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Problem Setting

• Goal: Solve approximately a linear system
Āθ⋆ = b̄, θ⋆ ∈ Rd. (1)

• We observe noisy samples {(A(Zk), b(Zk))}k∈N taking values in a measurable space (Z, Z) such that

Eπ[A(Zk)] = Ā, Eπ[b(Zk)] = b̄,

where π is the stationary distribution of an ergodic Markov chain {Zk}k∈N with transition kernel P.
• We solve (1) using LSA algorithm. Given a step size sequence {αk} and an initial point θ0, define

θk = θk−1 − αk{A(Zk)θk−1 − b(Zk)}, θ̄n = 1
n

n−1∑
k=0

θk.

The Polyak–Ruppert average θ̄n reduces variance and ensures stability.
• Under suitable assumptions (see [3]), the LSA iterate is asymptotically normal:

√
n(θ̄n − θ⋆) d−→ N (0, Σ∞), Σ∞ = Ā−1ΣεĀ−T.

• We study the projected statistic √
n uT(θ̄n − θ⋆), u ∈ Sd−1,

and aim to derive:
• Non-asymptotic normal approximation bounds (Berry–Esseen type);
• Bootstrap-based confidence regions for the projection.

Assumptions

Introduce centered “noise at optimum point”: ε(Zk) = Ã(Zk)θ⋆ − b̃(Zk), where Ã(Zk) = A(Zk)−Ā, b̃(Zk) = b(Zk)− b̄.

A1 P admits π as a unique invariant distribution and is uniformly geometrically ergodic, that is, there exists tmix ∈ N, such
that for any k ∈ N, it holds that

∆(Pk) := supz,z′∈Z dtv(Pk(z, ·), Pk(z′, ·)) ≤ (1/4)⌈k/tmix⌉ . (2)

A2 Matrix −Ā is Hurwitz. Moreover, ∥ε∥∞ = supz∈Z∥ε(z)∥ < +∞, and the mapping z → A(z) is bounded, that is,

CA = sup
z∈Z

∥A(z)∥ ∨ sup
z∈Z

∥Ã(z)∥ < ∞ . (3)

Moreover, we assume that λmin(Σε) > 0, where

Σε = Eπ[ε(Z0){ε(Z0)}T] + 2
∞∑

ℓ=1
Eπ[ε(Z0){ε(Zℓ)}T].

is the noise covariance matrix under the stationary distribution π;
A3 Step sizes {αk}k∈N have a form αk = c0/(k + k0)γ, where γ ∈ [1/2; 1).

Contributions

• Non-asymptotic bound for projected PR-averaged LSA iterates
√

n uT(θ̄n − θ⋆) under Markov noise, with rate O(n−1/4)
in Kolmogorov distance.

• We obtain the first non-asymptotic analysis of the multiplier subsample bootstrap [4] for LSA with Markov noise. The
coverage error decays as O(n−1/10). As a byproduct, we recover the O(n−1/8) rate for estimating asymptotic variance
via the overlapping batch mean estimator [5].

• Application: Applied to temporal difference (TD) learning for policy evaluation in reinforcement learning.

Gaussian Approximation
Denote by Φ the c.d.f. of a standard Gaussian random variable and set

dK

(
X
)

= supx∈R |P(X ≤ x) − Φ(x)|.

Goal: Non-asymptotic CLT for the projected statistic
√

n uT(θ̄n − θ⋆).
• Decomposition:

√
nuT(θ̄n − θ⋆) = n−1/2uTM + D, where M is a martingale term (via Poisson equation),

with variance σn(u), and D is a small remainder controlledvia concentration results for additive functionals of
Markov chains

• Martingale CLT: Apply quantitative results of [1, 2] for M in Kolmogorov distance.

Theorem 1. Under A1–A3, for any u∈Sd−1,

dK

(√
n uT(θ̄n−θ⋆)√

uTΣ∞u
, N (0, 1)

)
≲log n Bn, Bn ≍ n−1/4 + n−(γ−1/2) + nγ−1 .

Optimized rate: Balancing terms gives γ = 3/4, hence dK

(√
n uT(θ̄n−θ⋆)√

uTΣ∞u
, N (0, 1)

)
≲log n n−1/4.

Multiplier Subsampling Bootstrap

Goal: Confidence intervals for uTθ⋆ using {uTθk}n−1
k=0 .

MSB procedure:
• Block length bn, local averages θ̄bn,t = 1

bn

∑t+bn−1
ℓ=t θℓ

• MSB estimator: θ̄n,bn
(u) =

√
bn√

n−bn+1
∑n−bn

t=0 wt(θ̄bn,t − θ̄n)Tu, wt ∼ N (0, 1)
• Under Pb, the MSB estimator is Gaussian: θ̄n,bn

(u) ∼ N (0, σ̂2
θ(u)) with variance

σ̂2
θ(u) = bn

n−bn+1
∑n−bn

t=0
(
(θ̄bn,t − θ̄n)Tu

)2

Concentration of OBM estimator:
• We can show that σ̂2

θ(u) = σ̂2
ε(u) + t(bn, n, γ), where σ̂2

ε(u) is the overlapping batch mean estimator of uTΣ∞u.
• Using the concentration results for the overlapping batch mean estimator, we have:

Proposition 1. With bn ≍ n3/4 and aggressive steps αk ≍ (k + k0)−1/2−ε:∣∣σ̂2
θ(u) − uTΣ∞u

∣∣ ≲log n n−1/8+ε/2 (w.h.p.).

Key idea: Bootstrap distribution approximates real distribution: Pb(θ̄n,bn
(u) ≤ x) ≈ P

(√
n(θ̄n − θ⋆)Tu ≤ x

)
Theorem 2. For bn = ⌈n4/5⌉, αk = c0/(k0 + k)3/5

supx |P
(√

n(θ̄n − θ⋆)Tu ≤ x
)

− Pb(θ̄n,bn
(u) ≤ x)| ≲log n n−1/10
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