# Robust Deep Learning

<u>Alexey Boldyrev</u>, Andrey Shevelev, Fedor Ratnikov

FCS Scientific Conference HSE Voronovo 27/10/2025

> Image credit: 'Glacier du Rhone au haut du Valais' by Claude Niquet after Jean Séraphin Désiré Bessor https://wellcomecollection.org/works/e3y95vtv

#### When Robust Models Are Needed

- Presence of outliers or data errors;
- Under uncertainty and incomplete data;
- For noisy or real-world data;
- In high-stakes domains:
  - The control of the system by a human is difficult;
  - The number of function evaluation is limited;
    - Its cost is higher or comparable to the cost of training the model.



Image source: perplexity.ai



Image credit: CERN

### Understanding Robustness in Neural Networks

- The word **robust** is loaded with many (sometimes inconsistent) connotations;
  - Following <u>Huber's definition</u>, robustness signifies insensitivity to small deviations from the assumptions.
- In this study, we look at both outlier resistance and how good a model generalizes from finite training datasets;
  - It is assumed that the training and test samples are randomly and fairly split, so outliers are distributed similarly;
    - It shows their quantity but not the influence on the model.
  - How does the nature and amount of training data affect finding a robust solution?
    - Is there a minimum training sample size needed to achieve robust predictions on the test set?

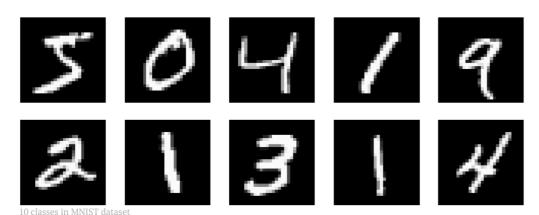
#### How Do We Define Robustness?

- We propose an empirical definition:
  - A model is called **robust** if the variation in quality among its different instances is minimal.
- What is model instance?
  - All model instances have an identical set of hyperparameters but differ in their:
    - (internal) nondeterministic initial states and algorithms;
    - (external) training samples drawn from the same population.
- C1. By the definition above, any constant model would be absolutely robust.
  - Therefore, to find a practically useful robust model, we need to solve a dual optimization problem: to identify a robust model with the best average performance.
- C2. The robustness of a model depends on the robustness of the quality metric used.

### Factors Affecting the Robustness of ML (DL) Model

- Differences in training and test samples;
- Intrinsic nondeterminism of the model and its learning process (see Reproducibility in PyTorch);
  - Initialization of model weights;
  - Nondeterministic transformations (torch.use\_deterministic\_algorithms);
  - Optimizer behavior.

We measure the robustness by an appropriate statistical measure of the set of test losses of **model instances**, when a specified number of iterations is reached or when an early stopping criterion is met.



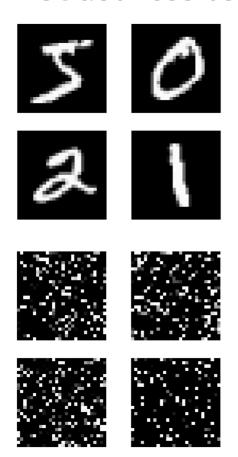
Convolutional neural networks provide translation invariance:

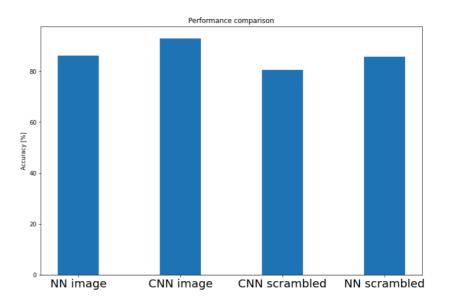












#### Rotation invariance





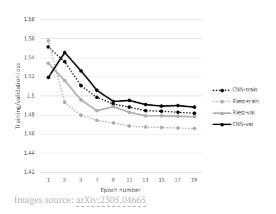




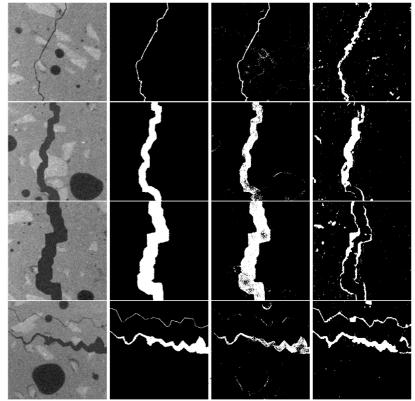
Usually achieved by data augmentation

#### Scale invariance





Riesz transform neural networks (2024)

