VISI

Robust Barycenter Estimation using Semi-unbalanced **Neural Optimal Transport**

Milena Gazdieva^{1,3}, Jaemoo Choi², Alexander Kolesov^{1,3}, Jaewoong Choi⁴, Petr Mokrov¹, Alexander Korotin^{1,3}

In-distribution Samples from \mathbb{P}_1 .

Acceptance Rate: 63%

In-distribution Samples from \mathbb{P}_2 .

Acceptance Rate: 71.25%

Outlier Samples from \mathbb{P}_1 .

Acceptance Rate: 19%

Outlier Samples from \mathbb{P}_2 .

Acceptance Rate: 5.5%

Georgia Institute

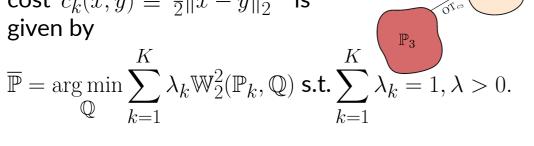
of Technology

¹Skolkovo Institute of Science and Technology (Moscow, Russia) ²Georgia Institute of Technology (Atlanta, GA, USA) ³Artificial Intelligence Research Institute (Moscow, Russia) ⁴Sungkyunkwan University (Seoul, Korea)

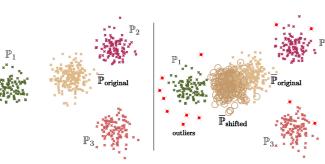
OT barycenter problem

OT barycenter $\overline{\mathbb{P}}$ is the average of distributions $\{\mathbb{P}_k\}_{k=1}^K$ w.r.t. given transport cost functions c_k .

Particular case: The Wasserstein-2 barycenter with **Euclidean** quadratic $\cos c_k(x,y) \equiv \frac{1}{2} ||x-y||_2^2$ is given by

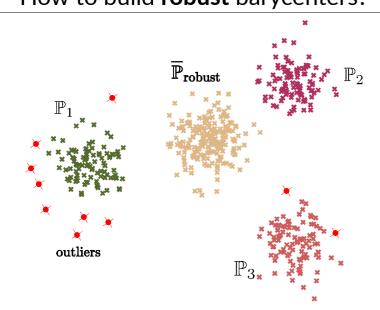


Classic OT (e.g., \mathbb{W}_2^2) barycenters are sensitive to class imbalance and outliers in the input distributions.



Existing **OT barycenter** solvers lead to **biased** results in the case of outliers or class imbalance. They are restricted to dealing with clean datasets.

Question: How to build **robust** barycenters?



Background on (unbalanced) OT

Classical OT

 $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ Transport cost:

 $c(x,y) = \frac{1}{2} ||x - y||_2^2$ Example:

Conjugate: $f^c(x) \stackrel{\mathsf{def}}{=} \inf_{y \in \mathcal{Y}} \{c(x, y) - f(y)\}$

Primal: $OT_c(\mathbb{P}, \mathbb{Q}) = \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E} c(x, y)$

 $\underline{\mathsf{Dual:}} \ \mathsf{OT}_c(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{C}(\mathcal{Y})} \underset{x \sim \mathbb{P}}{\mathbb{E}} f^c(x) + \underset{y \sim \mathbb{Q}}{\mathbb{E}} f(y)$

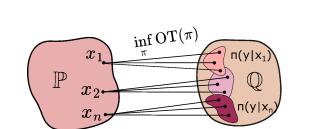
Semi-unbalanced OT

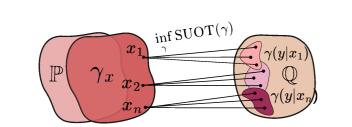
 ψ -divergence between μ_1 and μ_2 :

$$\mathsf{D}_{\psi}\left(\mu_{1} \| \mu_{2}\right) \stackrel{def}{=} \int_{\mathcal{X}} \psi\left(\frac{\mu_{1}(x)}{\mu_{2}(x)}\right) d\mu_{2}(x).$$

Primal: $SUOT_{c,\psi}(\mathbb{P},\mathbb{Q}) = \inf_{\gamma \in \Pi(\mathbb{Q})} \underset{(x,y) \sim \gamma}{\mathbb{E}} c(x,y) + \mathsf{D}_{\psi}(\gamma_x || \mathbb{P})$

 $\underline{\mathsf{Dual:}} \ \mathsf{SUOT}_{c,\psi}(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{C}(\mathcal{Y})} \underset{x \sim \mathbb{P}}{\mathbb{E}} - \overline{\psi}(-f^c)(x) + \underset{y \sim \mathbb{Q}}{\mathbb{E}} f(y)$

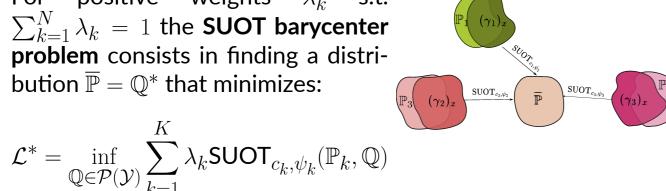




Semi-unbalanced OT barycenter

Let $\mathbb{P}_k \in \mathcal{P}(\mathcal{X}_k)$ be given distributions; let $c_k : \mathcal{X}_k \times \mathcal{Y} \to \mathbb{R}$ be appropriate cost functions, $k \in \{1, .., K\}$.

