

3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark

Ivan Sviridov, Amina Miftakhova, Artemiy Tereshchenko, Galina Zubkova, Pavel Blinov, Andrey Savchenko

1. MOTIVATION

Telemedicine is reshaping access to healthcare with the usage of Large Vision-Language Models (LVLMs). However, most existing telemedicine benchmarks for LVLMs are limited:

- ***** They focus on static QA or multiple-choice tasks
- * Lack of multi-turn, interactive dialogue
- **x** Ignore patient personality and behavioral variation
- * Rarely include visual clinical inputs

We introduce 3MDBench - Medical Multimodal Multi-agent Dialogue **Benchmark** that:

- Simulates dialogue consultations with Doctor Agent using image modality;
- Introduces Patient Agent with different temperament-dictated behaviours;
- Evaluates diagnostic and communication quality via Assessor Agent;
- Benchmarks different LVLMs as Doctor Agents across multiple strategies.

2. DATA COLLECTION

1. Forming a diagnosis list

- > 611K real telemedicine consultations
- 180M outpatient records for the distribution validation
- **34 diseases** across five domains

2. Obtaining images

- 2996 clinical images (public datasets, Kaggle, Bing, etc.)
- **≥64 images/class** for balance
- Filtered via automation + manual review

3. Generating complaints

- Generated via GPT-4o-mini
- One basic complaint per diagnosis
- List of additional complaints per image: duration, intensity, history

4. Ensuring multimodality

- ✓ Each case = image + basic + additional symptoms
- We ensured medical validation of the generated symptoms
- ✓ We obtained private train/val parts

3. SIMULATION FLOW

Doctor Agent ◆ Complaint image ◆ Basic complaint **Patient Agent** ◆ Additional complaints **→** Temperament Dialogue containing predicted diagnosis → Ground truth diagnosis **Assessor Agent** ◆ Complaint image Diagnostic and dialogue metrics

4. AGENTS DESIGN

Patient Agent

- Complains, reports symptoms, asks questions
- ◆ Expects to discover its diagnosis and recommendations on what to do
- ♦ Selected based on:

Llama-3-8B

- Instruction following (0-5 LLM) judge score)
- Answer relevance (0-5 LLM judge score for each answer)
- Factuality (embedding closeness to the actual symptoms) for each answer

Assessor Agent

Evaluates clinical competence using the adapted Mini-CEX scale^[1]

- Medical interviewing skills
- Humanistic care
- Treatment abilities

Qwen2-VL-72B-Instruct

- Extracts the final diagnosis to assess the diagnostic accuracy
- Selected based on:
- Alignment with human assessments for clinical competence via Cohen's k
- **F1-score** for the diagnostics

[1] Shi, Xiaoming et al. "LLM-Mini-CEX: Automatic Evaluation of Large Language Model for Diagnostic Conversation." ArXiv abs/2308.07635 (2023)

Doctor Agent

Open-source and proprietary models with multiple strategies

- Has a goal of **determining the** diagnosis and providing recommendations on treatment and further diagnostics
- Receives the basic complaint and the image as the first message
- Should conduct the diagnostic dialogue: ask clarifying questions regarding symptoms
- ◆ After diagnostics, it should answer the patient's questions

True diagnosis

Diagnostic F1

1.1

1.2

1.3

2.1

2.2

3.1

3.2

4.1

Predicted diagnosis

eczema

eczema

1.0

excellent

5. RESULTS **CLINICAL COMPETENCE**

Model	1.1	1.2	1.3	2.1	2.2	3.1	3.2	4.1
GPT, dialogue, no image	1.00	1.00	0.95	1.00	1.00	0.89	0.90	1.45
GPT, dialogue + image	0.99	1.00	0.96	1.00	1.00	0.90	0.91	1.61
GPT, dialogue + image + rationale	0.96	0.99	0.89	0.99	0.97	0.78	0.78	1.31
GPT, dialogue + image + rationale + external cues	0.96	0.99	0.96	0.99	0.98	0.88	0.88	1.47
Llama-3.2-Vision	0.99	0.99	0.94	0.99	0.99	0.75	0.74	1.45
Qwen2-VL	0.90	0.93	0.78	0.92	0.90	0.61	0.61	1.16
MedGemma-4B	0.97	0.98	0.94	0.99	0.98	0.79	0.80	1.42
MedGemma-27B	1.00	1.00	1.00	1.00	1.00	0.90	0.88	1.67
Gemma3-27B	0.99	1.00	0.99	1.00	1.00	0.97	0.98	1.57

• Diagnostic and treatment abilities (3.1 and 3.2) demonstrate how domain-specific models are better aligned for telemedicine than the general-domain ones.

CLINICAL COMPETENCE CRITERIA

	Primary item	Secondary item		
	Medical Interviewing Skills	1.1. Enquiry about medical history		
		1.2. Enquiry about current symptoms		
		1.3. Explaining the basis of conclusions		
	Humanistic Care	2.1. Communicating with respect and empathy		
		2.2. Respecting the individual wishes		
	Diagnostic and Treatment Abilities	3.1. Providing accurate diagnostic plan		
		3.2. Providing accurate treatment plan		
	Overall Clinical Competence	4.1. Level of clinical competence: unsatisfactory, satisfactory, excellent		
	_			

DIAGNOSTIC RESULTS									
Model name	Configuration	F1 Score	Number of utterances						
EfficientNetV2-XL	Fine-tuned on the train part	61.0	-						
GPT 4o-mini	No dialogue, image + general complaint	50.4	-						
	No dialogue, image + all complaints	66.8	-						
	Dialogue, no image	52.8	15.22 (±3.63)						
	Dialogue + image	54.2	13.32 (±3.33)						
	Dialogue + image + rationale	56.9	14.99 (±4.23)						
	Dialogue + image + rationale + cues from pretrained CNN	70.3	14.48 (±3.97)						
Llama-3.2-Vision	Dialogue + image	41.5	14.49 (±4.02)						
Qwen2-VL	Dialogue + image	39.0	15.11 (±4.39)						
MedGemma-4B	Dialogue + image	37.9	17.48 (±4.84)						
MedGemma-27B	Dialogue + image	45.7	16.88 (±5.25)						
Gemma3-27B	Dialogue + image	51.1	14.81 (±3.81)						

- Dialogue improves diagnostic accuracy
 - However, F1-score remains below full-information levels;
 - Using cues from a pretrained CNN improves F1-score to 20%.
- General-purpose models outperform domain-specialized ones, likely due to training biases toward specific imaging tasks or structured QA formats.
- The visual channel shortens and refines the dialogue.

6. DIALOGUE EXAMPLE

7. CONCLUSIONS

- **3MDBench** a multi-agent, multimodal benchmark simulating doctor-patient dialogue with varying temperaments and consultation assessment.
- Multiple models and strategies assessment.
- We demonstrate that:
 - Dialogue and expert visual cues enhance F1-score;
 - Domain tuning does not always improve multi-turn diagnostic accuracy;
 - There should be a balance between clinical competence and diagnostic accuracy.