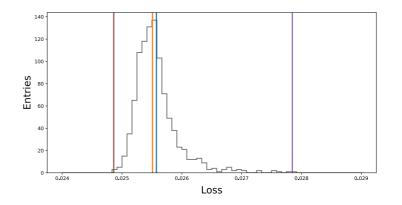


From left to right: input image, ground truth, results of the Riesz network and the U-net with 4 pyramid levels

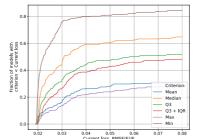
### Robust Model Selection Algorithm

#### Algorithm 1 Model Selection Algorithm

```
1: Step s = 0
 2: M = Initial set of models
 3: Define selection criterion
 4: Define the number k of instances of each model
 5: while number of models in M \ge 1 do
       for each model in M do
 6:
           Train model instance with new initialization
 8:
           Update model robustness value
 9:
       end for
       s = s + 1
10:
       if s > k then
11:
           Update selection criterion
           for each model in M do
13:
14:
               if model robustness is worse than
   selection criterion then
                  Remove model from M
16:
               end if
17:
           end for
18:
       end if
20: end while
```



#### Effective reduction of model trainings:



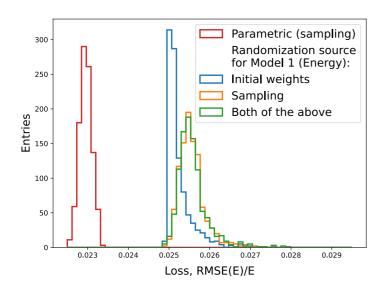
- 41567 (ours)
  - VS.
  - 345600 (full search);
- for 6912 models with50 instances each;

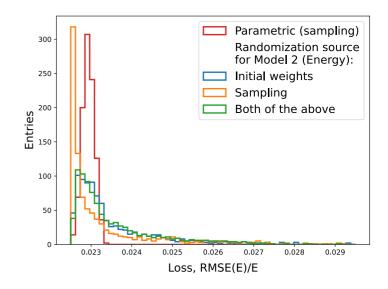
Published in https://doi.org/10.1109/ACCESS.2025.3578926

# Results

(Properties of Selected Robust Models)

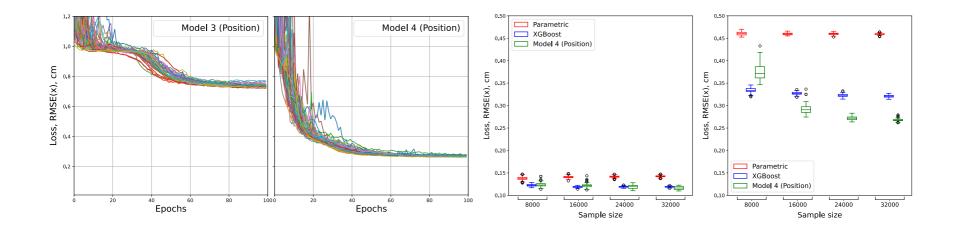
### Impact of Model Nondeterminism on Robustness





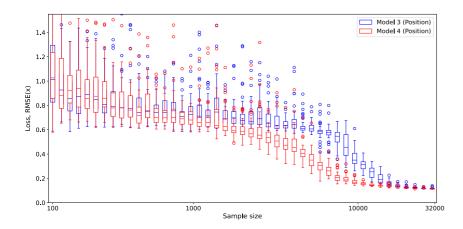
- Kaiming (He) weight initialization is used;
- Each of the 1000 instances of the model is trained on a sample of 32k examples randomly drawn from the dataset.

