

Tsururu:

A Python-based Time Series **Forecasting Strategies Library**

<u>Alina Kostromina</u>¹, Kseniia Kuvshinova^{1,3}, Aleksandr Yugay^{2,4}, Andrey Savchenko^{1,5}, Dmitry Simakov¹

¹Sber AI Lab, ²Sber, ³Skoltech, ⁴MIPT, ⁵ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia

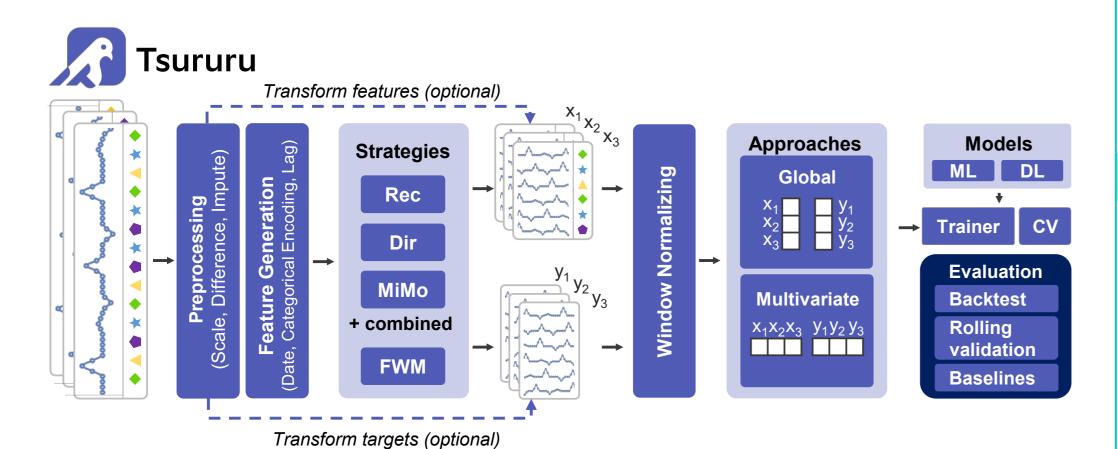
alina.kostromina@gmail.com

SS + LKN

Abstract

While current time series research focuses on developing new models, crucial questions of selecting an optimal approach for training such models are underexplored. Tsururu, a Python library introduced in this paper, bridges SoTA research and industry by enabling flexible combinations of global and multivariate approaches and multi-step-ahead forecasting strategies. It also enables seamless integration with various forecasting models. Available at https://github.com/sb-ai-lab/tsururu.

Framework Design



In Tsururu, data moves through a structured pipeline.

Multi-series prediction strategies [1, 2]:

- Global fits a single model to all time series, treating them as independent.
- Multivariate fits a single model to all time series and allows the model to capture dependencies between them.
- Besides, each DL model supports **Channel Independence** (CI) and Channel Dependence (CD) modes [3].

Multi-step-ahead prediction strategies:

- **h** model horizon (MH); **H** full horizon.
- **Recursive** trains a single model to predict the next point (MH = 1), iteratively extending predictions across the forecast horizon and using previous predictions to update the features in the test data [4].
- **Direct** uses separate models for each point (MH = 1) in the forecasting vector [4].
- **MIMO** (multi-input-multi-output) trains a single model to simultaneously predict the entire forecast horizon (MH = H) [5].
- **FWM** (flat-wide-mimo) uses a single model to predict a specific point in the forecasting vector, with the horizon index explicitly provided as an input feature.
- Hybrid strategies: Recursive-MIMO, Direct-MIMO, in which MH > 1.

Data Transformations:

- Series-to-Series data preparation and feature generation.
 - StandardScaler, DifferenceNormalizer.
- Series-to-Features build a "wide" series matrix with lagged versions of generated features.
 - Seasonality features.
- Features-to-Features perform window-based processing.
 - LastKnownNormalizer (normalizing values by the most recent observed one in available history).

Models:

- ML: CatBoost [6], SketchBoost [7].
- DL: Linear (DLinear [8], CycleNet [9]), CNN-based (TimesNet [10]), Transformer-based (PatchTST [11], GPT2 [12]).

Experimental setup

Models:

SketchBoost, DLinear, PatchTST, GPT2, CycleNet.

Strategies:

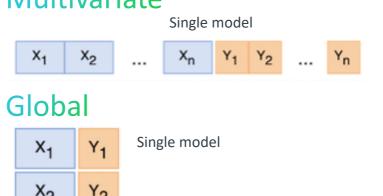
- Global, Multivariate (both CI & CD).
- Recursive (MH=1), Recusrive-MIMO (MH=6), MIMO, FWM.

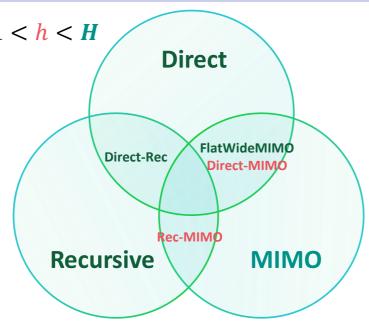
Dataset:

- ILI [https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html]
- There are results for other datasets in our github repository.

Multivariate

...





1 < h < H

Other:

50 epochs. Batch size=32.

• History=96. Horizon=24.

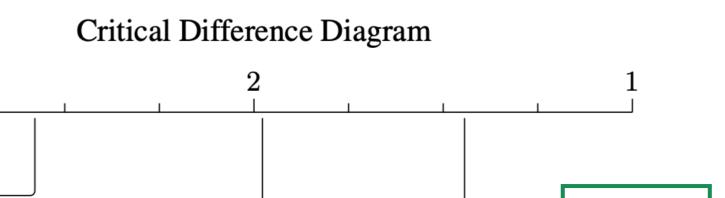
Model hyperparameters were

unchanged from initial works.

