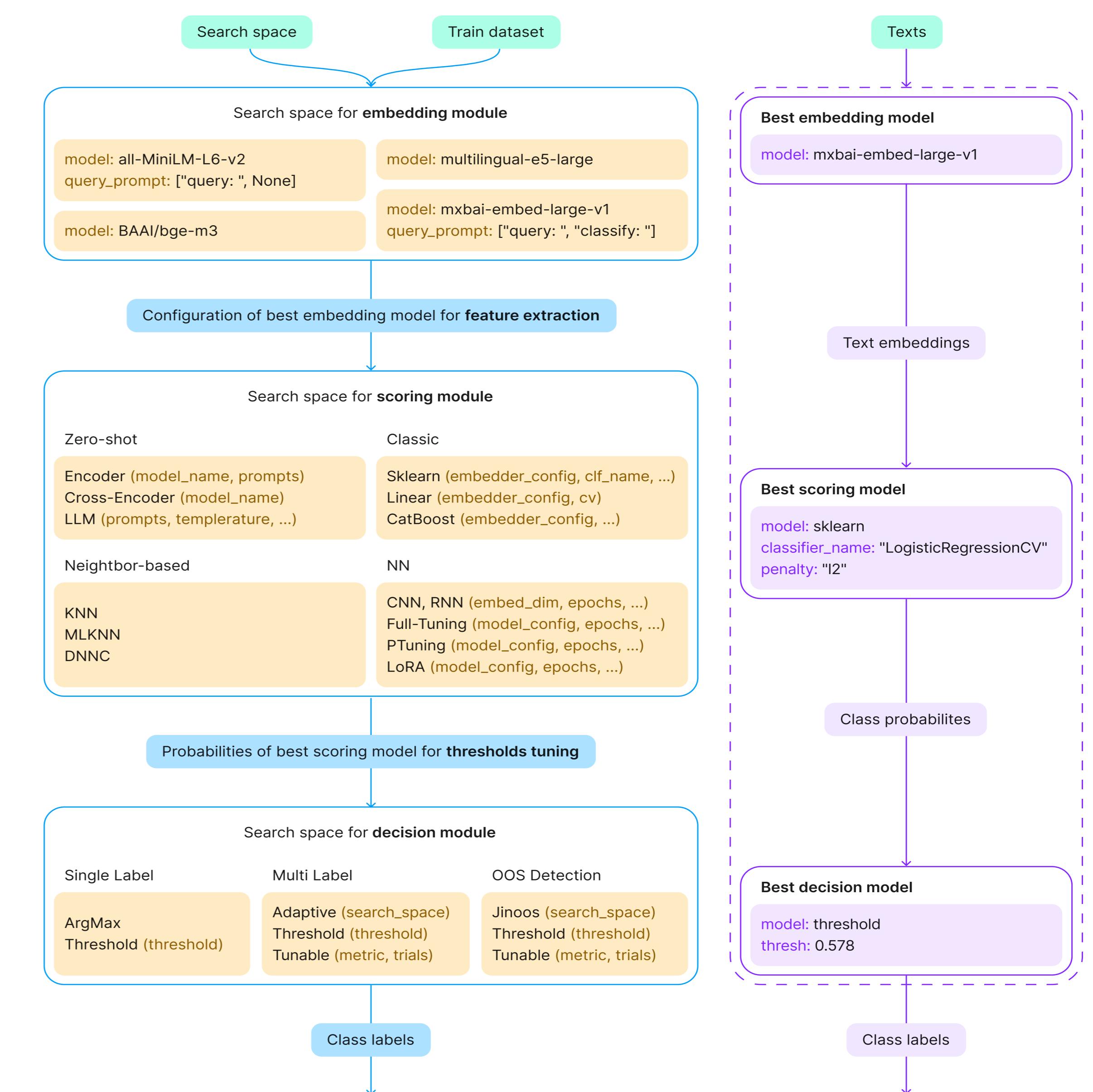
all within a modular design, sklearn-like interface and customizable presets.

```
from autointent import Pipeline, Dataset
```

```
dataset = Dataset.from_json(path_to_json)
pipeline = Pipeline.from_preset("classic-light")
pipeline.fit(dataset)
pipeline.predict(["show my transactions"])
```



Architecture



Performance of Automatic Embedder Selection

Model	Accuracy	NDCG
stella_en_400M_v5	94.28	93.83
multilingual-e5- ¹	93.65	92.97
GISt-large- ²	93.51	93.32
UAE-Large-V1	92.89	93.25
bge-m3	92.69	92.49
multilingual-e5-large	91.41	92.45
LaBSE	90.47	89.51
KaLM-embedding- ³	89.65	92.88
nomic-embed- ⁴	87.24	89.63
deberta-v3-small	81.15	67.20
deberta-v3-large	75.39	59.59
deberta-v3-base	75.00	59.28