### Selected Robust Models for Position Reconstruction



See extra details in backup slide.

#### Selected Robust Models for Position Reconstruction



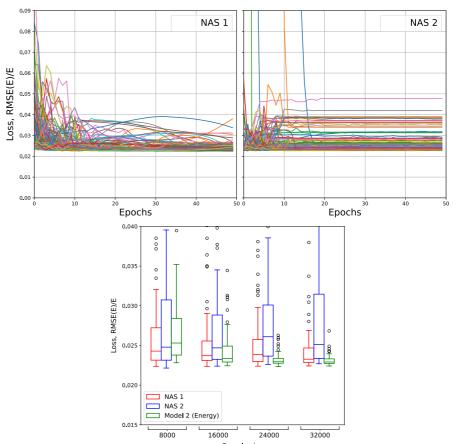
- Simplified dataset;
- Two models:
  - Base;
  - Using inductive biases.

### Comparison with NAS approach

- The NAS from the Optuna library is used
- This tool provides the ability to search multiple hyperparameters using the Tree-structured Parzen Estimator algorithm to select hyperparameter values

| Model          | Activation function | Optimizer | Learning rate | Batch size | Regularization (weight decay) |
|----------------|---------------------|-----------|---------------|------------|-------------------------------|
| NAS 1<br>NAS 2 | ReLU                | AdamW     | 0.001<br>0.01 | 32         | 0.001<br>0.01                 |

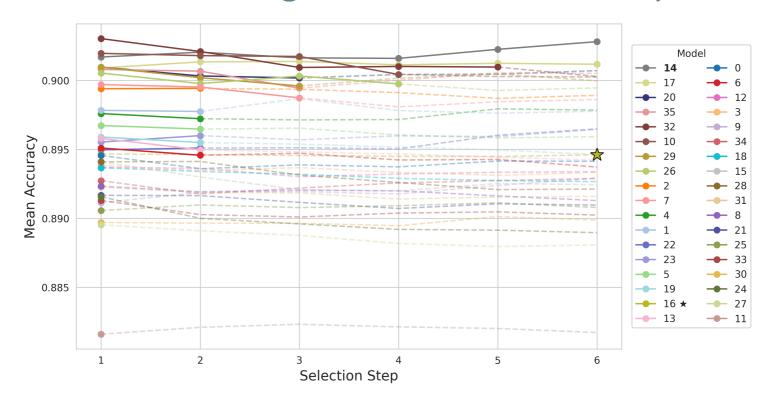
| ========== |                  |         |
|------------|------------------|---------|
| Layer      | Output Shape     | Param # |
| ========== |                  |         |
| NAS 1      | [-1]             |         |
| Conv2d     | [-1, 32, 13, 13] | 288     |
| ReLU       | [-1, 32, 13, 13] |         |
| MaxPool2d  | [-1, 32, 6, 6]   |         |
| Conv2d     | [-1, 16, 4, 4]   | 4,608   |
| ReLU       | [-1, 16, 4, 4]   |         |
| MaxPool2d  | [-1, 16, 1, 1]   |         |
| Linear     | [-1, 32]         | 544     |
| ReLU       | [-1, 32]         |         |
| Linear     | [-1, 9]          | 306     |
| I Dalli    | F 1 07           |         |



