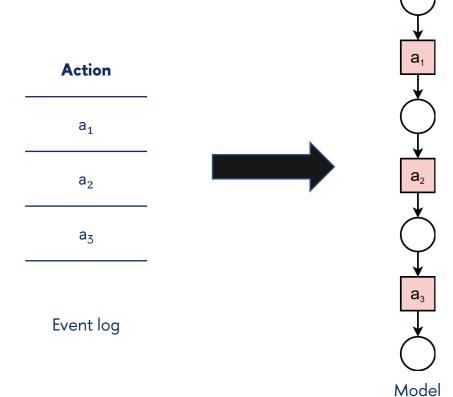


Факультет компьютерных наук


Оценка структурной сложности моделей потоков работ: асинхронное взаимодействие агентов в мультиагентных системах

Егор Земляной, Роман Нестеров

Agenda

- 1. Process mining
- 2. Workflow net
- 3. Neighboring Transitions
- 4. Neighbor Independence
 - 1. Global Neighbor Independence (GNI)
 - 2. Local Neighbor Independence (GNI)
 - 3. Balanced Local Neighbor Independence (BLNI)
 - 4. Comparison table
- 5. Properties of LNI
- 6. Experimental Evaluation of Trends
 - 1. Random WF-Net Generation
 - 2. Rule-Based WF-Net Generation
- 7. Experimental Evaluation
 - 1. Compositional Process Discovery
- 8. Conclusion

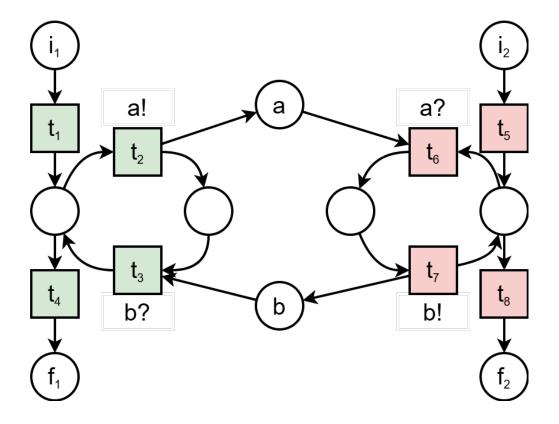
Process mining

Approaches to generate models:

Inductive miner (Leemans et al., 2013)

Fuzzy miner (Günther and Aalst, 2007)

Region theory-based miner (Werf et al., 2008)


Problems to overcome:

Incompleteness of event logs

Noise in event logs

Understandability of the model

Workflow (WF) net

Key aspects:

Systems

Each transitions corresponds to an agent

Labeled communication channels

Evaluating Structural Complexity of Architecture-Aware

Process Models Discovered from Event Logs of Multi-Agent

! – sending message to channel

? - receiving message from channel

Set of initial and final states

Two asynchronously communicating agents

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

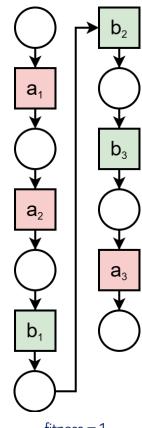
Systems

Event log of a Multi-Agent System (MAS)

Timestamp	Action	Agent
2025-03-25 14:07:46.58	a ₁	Agent 1
2025-03-25 14:08:32.67	a ₂	Agent 1
2025-03-25 14:09:12.56	b_1	Agent 2
2025-03-25 14:10:54.09	b_2	Agent 2
2025-03-25 14:11:32.07	b_3	Agent 2
2025-03-25 14:12:11.02	a_3	Agent 1

6

Event log of a Multi-Agent System (MAS)


Timestamp	Action	Agent
2025-03-25 14:07:46.58	a ₁	Agent 1
2025-03-25 14:08:32.67	a ₂	Agent 1
2025-03-25 14:09:12.56	b_1	Agent 2
2025-03-25 14:10:54.09	b_2	Agent 2
2025-03-25 14:11:32.07	b_3	Agent 2
2025-03-25 14:12:11.02	a ₃	Agent 1

Directly discovered model

Evaluating Structural Complexity of Architecture-Aware

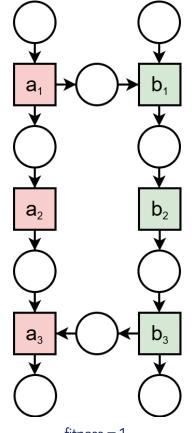
Systems

Process Models Discovered from Event Logs of Multi-Agent

fitness = 1.

precision = 1.

