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Abstract

We demonstrate that a “’think-first” phase via chain-of-thought (CoT) prompting systematically strengthens
internal query—key (QK) alignment, improving ability to select and verify answers directly from model activations
rather than decoded tokens. Building on multiple-choice evaluation with MMLU-Pro and extending to free-form
reasoning on MATH-500, GSM8K, and our variant of Humanity’s Last Exam, we evaluate three settings: (1)
MCQA vs MCQA+CoT with QK-based selection; (11) candidate generation with/without CoT followed by QK-
based selection among self-proposed answers; and (111) QK-based verification of LLM solutions. We analyze
QK-score accuracy, permutation robustness, and diagnostics relating alignment strength to correctness. This yields a
white-box, computation-efficient decision rule that turns CoT from a purely generative aid into a deliberation-then-
selection mechanism grounded in the model’s own representations. By leveraging this internal signal, we surpass
preference-optimized LLMs on fundamental reasoning tasks, achieving performance gains up to 22

Introduction

Recent advances have shown that prompting models to generate Chain-of-Thought (CoT) expla-
nations [29] and applying self-consistency [26] can substantially improve their reasoning reliability.
Nevertheless, evaluation of the proper reasoning chains and strategies to select the right answer remains
a challenge. Correctness and reliability of reasoning trajectory often requires verification through
external solvers [21, 24] or reranking heuristics [15]. These approaches highlight the need for efficient
and interpretable internal signals that can complement or replace external heuristics.

In this work, we explore the use of the Query—Key (QK) score, a raw dot-product measure of
alignment between query and key vectors within the transformer attention mechanism, as such an
internal signal. Prior work has used QK-scores for probing latent knowledge in MCQA [22] and
for detecting logical consistency [23], but their potential for guiding reasoning and answer selection
remains underexplored. We hypothesize that QK-score can serve not only as diagnostic tools, but also
as practical mechanisms for improving LLLM reasoning across diverse tasks.

1 Method

Background on QK-score In transformer architectures, the interaction between query and key

vectors affects how information flows across tokens. Beyond their normalized role 1n attention weights,

(L,h) (1,h) .

we can define the raw dot product of query vector of ¢-th token ;7 and key vector of j-th token ;n

the attention head ([, h) as Sg[@() :gl,h) ! §l’h>. Recent studies have employed this measure to probe
model behavior in diverse tasks, such as identifying latent preferences in multiple-choice question

answering or 1solating heads that evaluate logical consistency [22, 23]

QK-score and connection between reasoning parts. We use () K -score to quantify the strength of
the connection between two reasoning parts. Suppose that we have a text consisting of two parts (¢, a),
which we will call premise (c) and response (a). By ¢, and a,» we denote tokens that represent ¢ and a;
usually they are the punctuation or end-of-line signs at the very end of the respective parts; we choose
them because they ‘collect’ the meaning of the preceding text and at the same time they don’t have
their own meaning (unlike tokens that are part of actual words). Calculating S g’[@ (¢r, ar), we measure
how strongly a particular attention head aligns the response to the premise. We use () K -scores to
compare multiple responses to the same premise (i.e., answer candidates to the question) .

In this work we explore three different setups and particular application details of the () K-score in

them vary slightly.

e For MCQA, the premise 1s a concatenation of an instruction, context (if given), question, and a full
list of choices one per line. We pass all options to the model in one go and only vary the choice of
the premise-representing token (c,) for the calculation of the QKscore. We choose the end-of-line
tokens after each of the choices. For simple MCQA, responserepresenting token 1s the last token of
the prompt (1.e., colon in ‘ANSWER:’). For MCQA with reasoning, we prompt the LLM is prompted
with the premise, consider its output as the response, and select the token right before the final
answer option as the response-representing token a,..

The prediction 1s the option 1s the one that achieves the highest QK-score.
* For Hypothesis selection premise 1s the concatenation an instruction and problem. ¢, 1s selected as

the end-of-line token in the end of the problem. LLM prompted with the premise and its generation
1s the response; a, 1s chosen as the last token of the generation.

The selected hypothesis 1s the one that achieves highest QK-score.

Head Selection Procedure. When it is not stated otherwise, we do not aggregate predictions or
() K -scores from multiple attention heads. Instead, in each experiment we use a separate calibration
subset of the data from the same domain to select the single best performing head.

Results

1.1 QK-score with CoT for MCQA

First, we assess the efficiency of the QK score for simple MCQA and MCQA with integrated CoT
reasoning. In both setups, the model 1s prompted with context, a question, a list of options, and an
instruction to output only one letter — the correct option; in the second setup, the prompt also includes
an instruction to think step-by-step before giving the final answer.

