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Motivation

The increasing realism of LLM-generated text poses a major challenge for artificial text detection (ATD). Many current ATD methods lack in-
terpretability and robustness, leaving the specific linguistic and structural features of machine-generated text underexplored. To address this, we use
Sparse Autoencoders (SAEs) as a source of interpretable and generalizable features for understanding and detecting Al-generated text.

Methods

Feature Extraction with SAEs: we use sparse autoen-
coders to extract interpretable features from the residual
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Domain-Specific Features: others are highly
domain-specific, capturing traits like halluci-
nated facts in Wikipedia.
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2. Manual Inspection: human analysis of Top-N ex-

amples to validate common linguistic traits. (XGBoost, Threshold-Based)

3. Steering + Interpretation: Use feature steering { 1
x" = x + AMpaxd;, where d; is the i-th column
of Wyee, and analyze these generations for inter-
pretability via GPT-4o.
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Interpretation Insights Overall Detection Performance

SAE-derived features consistently outperform mean-pooled transformer embeddings on the COLING
dataset across all splits (Train, Dev, DevTest, Test). On the 16th layer, SAE-based classifiers surpass
even the state-of-the-art multitask learning (MTL) baseline.

We identified several patterns in features and
combined into groups:

1. Common traits of Al-generated text:
excessive complexity, assertive claims,
wordy introductions, repetition, and over-
formality
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2. Domain-specific signals: overcompli- -®- Embeddings
cated syntax, hallucinated facts, specula-
tive tone, and overly polite phrasing de-

pending on the source
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Conclusion

Mars is red. Mars has an
atmosphere

Mars has underground

oceans and a red haze.
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Encourages hallucinated details
and speculative claims

Sparse Autoencoders provide a powerful and

interpretable alternative for detecting Al-

J generated text. A small number of learned

features capture robust signals that general-

ize across domains and models. These

, teatures are not only effective for classification

This iSbS:faeJ Sigwoﬂant ’Zfecv‘;‘i,f‘,’,’g”tﬁiﬁgﬁjgf but also human-interpretable through ac-

. ) )\ framework... ) tivation analysis, steering, and language-

s de'::{g‘;‘:f:ﬂ;‘;g;‘masmg based explanations. Our approach bridges

) performance and explainability, enabling more

transparent and reliable Al-generated text de-
tection.
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