### Evaluating Robust Model Selection Algorithm on CIFAR-10

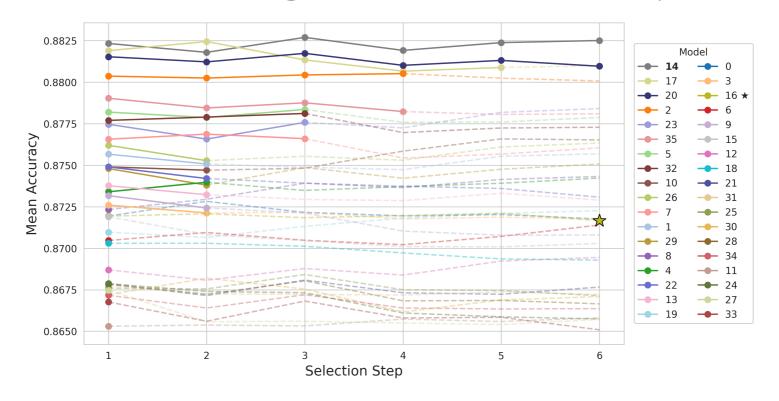
- Dataset CIFAR-10:
  - 50k/10k train/validation samples.
- Base model:
  - Benchopt-optimized ResNet-18 from paperswithcode.com benchmark (archived version);
  - Validation accuracy: 95.55% while trained on augmented sample of 50k examples.
- Model search space generation:
  - Created **36 variations** of the base model by adjusting training hyperparameters:
    - Batch size / Maximum learning rate / L2 regularization parameter.
- Evaluation procedure:

### Model Path in the Algorithm: Mean Accuracy



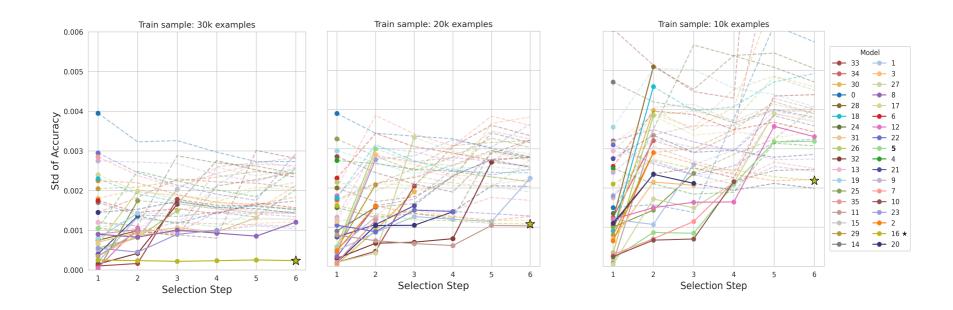
- Train sample: 30k examples Warmup steps = 3

### Model Path in the Algorithm: Mean Accuracy



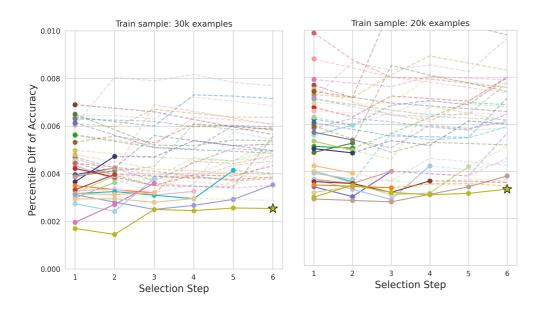
- Train sample: 20k examples
- Warmup steps = 3

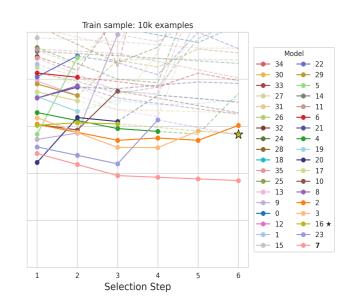
### Model Path in the Algorithm: Std of Accuracy