MCQA MCQA with CoT
Baseline  QK-score | Baseline QK-score
Model Acc. PA Acc. PA | Acc. PA Acc. PA

LLaMA-3.1-8B

DeepSeek-R 1-Distill-
Qwen—-1.5B 12.7 161 20.0 877|199 54 168 5.0
Qwen—7B | 13.51 2.13 27.29 1492 26.0 106 25.45 142
Qwen—14B | 17.72 3.88 44.42 32731 40.8 254 46.0 33.0
Qwen-32B| 16.6 3.00 49.32 37.49| 35.2 202 49.65 36.2

28.8 10.6 334 214 36.8 10.86 44.6 28.39

Qwen3-8B 25.56 10.37 41.33 26.37|36.13 20.7 35.67 242
Qwen3-14B 15.35 2.63 45.01 31.6 | 44.0 252 4225 292
Qwen3-32B 23.18 828 44.35 32.15/37.65 238 37.20 258

Table 1: MCQA performance comparison on MMLU-PRO benchmark.

MCQA MCQA with CoT
Baseline  QK-score | Baseline QK-score
Model Acc. PA Acc. PA | Acc. PA Acc. PA

LLaMA-3.1-8B

DeepSeek-R1-Distill-
Qwen—1.5B 26.63 8.25 31.38 1256 22.6 64 36.2 154
Qwen-7B 28.25 10.75 33.25 14.56 29.94 17.0 29.56 13.8
Qwen—14B 30.31 14.69 35.31 15.1333.25 13.0 31.56 19.6
Qwen—-32B | 34.81 19.81 34.06 18.06|33.56 16.2 33.63 22.6

28.75 10.69 33.56 13.8130.20 12.8 32.60 13.2

Qwen3-8B 30.88 14.94 38.56 21.8731.63 16.8 36.00 22.6
Qwen3-14B 30.06 12.44 33.57 15.19/33.06 14.4 29.06 21.6
Qwen3-32B 31.25 1531 36.94 14.13/36.40 19.8 38.40 16.8

Table 2: MCQA performance comparison on HLE-% benchmark.

Tables 1 and 2 provide the results. From them, we can see that in the simple MCQA setup the
QK-score from a single selected head allows for significant improvement over the baseline (up to 30%
by accuracy and 34% in permutation accuracy on MMLU—-PRO); this effect is more pronounced for
larger models.

When the model 1s allowed to think before giving the final answer (MCQA with Chain-of-Thought
setup, right half of the tables), quality of its predictions rises to the level of QK-score predictions and
sometimes even surpasses it; however, to do so, it needs to generate rather long outputs (up to 3,000
tokens).

1.2 QK-score for verification

In order to assess the ability of the QK-Score to verify the correctness of LLM trajectories, we sampled
100 problems from 2 datasets: MATH-500 and HLE-%4. In case of HLE-%4 we do not provide answer
choices for the LLM 1n this setup.

Firstly, we generate solutions for the problems using LLM with CoT. Then, we determine the real
correctness of the generated solution via comparing LLLM answer and real answer from the dataset
using separate judge: Qwen3-70B. Secondly, we turn the original LLM into a new judge and ask it
to verify its own solution without access to the correct answer. Finally, we take original trajectories,
calculate the QK-Score and compare it with pre-determined threshold 1n order to get a correctness
verdict for the specific trajectory.

1.3 Hypothesis Selection

For this task, we use data from MATH-500 and HLE-'4 datasets. For each open-end question in
them, we sampled 8 candidate reasoning chains with LLaMA-3.1 8B model. After filtering out those
questions on which either all or none of the 8 chains reached incorrect answers, we ended up with 182
and 259 questions for HLE-% and MATH-500 respectively, and each question has 8 different answer
chains.

Method MATH-500 HLE-Y

Baseline (consistency) 32.0 31.8
QK-score with calibration on

- MATH-500 53.8 31.6

- HLE 40.2 33.3

Table 3: Hypothesis Selection quality (accuracy) with LLaMA-3.1 8B model.
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Figure 1: Correlation between LLaMA-3.1 8B heads QK-scoring accuracy on two datasets for the task of hypothesis
selection.

Conclusions

We introduced a simple white-box decision rule that reads a model’s internal attention interactions
via the raw QK score, after (or without) a brief chain-of-thought phase. Across MCQA and open-
ended reasoning tasks, the QK-score selector/validator operates directly on activations, requires no
auxiliary training, and aligns with the model’s own attention preferences. Our analysis shows how
to define the read positions, choose candidate/premise tokens, and interpret the QK-score margin A
as a confidence 1ndicator. These properties make QK-score a practical complement to token-level
selectors and external verifiers. Future work includes richer head ensembles, adaptive read-time
policies, and broader tests under alternative prompt formats.
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