

Statistical inference for Linear Stochastic Approximation with Markovian Noise

Sergey Samsonov¹, Marina Sheshukova¹, Eric Moulines^{2,3}, Alexey Naumov^{1,4}

¹HSE University ²CMAP, École Polytechnique, ³MBZUAI, ⁴Steklov Mathematical Institute of Russian Academy of Sciences

Problem Setting

- Goal: Solve approximately a linear system

$$\bar{\mathbf{A}}\theta^* = \bar{\mathbf{b}}, \quad \theta^* \in \mathbb{R}^d. \quad (1)$$

- We observe noisy samples $\{(\mathbf{A}(Z_k), \mathbf{b}(Z_k))\}_{k \in \mathbb{N}}$ taking values in a measurable space $(\mathcal{Z}, \mathcal{Z})$ such that

$$\mathbb{E}_\pi[\mathbf{A}(Z_k)] = \bar{\mathbf{A}}, \quad \mathbb{E}_\pi[\mathbf{b}(Z_k)] = \bar{\mathbf{b}},$$

where π is the stationary distribution of an ergodic Markov chain $\{Z_k\}_{k \in \mathbb{N}}$ with transition kernel P .

- We solve (1) using LSA algorithm. Given a step size sequence $\{\alpha_k\}$ and an initial point θ_0 , define

$$\theta_k = \theta_{k-1} - \alpha_k \{ \mathbf{A}(Z_k) \theta_{k-1} - \mathbf{b}(Z_k) \}, \quad \bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k.$$

The Polyak–Ruppert average $\bar{\theta}_n$ reduces variance and ensures stability.

- Under suitable assumptions (see [3]), the LSA iterate is asymptotically normal:

$$\sqrt{n}(\bar{\theta}_n - \theta^*) \xrightarrow{d} \mathcal{N}(0, \Sigma_\infty), \quad \Sigma_\infty = \bar{\mathbf{A}}^{-1} \Sigma_\varepsilon \bar{\mathbf{A}}^{-\top}.$$

- We study the projected statistic

$$\sqrt{n} u^\top (\bar{\theta}_n - \theta^*), \quad u \in \mathbb{S}^{d-1},$$

and aim to derive:

- Non-asymptotic normal approximation bounds (Berry–Esseen type);
- Bootstrap-based confidence regions for the projection.

Assumptions

Introduce centered “noise at optimum point”: $\varepsilon(Z_k) = \tilde{\mathbf{A}}(Z_k)\theta^* - \tilde{\mathbf{b}}(Z_k)$, where $\tilde{\mathbf{A}}(Z_k) = \mathbf{A}(Z_k) - \bar{\mathbf{A}}$, $\tilde{\mathbf{b}}(Z_k) = \mathbf{b}(Z_k) - \bar{\mathbf{b}}$.

A1 P admits π as a unique invariant distribution and is uniformly geometrically ergodic, that is, there exists $t_{\text{mix}} \in \mathbb{N}$, such that for any $k \in \mathbb{N}$, it holds that

$$\Delta(P^k) := \sup_{z, z' \in \mathcal{Z}} d_{\text{tv}}(P^k(z, \cdot), P^k(z', \cdot)) \leq (1/4)^{\lceil k/t_{\text{mix}} \rceil}. \quad (2)$$

A2 Matrix $-\bar{\mathbf{A}}$ is Hurwitz. Moreover, $\|\varepsilon\|_\infty = \sup_{z \in \mathcal{Z}} \|\varepsilon(z)\| < +\infty$, and the mapping $z \rightarrow \mathbf{A}(z)$ is bounded, that is,

$$C_{\mathbf{A}} = \sup_{z \in \mathcal{Z}} \|\mathbf{A}(z)\| \vee \sup_{z \in \mathcal{Z}} \|\tilde{\mathbf{A}}(z)\| < \infty. \quad (3)$$

Moreover, we assume that $\lambda_{\min}(\Sigma_\varepsilon) > 0$, where

$$\Sigma_\varepsilon = \mathbb{E}_\pi[\varepsilon(Z_0)\{\varepsilon(Z_0)\}^\top] + 2 \sum_{\ell=1}^{\infty} \mathbb{E}_\pi[\varepsilon(Z_0)\{\varepsilon(Z_\ell)\}^\top].$$

is the noise covariance matrix under the stationary distribution π ;

A3 Step sizes $\{\alpha_k\}_{k \in \mathbb{N}}$ have a form $\alpha_k = c_0/(k + k_0)^\gamma$, where $\gamma \in [1/2; 1)$.

Contributions

- Non-asymptotic bound for projected PR-averaged LSA iterates $\sqrt{n} u^\top (\bar{\theta}_n - \theta^*)$ under Markov noise, with rate $\mathcal{O}(n^{-1/4})$ in Kolmogorov distance.
- We obtain the first non-asymptotic analysis of the *multiplier subsample bootstrap* [4] for LSA with Markov noise. The coverage error decays as $\mathcal{O}(n^{-1/10})$. As a byproduct, we recover the $\mathcal{O}(n^{-1/8})$ rate for estimating asymptotic variance via the overlapping batch mean estimator [5].
- Application: Applied to temporal difference (TD) learning for policy evaluation in reinforcement learning.