Table 5: Embedding models performance averaged over hwu64 (Liu et al., 2019), massive (FitzGerald et al., 2022), minds14 (Gerz et al., 2021), snips (Coucke et al., 2018). ¹large-unstruct, ²Embedding-v0, ³multilingual-mini-instruct-v1.5, ⁴text-v1.5

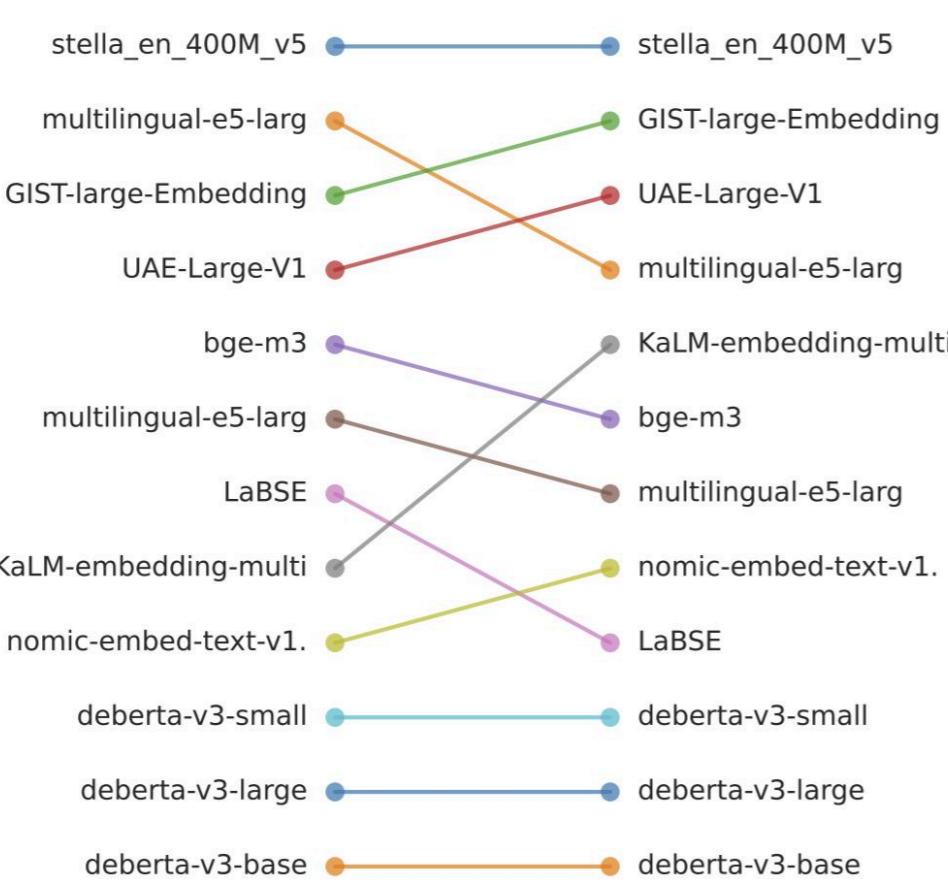


Figure 4: Encoders ranking: (Left) precise ranking obtained via training full AutoML pipeline with only this model, (Right) approximate ranking based on retrieval quality (NDCG).

We calculate retrieval quality on the fly (e.g. NDCG or hit rate) and use it as a proxy-metric for embedder performance as though it is used in a pipeline. It gives a close approximation to the actual embedders performance without the need to refit the whole pipeline

Out-of-Scope (OOS)