■ Warmup steps = 3

### Model Path in the Algorithm: Perc. Diff. of Accuracy





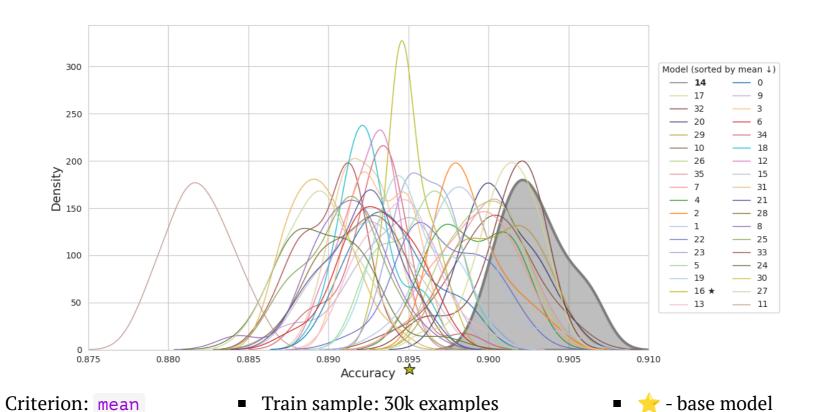
■ Warmup steps = 5

■ 

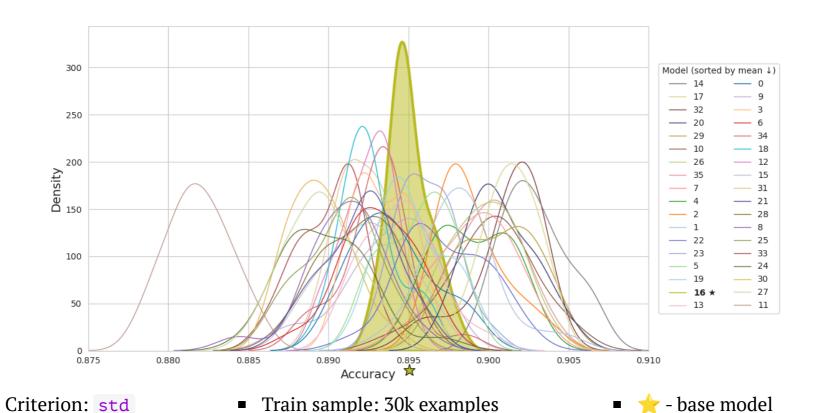
- base model

 $PD = Q_{90} - Q_{10}$ 

#### Selection Criterion Cross-Check



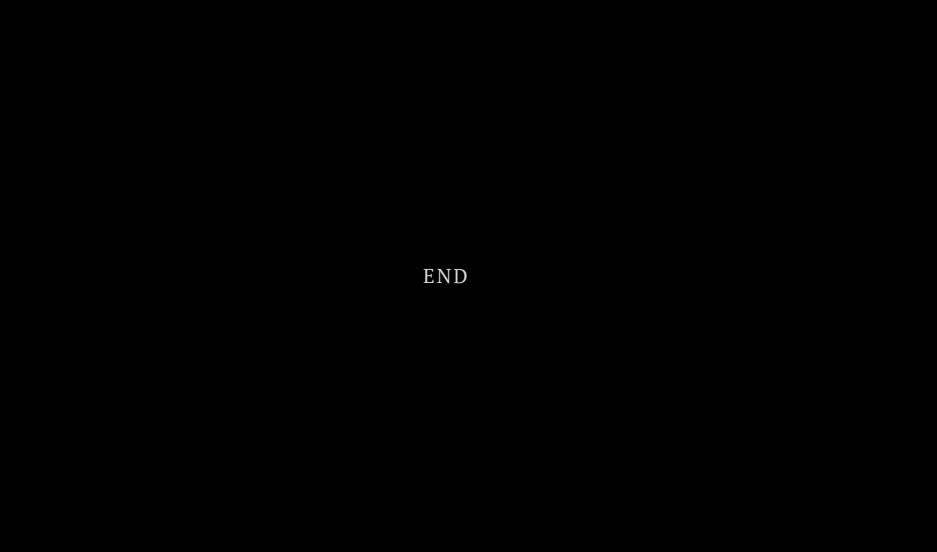
### Selection Criterion Cross-Check



Alexey Boldyrev, Andrey Shevelev, Fedor Ratnikov | Robust Deep Learning | FCS Scientific Conference @Voronovo | 27/10/2025

### Conclusions

- We propose a procedure to measure the robustness of machine learning models.
- We supplement such a procedure with a meta-algorithm for robust model selection.
- The two robust models for two specific problems found using this method have the best convergence and the smallest loss variability among the  $2 \times 6912$  models considered.
  - The models we found are more robust than the models selected by NAS from a similar search space.
  - 8x speedup in training time is observed compared to an exhaustive search;
    - The total training time can be further reduced by using robust model search on subsamples.



