

Data-Efficient Meta-Models for Evaluation of **Context-based Questions and Answers in LLMs**

Julia Belikova^{1,2} Konstantin Polev¹ Rauf Parchiev¹ Dmitry Simakov¹ ¹Sber Al Lab ²Moscow Institute of Physics and Technology

Problem

Background: RAG systems are widely deployed in production & contextual hallucinations in such systems undermine user trust

Industrial Deployment Constraints:

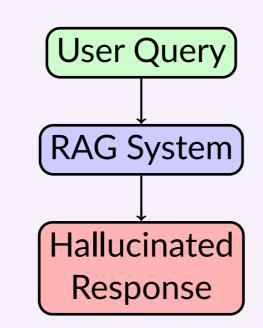
- 1. Limited Annotated Data
 - Domain-specific annotation is expensive (\$\$\$)
 - Time-consuming manual labeling process
 - Expertise requirements vary by domain

2. Computational Efficiency

- Proprietary LLMs → prohibitive latency & costs
- Real-time deployment requirements
- Scalability concerns for high-volume applications

3. Privacy & Data Sovereignty

- Sensitive enterprise data cannot leave premises
- Regulatory compliance (GDPR, HIPAA)
- Need for local, open-source solutions



Current SoTA local hallucination detectors, such as attention-based methods [1] and internal probing techniques [2], have proved to be effective on academic benchmarks with extensive annotated training sets that are infeasible for industrial settings.

Research Gap: Bridge between academic benchmarks and feasible industrial solutions in hallucination detection

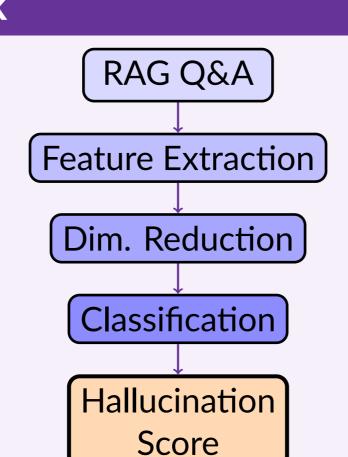
Contributions

- A data-efficient meta-modeling framework for hallucination detection that achieves competitive performance with SoTA baselines using as few as 250 training samples, significantly lowering annotation costs.
- The first rigorous empirical validation of the SoTA tabular classifier TabPFNv2 [3] for hallucination detection that demonstrates superiority in data-scarce scenarios across multiple RAG benchmarks.
- Demonstration of the industrial viability of using probing with smaller, open-source LLMs as feature extractors, offering a private, cost-effective, and scalable alternative to proprietary model-based evaluators.

Framework

- Small proxy LLMs as internals extractors
- Multi-strategy feature extraction
- Dimensionality reduction
- Efficient tabular classifiers

Goal: Combine efficient classification with effective feature extraction to minimize train size while preserve high performance



Methodology

Let D = dataset, C = context, R = LLM response, S = model states

(1) Hidden States Feature Extraction:

$$p_{mean} = \frac{1}{|R|} \sum_{i=1}^{|R|} h_i, \quad p_{max} = \max(h_1, ..., h_{|R|}), \quad p_{last} = h_{|R|}$$

where $h_i \in \mathbb{R}^{d_{model}}$ are hidden states of response tokens R.

(2) Attention-based Feature Extraction (Lookback Lens):

$$p_{lookback}^{(l,h)} = \frac{1}{|R|} \sum_{r \in R} \frac{\sum_{c \in C} A^{(l,h)}[r,c]}{\sum_{t=1}^{|T|} A^{(l,h)}[r,t]}$$

where $A^{(l,h)} \in \mathbb{R}^{|T| \times |T|}$ is attention matrix for layer l and head h.

(3) Dimensionality Reduction:

$$p^{red} = PCA(p^{orig}, d = 30)$$
 or $p^{red} = UMAP(p^{orig}, d = 30)$

(4) Meta-Classification:

$$f_{hall}(C, R, S; \phi) = g_{\phi}(p(C, R, S))$$

where $g_{\phi} \in \{\text{LogReg}, \text{CatBoost}, \text{TabPFNv2}\}$

Experimental Setup

Datasets:

- EManual: Enterprise manual Q&A[4]
- ExpertQA: Expert-level questions[5]
- RAGTruth (QA): RAG benchmark[6]

Models:

- Generator: GPT-3.5-turbo
- Extractors: Gemma-2-9b-it, Llama-3.1-8B, Qwen2.5-7B

Baselines:

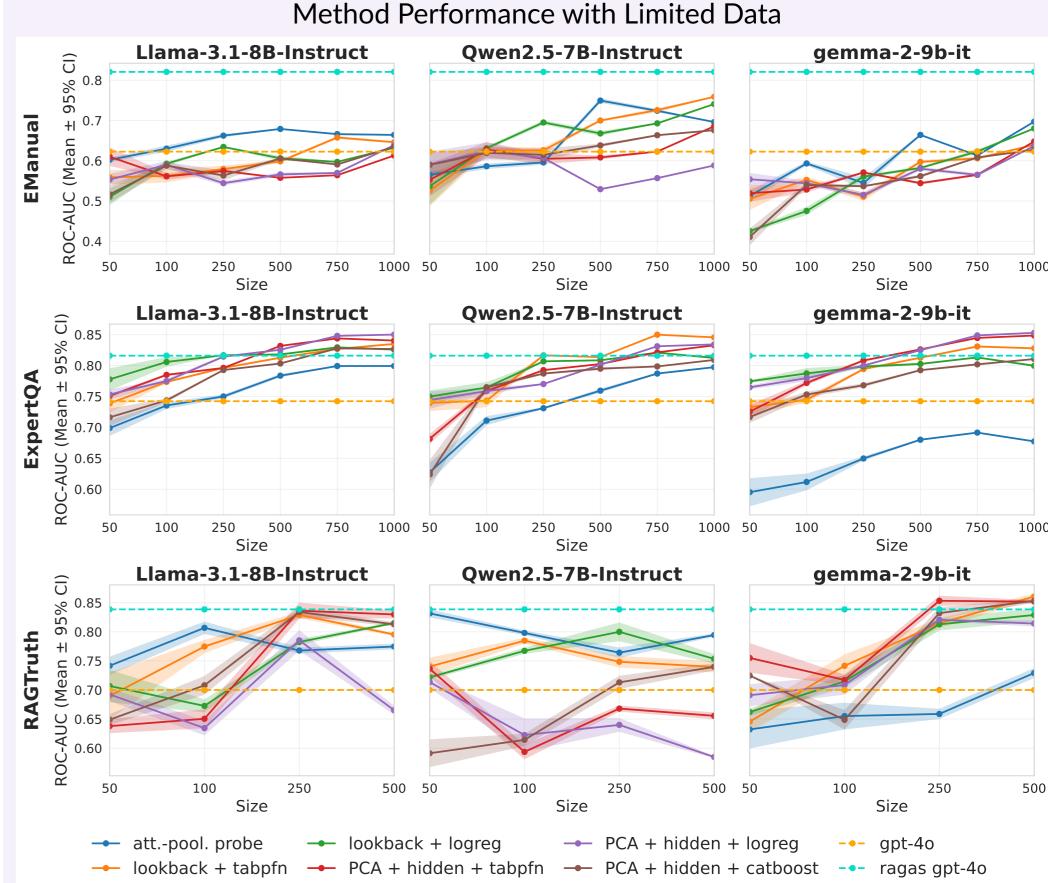
- LLM-as-Judge (GPT-40)
- RAGAS-Faithfulness[7] (GPT-40)
- Attention-Pooling Probe[2]

Evaluation:

- Data scarcity: 50–1000 samples
- Metric: ROC-AUC
- 5-fold cross-validation

*to obtain LLM internals, we use local proxy models – extractors

Results



• Competitiveness to SOTA • Data Efficiency • Model Flexibility

Classifier Performance with Limited Data

Classifier	EManual	ExpertQA	RAGTruth	Average
TabPFNv2	0.7161	0.8204	0.8139	0.7834
LogReg	0.6896	0.8218	0.8087	0.7734
CatBoost	0.6832	0.7932	0.8176	0.7646
Attpool. probe	0.6776	0.7611	0.8002	0.7463

• Best performance across a variety of size and feature combinations

Key Insights

Technical Insights

- TabPFNv2 Effectiveness: Consistent #1 ranking across datasets and extractors
- Small LLMs as extractors: Match/outperform proprietary evaluators at lower cost
- Data Efficiency Threshold: Performance plateau at 250 samples

Practical Benefits:

- 90% reduction in annotation requirements
- Local deployment feasible
- Real-time processing capability
- Cost-effective scaling

Deployment Recommendation: Start with 250 training samples with TabPFNv2

References

- Yung-Sung Chuang et al. "Lookback Lens: Detecting and Mitigating Contextual Hallucinations in Large Language Models Using Only Attention Maps". In: arXiv preprint arXiv:2407.07071 (2024).
- [2] S. CH-Wang et al. "Do Androids Know They're Only Dreaming of Electric Sheep?" In: arXiv preprint arXiv:2312.17249 (2024).
- N. Hollmann et al. "Accurate Predictions on Small Data with a Tabular Foundation Model". In: Nature 637.8045 (2025), pp. 319-326 A. Nandy et al. "Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework". In: arXiv preprint
- arXiv:2109.05897 (2021). C. Malaviya et al. "ExpertQA: Expert-Curated Questions and Attributed Answers". In: arXiv preprint arXiv:2309.07852 (2024).
- C. Niu et al. "RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models". In: arXiv preprint arXiv:2401.00396 (2024).

[7] Explodinggradients. RAGAS: Evaluation Framework for Retrieval Augmented Generation. https://github.com/explodinggradients/ragas. 2024.