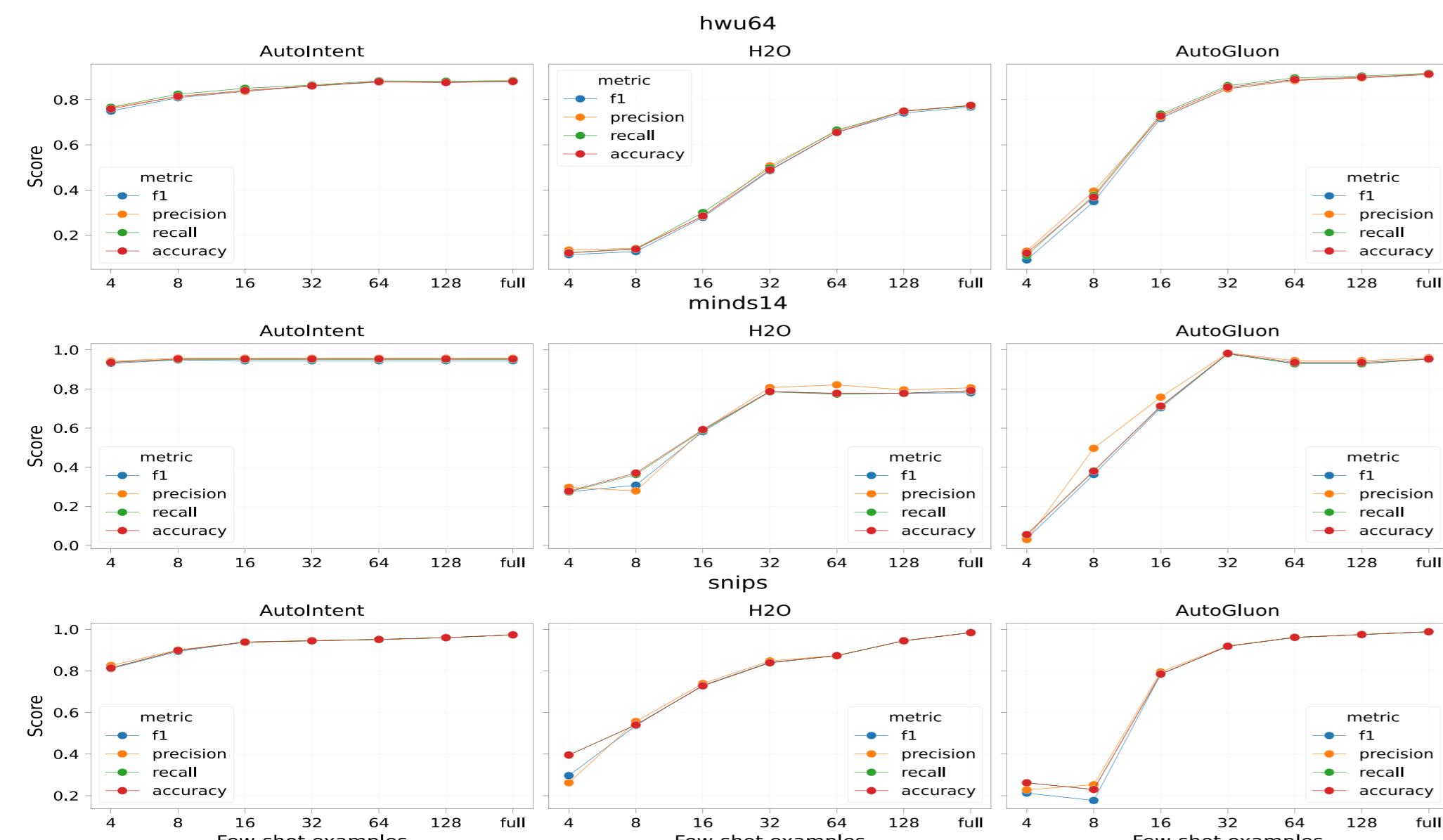
framework	in domain accuracy	out-of-scope F1-measure
AutoIntent	96.13	76.79
AutoGluon (Tang et al., 2024)	95.76	48.53
H2O (LeDell and Poirier, 2020)	85.22	40.69

Table 3: Performance comparison on out-of-scope detection task on CLINC150 (Larson et al., 2019).

preset	duration	banking77	hwu64	massive	minds14	snips	avg
Baselines							
AutoGluon (best)	—	6.98	12.64	21.39	85.19	96.00	44.44
AutoGluon (high)	—	92.60	90.80	89.22	95.37	98.86	93.37
AutoGluon (medium)	461	92.40	91.17	87.13	92.59	98.86	92.43
LightAutoML	430	53.31	77.85	47.41	72.22	98.38	69.83
h2o	257	75.32	77.32	75.30	76.85	98.36	80.63
AutoIntent Presets							
zero-shot-transformers	24	69.51	71.47	63.58	87.04	89.43	76.21
nn-medium	44	79.95	70.79	72.75	75.31	96.74	79.11
nn-heavy	47	78.84	72.96	73.39	80.86	97.40	80.69
zero-shot-openai	27	76.43	85.04	80.49	96.30	96.86	87.02
classic-light	136	92.23	90.83	87.11	97.53	98.43	93.23
classic-medium	216	92.34	90.92	87.19	97.84	98.98	93.45

Table 2: Performance comparison across different presets averaged from three runs (except H2O and AutoGluon which were launched once). **Column 1:** Baseline AutoML frameworks: AutoGluon (Tang et al., 2024) with their word2vec, LightAutoML (Vakhrushev et al., 2022); and AutoIntent presets: nn (CNN (Kim, 2014), RNN), zero-shot (description-based bi- and cross-encoder, LLM prompting), classic (knn, logreg, random forest, catboost (Prokorenkova et al., 2018)). **Column 2:** Duration in seconds evaluated on minds14 (Intel(R) CPU E5-2698 v4 @ 2.0GHz, single Tesla P100-SXM2-16GB). **Columns 3-7:** Accuracy on test sets.

Few Shot



Superior robustness to scarce data scenario thanks to classic ML models

Future work

- MCP
- integration with ReAct agents
- convenient deployment and Inference
- better augmentations
- any of your ideas!

Documentation

Code

Paper