Faculty of Computer Science


Event log of a Multi-Agent System (MAS)

Timestamp	Action	Agent
2025-03-25 14:07:46.58	a_1	Agent 1
2025-03-25 14:08:32.67	a ₂	Agent 1
2025-03-25 14:09:12.56	b ₁	Agent 2
2025-03-25 14:10:54.09	b_2	Agent 2
2025-03-25 14:11:32.07	b_3	Agent 2
2025-03-25 14:12:11.02	a_3	Agent 1

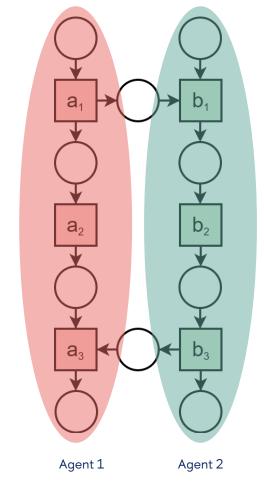
Architecture-Aware Model*

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

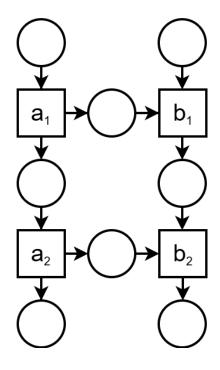
Systems

fitness = 1.precision =0.85

Event log of a Multi-Agent System (MAS)

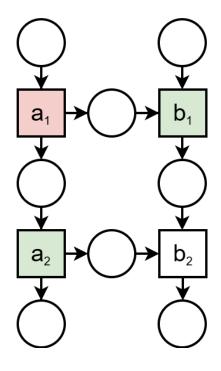

Timestamp	Action	Agent
2025-03-25 14:07:46.58	a ₁	Agent 1
2025-03-25 14:08:32.67	a ₂	Agent 1
2025-03-25 14:09:12.56	b_1	Agent 2
2025-03-25 14:10:54.09	b_2	Agent 2
2025-03-25 14:11:32.07	b ₃	Agent 2
2025-03-25 14:12:11.02	a_3	Agent 1

Architecture-Aware Model


Evaluating Structural Complexity of Architecture-Aware

Systems

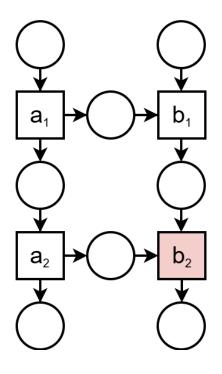
Process Models Discovered from Event Logs of Multi-Agent


Neighboring Transitions

 $\mathbf{all}(t)$ – set of all neighbors of transition t

 $diff(t) \subseteq all(t)$ – set of neighbors of transition t whose agent is different from the agent of t

Neighboring Transitions


 $\mathbf{all}(t)$ – set of all neighbors of transition t

$$\mathbf{all}(a_1) = \{a_2, b_1\}$$

 $diff(t) \subseteq all(t)$ – set of neighbors of transition t whose agent is different from the agent of t