Gaussian Approximation

Denote by Φ the c.d.f. of a standard Gaussian random variable and set

$$d_K(X) = \sup_{x \in \mathbb{R}} |\mathbb{P}(X \leq x) - \Phi(x)|.$$

Goal: Non-asymptotic CLT for the projected statistic $\sqrt{n} u^\top (\bar{\theta}_n - \theta^*)$.

Decomposition: $\sqrt{n} u^\top (\bar{\theta}_n - \theta^*) = n^{-1/2} u^\top M + D$, where M is a martingale term (via Poisson equation), with variance $\sigma_n(u)$, and D is a small remainder controlled via concentration results for additive functionals of Markov chains

Martingale CLT: Apply quantitative results of [1, 2] for M in Kolmogorov distance.

Theorem 1. Under A1–A3, for any $u \in \mathbb{S}^{d-1}$,

$$d_K\left(\frac{\sqrt{n} u^\top (\bar{\theta}_n - \theta^*)}{\sqrt{u^\top \Sigma_\infty u}}, \mathcal{N}(0, 1)\right) \lesssim_{\log n} B_n, \quad B_n \asymp n^{-1/4} + n^{-(\gamma-1/2)} + n^{\gamma-1}.$$

Optimized rate: Balancing terms gives $\gamma = 3/4$, hence $d_K\left(\frac{\sqrt{n} u^\top (\bar{\theta}_n - \theta^*)}{\sqrt{u^\top \Sigma_\infty u}}, \mathcal{N}(0, 1)\right) \lesssim_{\log n} n^{-1/4}$.

Multiplier Subsampling Bootstrap

Goal: Confidence intervals for $u^\top \theta^*$ using $\{u^\top \theta_k\}_{k=0}^{n-1}$.

MSB procedure:

- Block length b_n , local averages $\bar{\theta}_{b_n, t} = \frac{1}{b_n} \sum_{\ell=t}^{t+b_n-1} \theta_\ell$
- MSB estimator: $\bar{\theta}_{n, b_n}(u) = \frac{\sqrt{b_n}}{\sqrt{n-b_n+1}} \sum_{t=0}^{n-b_n} w_t (\bar{\theta}_{b_n, t} - \bar{\theta}_n)^\top u$, $w_t \sim \mathcal{N}(0, 1)$
- Under \mathbb{P}^b , the MSB estimator is Gaussian: $\bar{\theta}_{n, b_n}(u) \sim \mathcal{N}(0, \hat{\sigma}_\theta^2(u))$ with variance $\hat{\sigma}_\theta^2(u) = \frac{b_n}{n-b_n+1} \sum_{t=0}^{n-b_n} ((\bar{\theta}_{b_n, t} - \bar{\theta}_n)^\top u)^2$

Concentration of OBM estimator:

- We can show that $\hat{\sigma}_\theta^2(u) = \hat{\sigma}_\varepsilon^2(u) + t(b_n, n, \gamma)$, where $\hat{\sigma}_\varepsilon^2(u)$ is the overlapping batch mean estimator of $u^\top \Sigma_\infty u$.
- Using the concentration results for the overlapping batch mean estimator, we have:

Proposition 1. With $b_n \asymp n^{3/4}$ and aggressive steps $\alpha_k \asymp (k + k_0)^{-1/2-\varepsilon}$:

$$|\hat{\sigma}_\theta^2(u) - u^\top \Sigma_\infty u| \lesssim_{\log n} n^{-1/8+\varepsilon/2} \quad (\text{w.h.p.})$$

Key idea: Bootstrap distribution approximates real distribution: $\mathbb{P}^b(\bar{\theta}_{n, b_n}(u) \leq x) \approx \mathbb{P}(\sqrt{n}(\bar{\theta}_n - \theta^*)^\top u \leq x)$

Theorem 2. For $b_n = \lceil n^{4/5} \rceil$, $\alpha_k = c_0/(k + k_0)^{3/5}$

$$\sup_x |\mathbb{P}(\sqrt{n}(\bar{\theta}_n - \theta^*)^\top u \leq x) - \mathbb{P}^b(\bar{\theta}_{n, b_n}(u) \leq x)| \lesssim_{\log n} n^{-1/10}$$

References

- [1] E. Bolthausen. Exact Convergence Rates in Some Martingale Central Limit Theorems. *The Annals of Probability*, 10(3):672 – 688, 1982.
- [2] Xiequan Fan. Exact rates of convergence in some martingale central limit theorems. *Journal of Mathematical Analysis and Applications*, 469(2):1028–1044, 2019.
- [3] G. Fort.
- [4] Ruru Ma and Shihbin Zhang. Multiplier subsample bootstrap for statistics of time series. *J. Statist. Plann. Inference*, 233:Paper No. 106183, 15, 2024.
- [5] Xi Chen Wanrong Zhu and Wei Biao Wu. Online Covariance Matrix Estimation in Stochastic Gradient Descent. *Journal of the American Statistical Association*, 118(541):393–404, 2023.