positive weights λ_k s.t. $\sum_{k=1}^{N} \lambda_k = 1$ the SUOT barycenter problem consists in finding a distribution $\overline{\mathbb{P}} = \mathbb{Q}^*$ that minimizes:



Our methodology

Step 1. Dual formulation of semi-unbalanced OT:

$$\begin{split} \mathsf{SUOT}_{c,\psi} = \sup_{f \in \mathcal{C}(\mathcal{Y})} \inf_{\gamma(\cdot|x) \in \mathcal{P}(\mathcal{Y})} \bigg(\mathcal{L}(f,\gamma,\mathbb{Q}) \bigg). \quad (1) \\ \mathsf{where} \ \mathcal{L}(f,\gamma,\mathbb{Q}) = \mathbb{E}_{x \sim \mathbb{P}} - \overline{\psi} \Big(- \mathbb{E}_{x \sim \gamma(\cdot|x)} (c(x,y) - f(y) \Big) + \mathbb{E}_{y \sim \mathbb{Q}} f(y) \end{split}$$

Step 2. Extending (1) to the barycenter objective: min-max-min problem:

$$\mathcal{L}^* = \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{Y})} \sum_{k=1}^{K} \sup_{f_k \in \mathcal{C}(\mathcal{Y})} \inf_{\gamma_k(\cdot \mid x) \in \mathcal{P}(\mathcal{Y})} \lambda_k \mathcal{L}_k(f_k, \gamma_k, \mathbb{Q}).$$
 (2)

Step 3. Obtaining m-congruence condition:

$$\left[\sum_{k=1}^K \lambda_k f_k^* \equiv m\right] \text{ for some } m \in \mathbb{R}.$$

Optimization problem

Final optimization objective

(combination of (2) with the m-congruence condition):

$$\sup_{\substack{m \in \mathbb{R}, \gamma(\cdot | x_k) \in \mathcal{P}(\mathcal{Y}) \\ \sum_{k=1}^{K} \lambda_k \{-\mathbb{E}_{x_k \sim \mathbb{P}_k} \overline{\psi}_k \big(\mathbb{E}_{x_k \sim \gamma_k(\cdot | x_k)} (f_k(y) - c_k(x_k, y)\big) + m\}}$$

Statement: Solutions γ_k^* approximate the SUOT plans between \mathbb{P}_k and barycenter $\overline{\mathbb{P}}$.

Transport plan parameterization

Basic idea:

Considered ψ -divergences. with (stochastic) maps.

Here $\psi(\cdot)$ is a convex conjugate.

 $d\gamma_k(x,y) = d\gamma_k(x)d\gamma_k(y|x);$

1. Kullback-Leibler $\overline{\psi}_{\mathsf{KL}}(t) = \exp(t) - 1.$ $\gamma_k(\cdot|x) = T_k(x,\cdot)_{\#}\mathbb{S}.$ 2. Softplus

- $\mathcal{S} \subset \mathbb{R}^{D_s}$ is an auxiliary space; $\overline{\psi}_{\mathsf{Softplus}}(t) = \mathsf{Softplus}(t)$. - $\mathbb{S} \in \mathcal{P}(\mathcal{S})$ is a distribution

3. Identity (classic OT)

(e.g., Gaussian);

- T_k is a map $T_k: \mathcal{X}_k \times \mathcal{S} \to \mathcal{Y}$. $\overline{\psi}_{\text{Id}}(t) = t$.

Particular case: **Deterministic** map.

Practice: **scaled** divergences τD_{ψ} ; τ -unbalancedness parameter.

 $\gamma_k(\cdot|x) = \delta_{T_k(x)}(\cdot)$

Empirical objective:

$$\sup_{\substack{m \in \mathbb{R} \\ T_{1:K} \\ \sum_{k=1}^K \lambda_k f_k \equiv m}} \inf_{k=1}^K \sum_{k=1}^K \lambda_k \{ -\mathbb{E}_{x_k \sim \mathbb{P}_k} \overline{\psi}_k \Big(\mathbb{E}_{s \sim \mathbb{S}} \big(f_k(T_k(x_k, s) - c_k(x_k, T_k(x_k, s))) \big) \big) + m \}.$$

Note: For $\psi_k = Id$, our solver reduces to classic OT barycenter solver (NOTB).

Method

We parameterize conditional OT plans $T_{1:K}$ as well as potentials $f_{1:K}$ with neural nets.