$$\mathbf{diff}(a_1) = \{b_1\}$$

Neighboring Transitions

 $\mathbf{all}(t)$ – set of all neighbors of transition t

$$\mathbf{all}(a_1) = \{a_2, b_1\}$$

$$\mathbf{all}(b_2) = \emptyset$$

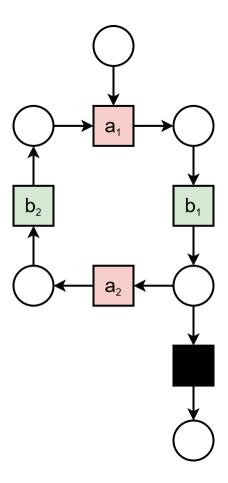
 $diff(t) \subseteq all(t)$ – set of neighbors of transition t whose agent is different from the agent of t

$$\mathbf{diff}(a_1) = \{b_1\}$$

$$\mathbf{diff}(b_2) = \emptyset$$

Different aggregation of the ratio of diff to all

- **0** if all neighbors of each transition are from different agents
- 1 if agents are not connected

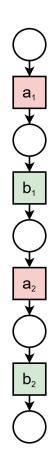

Systems

13

Neighbor Independence

Different aggregation of the ratio of diff to all

- **0** if all neighbors of each transition are from different agents
- 1 if agents are not connected



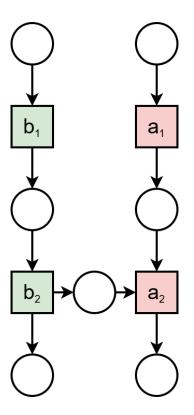
Neighbor Independence

Different aggregation of the ratio of diff to all

- **0** if all neighbors of each transition are from different agents
- 1 if agents are not connected

Evaluating Structural Complexity of Architecture-Aware

Systems

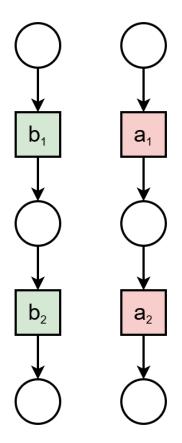

Process Models Discovered from Event Logs of Multi-Agent

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent Systems

Neighbor Independence

Different aggregation of the ratio of diff to all

- **0** if all neighbors of each transition are from different agents
- 1 if agents are not connected



16

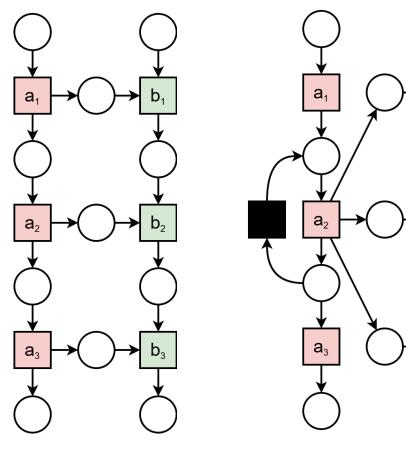
Neighbor Independence

Different aggregation of the ratio of diff to all

- **0** if all neighbors of each transition are from different agents
- 1 if agents are not connected

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Systems

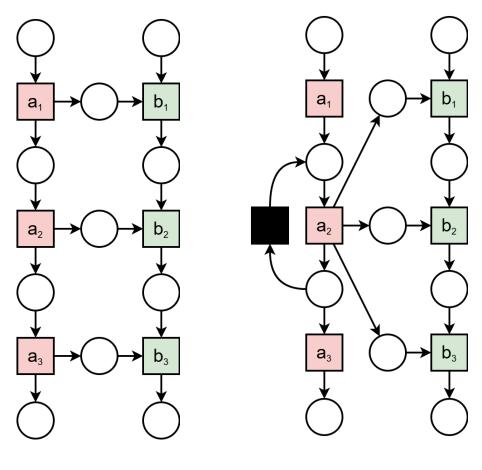

0

Global Neighbor Independence (GNI)

$$GNI(N) = 1 - \frac{\sum_{t \in T} |diff(t)|}{\sum_{t \in T} |all(t)|}$$

General relation of diff to all

Does not capture local changes


GNI=0.57 GNI=0.57

Local Neighbor Independence (GNI)