#### Thank you for the attention!

Happy to answer your questions by e-mail aboldyrev@hse.ru and via Telegram @aboldyrev

Powered by Slidev

## Backup slides

- Translation invariance is achieved in the network architecture (CNN);
- Rotation invariance is achieved by augmenting the training data;
- Scale invariance is achieved in the network architecture (Riesz networks);

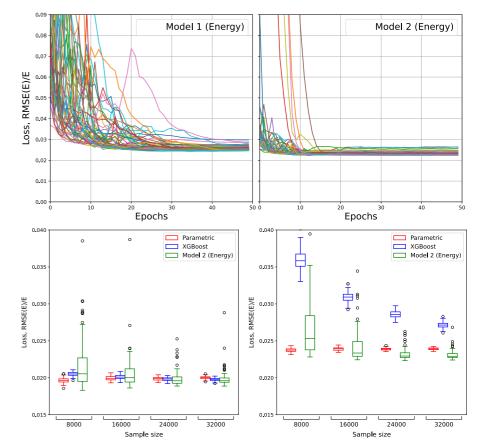
- Is it possible to take the above into account in a capacity of a neural network?
  - What kind of architecture?
- What minimum inductive biases will be sufficient?

The answers to these questions lie in the details of the data and the task.

### Selected Models: Energy Reconstruction

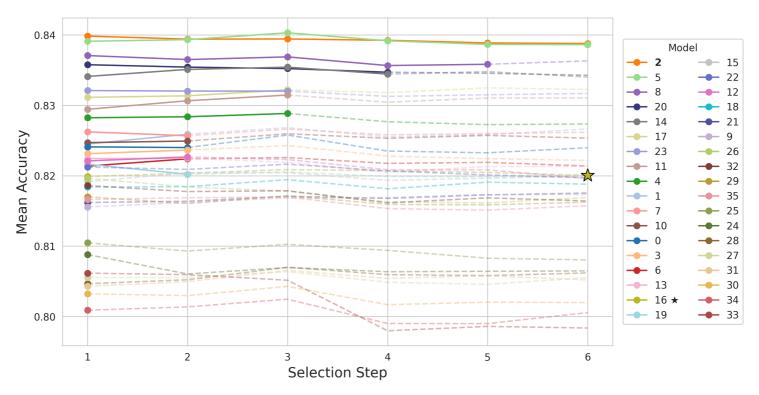
| Model      | Activation function | Optimizer | Learning rate | Batch size | Regularization        |
|------------|---------------------|-----------|---------------|------------|-----------------------|
| 1 (Energy) | ReLU                | NAdam     | 0.0001        | 64         | 0.01 (L2)             |
| 2 (Energy) | KCLO                | AdamW     | 0.001         | 32         | 0.1<br>(weight decay) |

| Layer             | Output Shape     | Param # |
|-------------------|------------------|---------|
| ============      | ===========      | ======  |
| Model 1 (Energy)  | [-1]             |         |
| Conv2d            | [-1, 32, 13, 13] | 288     |
| ReLU              | [-1, 32, 13, 13] |         |
| MaxPool2d         | [-1, 32, 6, 6]   |         |
| Conv2d            | [-1, 64, 4, 4]   | 18,432  |
| ReLU              | [-1, 64, 4, 4]   |         |
| MaxPool2d         | [-1, 64, 3, 3]   |         |
| Linear            | [-1, 9]          | 5,193   |
| ReLU              | [-1, 9]          |         |
| Linear            | [-1, 1]          | 10      |
|                   |                  |         |
| Trainable params: | 23,923           |         |
| =========         |                  |         |



### Selected Models: Position Reconstruction

### Model Path in the Algorithm: Mean Accuracy



- Train: 10k samples
- **†** base model