OT map parameterization:

$T_{1:K}: \forall k \quad T_{k,\phi}: \mathbb{R}^{D_k} \times \mathbb{R}^{D_s} \to \mathbb{R}^D.$

OT Potential parameterization:

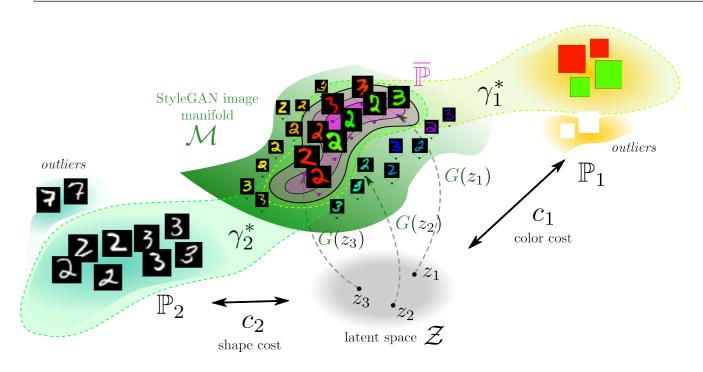
We introduce $g_k: \forall k \quad g_{k,\theta}: \mathbb{R}^D \to \mathbb{R}$ and represent potential $f_{k,\theta}$ through m-congruence condition:

$$f_{k,\theta} = g_{k,\theta} - \sum_{n \neq k} \frac{\lambda_n}{\lambda_k (K-1)} g_{n,\theta} + \frac{m}{K \lambda_k}.$$

Inference: input points should be sampled from $(\widehat{\gamma}_k)_x$. We approximate $\frac{d(\widehat{\gamma}_k)_x(x)}{d\mathbb{P}_k(x)} \approx \nabla \overline{\psi_k}(-(\widehat{f_k})^c(x_k))$ where $\widehat{f_k}$ is the learned potential and apply rejection sampling.

Links

Shape-Color Experiment



We consider SUOT barycenter problem with KL-divergence.

Shape distribution:

The distribution of gray-scale images of MNIST digits '2' (49% of training dataset), '3' (50%) and '7'(1% - outliers) on space $[0,1]^{32\times32}$.

Color distribution:

The distribution of red (probability mass $p_0 = 0.495$), green ($p_1 = 0.495$) and white($p_2 = 0.01$ - outliers) HSV vectors on space $[0,1]^3$.

Manifold

It is represented by Style-GAN Gthat is trained on colored digits '2', '3' (all colors).

Transport costs:

Shape cost:

$$c_1(x_2, z) \stackrel{\mathsf{def}}{=} \frac{1}{2} ||x_1 - H_g(G(z))||_2^2$$

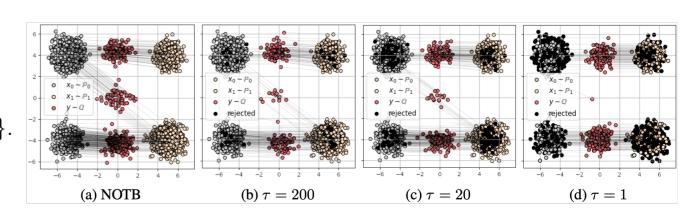
Color cost:

$$c_2(x_2, z) \stackrel{\mathsf{def}}{=} \frac{1}{2} ||x_2 - H_c(G(z))||_2^2$$

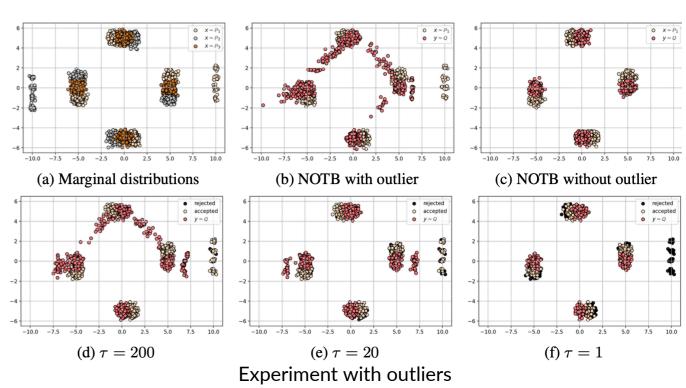
 $H_g(\text{decolorization}): \mathbb{R}^{3 \times 32 \times 32} \to \mathbb{R}^{32 \times 32}$

 $H_c(\text{defines HSV vector}) : \mathbb{R}^{3 \times 32 \times 32} \to \mathbb{R}^3$

Outlier & Class Imbalance Experiments



Experiment with class imbalance



Imbalance distributions (upper Fig.): Gaussian Mixtures \mathbb{P}_0 (gray), \mathbb{P}_1 (beige) with class imbalance.

Outliers distributions (lower Figs.): Gaussian Mixtures \mathbb{P}_0 (gray, 5%outliers), \mathbb{P}_1 (beige, 5% outliers), \mathbb{P}_2 (brown).

Transport costs: $\forall k \in \overline{1,3} : c_k(x_k,y) = \frac{1}{2}||x_k - y||_2^2$

Divergences: KL ($\tau \in [1, 20, 200]$) vs ld

Results: for small τ , our solver is robust to class imbalance and outliers issues. Increasing au yields a more precise barycenter by incorporating all data points.