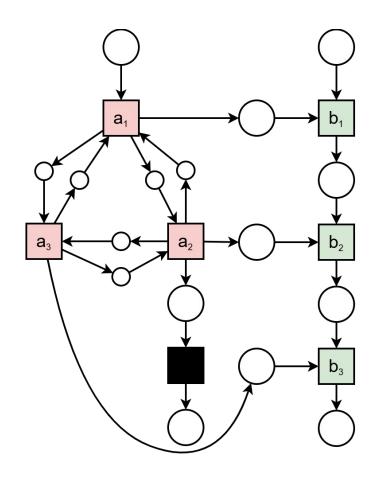
$$LNI(N) = 1 - \frac{1}{T_{VIS}} \sum_{t \in T_{WN}} \frac{|diff(t)|}{|all(t)|}$$

Averaging local relations of diff to all

Captures local changes

LNI=0.67 LNI=0.88

Pathology of LNI – Neighbor Explosion Problem


Very dense model case

 $\sum_{t \in T} |\mathsf{all}(t)|$ grows as $O(n^2)$

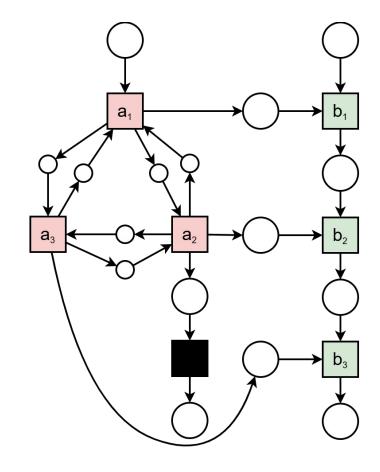
 $\sum_{t \in T} |\mathsf{diff}(t)| \text{ grows as } O(n)$

LNI $\rightarrow 1$

 $GNI \rightarrow 1$

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Systems


Balanced Local Neighbor Independence (BLNI)

$$BLNI(N) = 1 - \sum_{i=1}^{k} \frac{w_i}{|T_i|} \sum_{t \in T_i} \frac{|\operatorname{diff}(t)|}{|\operatorname{all}(t)|}$$

Weighted averaging local relations of diff to all

Weights are crucial

	$w_R = 0.5$ $w_G = 0.5$	$w_R = 0.7$ $w_G = 0.3$	$w_R = 1$ $w_G = 0$
BLNI	0.83	0.77	0.67

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Systems

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent Systems

Comparison

Statement	GNI	LNI	BLNI
Conformance with the basic principles		Partial	
Sensitivity to the communication structure			
Sensitivity to <i>changes</i> in the communication structure			
Locality of recalculation			

Statement	GNI	LNI	BLNI
Conformance with the basic principles		Partial	
Sensitivity to the communication structure	No	Yes	Yes
Sensitivity to changes in the communication structure			
Locality of recalculation			

Statement	GNI	LNI	BLNI
Conformance with the basic principles		Partial	
Sensitivity to the communication structure	No	Yes	Yes
Sensitivity to changes in the communication structure	Yes	Yes	Yes
Locality of recalculation			

Systems

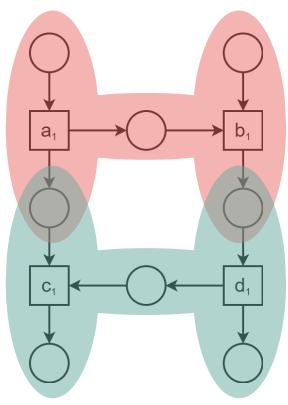
Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Statement	GNI	LNI	BLNI
Conformance with the basic principles		Partial	
Sensitivity to the communication structure	No	Yes	Yes
Sensitivity to changes in the communication structure	Yes	Yes	Yes
Locality of recalculation	No	Yes	Yes