LR=0.0001. Cosine-based scheduler.

Study 1: Preprocessing

SS + DN



A critical difference diagram visualizes the ranking of preprocessing methods across other fixed hyperparameters of the pipeline. Methods not connected by a horizontal line are significantly different. Here, we consider StandardScaler (SS) with LastKnownNormalizer (LKN) or DifferenceNormalizer (DN)

Used delta-mode (based on subtraction; delta- and ratio-modes are available)

Study 2: Features & Strategies

Hyperparam	Hyperparam Value		NN models Rank Median MAE		Boosting Rank Median MAE		Overall Rank Median MAE	
Datetime	False	1.3819	1.0087	1.3333	1.6050	1.3743	1.0448	
Features	True	1.6181	1.1323	1.6667	1.6174	1.6257	1.1785	
ID Features	False	1.7262	1.0780	1.5714	1.6174	1.6952	1.1319	
	True	1.2738	1.0024	1.4286	1.5898	1.3048	1.0611	
Mode	Global	1.5476	1.0056	1.0952	1.5648	1.5476	1.0735	
	Multivariate CI	2.2619	1.1217	NaN	NaN	2.2619	1.1217	
	Multivariate CM	2.1905	1.1319	1.9048	1.6248	2.1905	1.2129	
Prediction Strategy	FlatWideMIMO MIMO Recursive $(MH = 1)$ Recursive $(MH = 6)$	3.9375 1.7500 2.4167 1.8958	1.3080 1.0280 1.0314 1.0228	2.8889 2.4444 2.7778 1.8889	1.6208 1.6072 1.6066 1.5816	3.7719 1.8596 2.4737 1.8947	1.3543 1.0621 1.0763 1.0541	

Comparison of hyperparameters of data manipulation pipeline. For boosting, there is no Multivariate CI mode by construction; only Multivariate CM mode is available.

Study 3: Models & Strategies

rank	Model	Strategy	MAE (test)	Model	Strategy	MAE (val)
1	GPT4TS	Recursive $(MH = 6)$	0.7804	GPT4TS	MIMO	0.2713
2	GPT4TS	Recursive $(MH = 1)$	0.7822	GPT4TS	Recursive $(MH = 6)$	0.2833
3	PyBoost	FlatWideMIMO	0.7921	GPT4TS	Recursive $(MH = 1)$	0.2938
4	GPT4TS	MIMO	0.7926	PatchTST	MIMO	0.3005
5	PatchTST	Recursive $(MH = 6)$	0.8630	PatchTST	Recursive $(MH = 6)$	0.3050
6	PatchTST	MIMO	0.8769	DLinear	Recursive $(MH = 6)$	0.3169
7	PatchTST	Recursive $(MH = 1)$	0.8949	PatchTST	Recursive $(MH = 1)$	0.3180
8	DLinear	Recursive $(MH = 6)$	0.9193	DLinear	MIMO	0.3205
9	DLinear	MIMO	0.9220	PyBoost	FlatWideMIMO	0.3239
10	DLinear	Recursive $(MH = 1)$	0.9314	DLinear	Recursive $(MH = 1)$	0.3313

 The diversity of top-ranked models and strategies underscores the importance of exploring rarely used model-strategy combinations.

Best 10 combinations model-strategy based on MAE on validation and test subsets.

Conclusion & Future Work

- Tsururu supports ablating all-with-all combinations of preprocessing, models, multi-series and multistep-ahead prediction strategies.
- Our experiments show the advantages of using rarely employed preprocessing (like LastKnownNormalizer) and strategies (like Recursive for PatchTST).
- Future work includes incorporating Rectify, DirRec; building a universal neural network constructor, testing patching techniques, and supporting mixed discretization within multivariate datasets.

References

[1] Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin Flunkert, Michael Bohlke-Schneider, and Laurent Callot. Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1):167–177, 2020.

[2] [Montero-Manso and Hyndman, 2021] Pablo Montero- Manso and Rob J Hyndman. Principles and algorithms for forecasting groups

of time series: Locality and globality. International Journal of Forecasting, 37(4):1632–1653, 2021. [3] Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting the channel independent strategy for

multivariate time series forecasting. IEEE Transactions on Knowledge and Data Engineering, 2024.

[4] Andreas S Weigend. Time series prediction: forecasting the future and understanding the past. Routledge, 2018.

[5] [Bontempi, 2008] Gianluca Bontempi. Long term time se- ries prediction with multi-input multi-output local learn- ing. Proc. 2nd

ESTSP, pages 145–154, 2008. [6] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased boosting

with categor- ical features. Advances in neural information processing systems, 31, 2018.

[7] Leonid Iosipoi and Anton Vakhrushev. Sketchboost: Fast gradient boosted decision tree for multioutput problems. Advances in Neural Infor-mation Processing Systems, 35:25422–25435, 2022.

[8] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series fore- casting? In Proceedings of the AAAI

conference on artifi- cial intelligence, volume 37, pages 11121–11128, 2023. [9] Shengsheng Lin, Weiwei Lin, HU Xinyi, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet: Enhancing time series forecasting

through modeling peri- odic patterns. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. [10] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for

general time series analysis. In International Conference on Learning Rep- resentations, 2023. [11] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting

with transformers. In The Eleventh International Conference on Learning Rep- resentations, 2023.

[12] Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained lm. Advances in neural information processing systems, 36:43322-43355, 2023.