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Autolntent offers end-to-end automation with
e embedding model selection
e decision threshold tuning
e multi-label classification
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Search space for embedding module Best embedding model

model: all-MiniLM-L6-v2 model: mxbai-embed-large-v1

query_prompt: ["query: ", None]

model: multilingual-e5-large
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0|pe |ne flt(d ata Set) LLM (prompts, templerature, ...) CatBoost (embedder_config, ...) ' model: sklearn |
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pipeline.predict(["show my transactions"]) Neightbor-based NN ' penatty: m2- |
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MLKNN FuII—Tunlng (model_c?nflg, epochs, ...) | |
DNNC PTuning (model_config, epochs, ...) | |
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Performance of Automatic Embedder Selection Out-of-Scope (00S)
Model Accuracy NDCG i
4 ctella en 400M V5 o o stella &n 400M V5 We calculate retrieval framework in domain accuracy out-of-scope F1-measure
stella_en_400M_v5 94.28  93.83 S T quality on the fly (e.qg. Autolntent 96.13 76.79
multilingual_es_l 9365 9297 multilingual-e5-larg @ Jﬁﬂmﬂ..@ GIST-large-Embedding N DCG or hlt I‘ate) a nd AutoGluon (Tang et al., 2024) 95.76 48.53
GIST—I&I'gC-Z 93.51 93.32 GIST-large-Embedding 7 UAE-Large-V1 use |t as a proxy_ metrIC H20 (LeDell and Poirier, 2020) 85.22 40.69
U AE-L&I'gC-Vl 02.89 93.25 UAE-Large-V1 ® multilingual-e5-larg fo rem b e d d er Table 3: Performance comparison on out-of-scope detection task on CLINC150 (Larson et al., 2019).
bge-m3 92.69 92.49 bgesm e _» Kamembeddingmuti - pnarformance as though
mu1ti1ingua1-es-large o1.41 55 45 ulilingual-es-farg f > bge-m3 lt | S use d In a plp e“n e. preset duration bankin;;ZZelinlzvuM massive mindsl4 snips | avg
LaBSE 90.47 8951 LaBSE multilingual-e5-larg It g ives a close AutoGluon (best) - 6.98 1264 2139 8519  96.00 | 44.44
: . . H : AutoGluon (high) - 92.60 90.80 89.22 95.37  98.86 | 93.37
: -embedding-multi & -embed- -vl1.
KalLM-embedding-> 89.65 92.88 KalM-embedding-mult nomic-embed-textvl approximation to the AutoGluon (medium) | 461 9240 9117 87.13 9259 98.86 | 92.43
nomic-embed. 87 24 29 63 nomic-embed-text-vl. o LaBSE actual embedders LightAutoML 430 5331 7785 4741 7222 9838 | 69.83
) ) : h2o0 257 7532 7732 7530  76.85 98.36 | 80.63
deberta-v3-small 81.15 67.20 denertasv3-small Cebenta-yd-small p € rfo rmance Wlt h O Ut Autolntent Presets
debartavA- Jates 75 39 59 59 debarta-3-I5rGs @ & debisrtav3-large the need to refit the zero-shot-transformers | 24 6951 7147 6358  87.04 89.43 | 76.21
g ) ) WhO | e | elln e nn-medium 44 79.95 70.79 72.75 7531  96.74 | 79.11
deberta-v3-base 75.00 5928 deberta-v3-base @ @ deberta-v3-base PIP nn-heavy 47 78.84 7296 7339  80.86 97.40 | 80.69
zero-shot-openai 2 76.43 85.04  80.49 96.30  96.86 | 87.02
. . . . . . classic-light 136 92.23 90.83 87.11 97.53  98.43 | 93.23
Table 5: Embedding models performance averaged over Figure 4: Encoders ranking: (Left) precise ranking ob- classic-medium 216 9234 9092 87.19  97.84  98.98 | 93.45
hwu64 (Liu et al., 2019), massive (FitzGerald et al.,  (3ined via training full AutoML pipeline with only this - | o . reoot 120 and A
= = . . . . able £ reriormance comparison across dirrerent presets average om €€ runs (€xcep an uto-
2022)9 lfunds 14 (GCI'Z etzal" 2’021)’ SN1ps (COUC.k? et al" mOdel, (nght) appr0x1mate l'anklng based on retrieval Gluon which were launched once). Column 1: Baseline AutoML frameworks: AutoGluon (Tang et al., 2024)
2018). 'large-unstruct, 2Embedding-v0, *multilingual- uality (NDCG) with non-HPO presets best_quality, high_quali ty, medium_quality, H20 (LeDell and Poirier, 2020) with
S ¥ 8 4 q ¥ ' their word2vec, LightAutoML (Vakhrushev et al., 2022); and Autolntent presets: nn (CNN (Kim, 2014), RNN),
mini-instruct-v1.5 ’ text-v1.5 zero-shot (description-based bi- and cross-encoder, LLM prompting), classic (knn, logreg, random forest,
catboost (Prokhorenkova et al., 2018)). Column 2: Duration in seconds evaluated on minds14 (Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz, single Tesla P100-SXM2-16GB). Columns 3-7: Accuracy on test sets.
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Few-shot examples

Superior robustness
to scarce data
scenario thanks to
classic ML models
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Documentation

integration with ReAct agents

convenient deployment and Inference
better augmentations
any of your ideas!
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