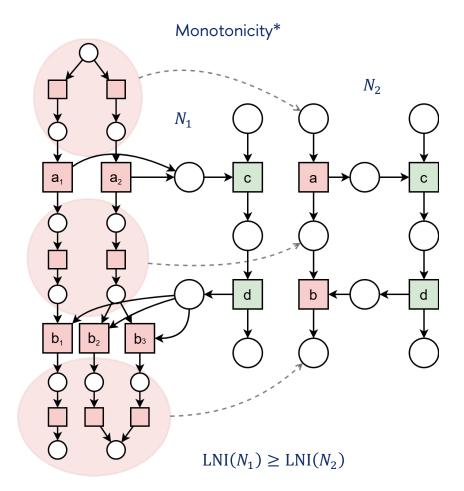
Systems

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Statement	GNI	LNI	BLNI
Conformance with the basic principles		Partial	
Sensitivity to the communication structure		Yes	
Sensitivity to changes in the communication structure		Yes	
Locality of recalculation		Yes	


Systems

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent


Properties of LNI

Faculty of Computer Science

Compositionality

 $LNI(N) = w_1 LNI(N_1) + w_2 LNI(N_2)$

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Systems

Experimental Evaluation. Random WF-Net Generation

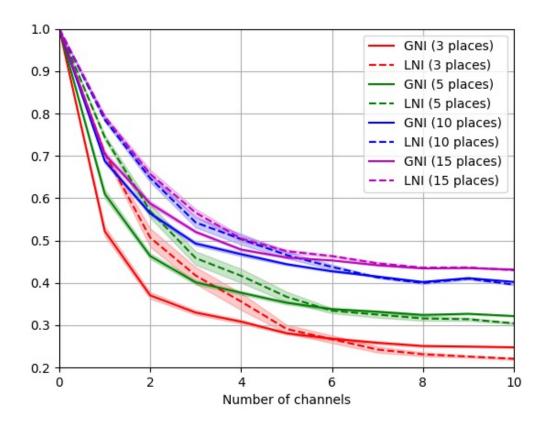
Parameters for modeling

h1: increasing the number of channels between unchanged agents lowers the values of GNI and LNI (within the random WF-net generation)

h2: increasing the number of places in agents with unchanged channels increases the values of GNI and LNI (within the random WF-net generation)

h3: the application of refinement rules can confirm the monotonicity of LNI (within the rule-based WF-net generation).

the number of agents

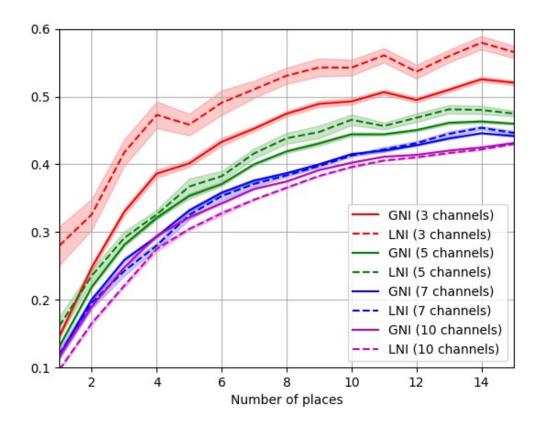

the number of places within each agent

transitions within each agent

the number of places used for agent interactions

the density of arcs within each agent and between them

Experimental Evaluation. Random WF-Net Generation


h1: increasing the number of channels between unchanged agents lowers the values of GNI and LNI (within the random WF-net generation)

5 transitions in each agent

100 models generated per each set of parameters

Faculty of Computer Science

Experimental Evaluation. Random WF-Net Generation

<u>h2</u>: increasing the number of places in agents with unchanged channels increases the values of GNI and LNI (within the random WFnet generation)

5 transitions in each agent

Systems

100 models generated per each set of parameters

Evaluating Structural Complexity of Architecture-Aware

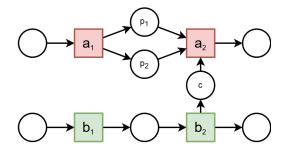
Process Models Discovered from Event Logs of Multi-Agent

Experimental Evaluation. Rule-Based WF-Net Generation

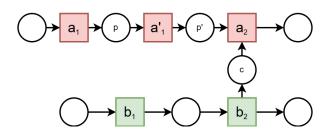
Parameters for modeling

h1: Increasing the number of channels between unchanged agents lowers the values of GNI and LNI (within the random WF-net generation)

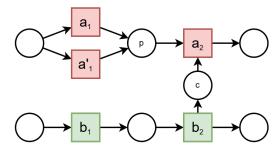
h2: increasing the number of places in agents with unchanged channels increases the values of GNI and LNI (within the random WF-net generation)

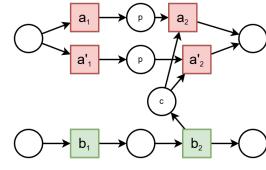

h3: the application of refinement rules can confirm the monotonicity of LNI (within the rule-based WF-net generation).

probabilities of refinements


number of refinements

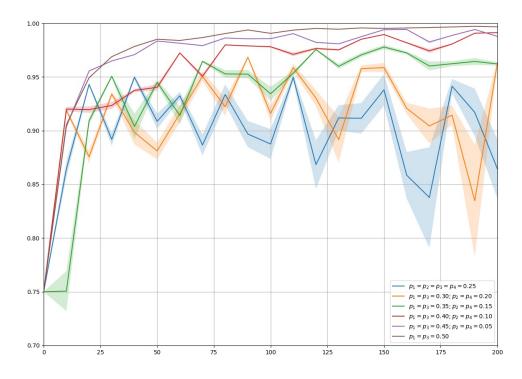
Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent Systems


Experimental Evaluation. Rule-Based WF-Net Generation


1. Place duplication

3. Local transition introduction

2. Transition duplication



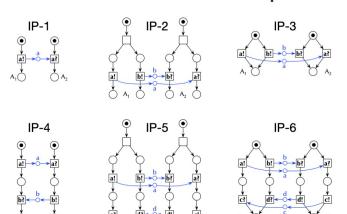
4. Place split

Faculty of Computer Science

Experimental Evaluation. Rule-Based WF-Net Generation

h3: the application of refinement rules can confirm the monotonicity of LNI (within the rule-based WF-net generation).

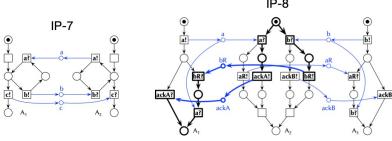
100 models generated per each set of parameters


Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Systems

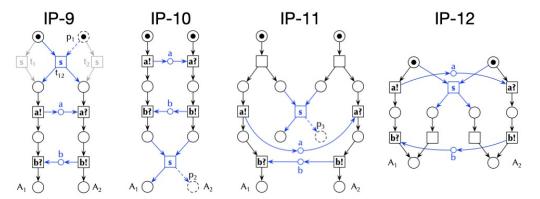
Apply Place duplication (1) and Local transition introduction (3) more often

Experimental Evaluation. Compositional Process Discovery



Lowest increase in IP-7 because of loops

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent


Systems

Great increase in the rest patterns

	IP-1	IP-2	IP-3	IP-4	IP-5	IP-6	IP-7	IP-8
Direct	0.565	0.561	0.574	0.626	0.632	0.538	0.595	0.495
Compositional	0.957	0.986	0.977	0.943	0.980	0.945	0.867	0.960
Δ, %	69.38	75.76	70.21	50.64	55.06	75.65	45.71	93.94

Experimental Evaluation. Compositional Process Discovery

Synchronization decreases LNI (as it increases diff)

Evaluating Structural Complexity of Architecture-Aware Process Models Discovered from Event Logs of Multi-Agent

Systems

	IP-9	IP-10	IP-11	IP-12
Direct	0.518	0.503	0.516	0.538
Composition	0.808	0.766	0.912	0.911
Δ, %	55.98	52.29	76.74	69.33

