${\bf Improved~Stochastic~Optimization~of~LogSumExp}$

Egor Gladin

Научная конференция ФКН

29.10.2025

Bibliographic note

The talk is based on the following work:

Egor Gladin, Alexey Kroshnin, Jia-Jie Zhu, Pavel Dvurechensky Improved Stochastic Optimization of LogSumExp. https://arxiv.org/abs/2509.24894

Plan of the talk

- LogSumExp minimization motivating examples;
- SGD-friendly LogSumExp approximation;
- 3 Numerical experiments.

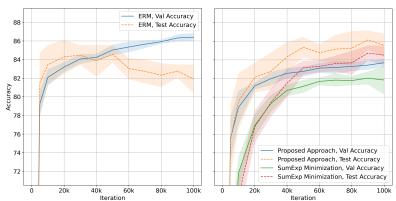
Motivating example: Distributionally Robust Optimization

DRO

Distributionally Robust Optimization (DRO) aims to train an ML model robust to data distribution shifts.

Example: training a classifier on noisy MNIST.

- train and validation labels are corrupted, test labels are clean;
- left: ERM fits to the corrupted data well but fails on test;
- right: DRO approaches can learn the underlying clean distribution better.



Motivating example: Distributionally Robust Optimization

A popular formulation in DRO is

$$\min_{\theta \in \Theta} \max_{p \in \Delta^n} \sum_{i=1}^n p_i \ell_i(\theta) - \lambda D_{KL}(p, \hat{p}), \tag{1}$$

where

- $\theta \in \Theta$ is the model parameters;
- $\ell_i(\theta)$ is the loss on the *i*-th example;
- Δ^n is the unit simplex in \mathbb{R}^n ;
- $\hat{p} \in \Delta^n$ defines the empirical distribution (typically $\hat{p} = \frac{1}{n} \mathbf{1}$);
- \bullet D_{KL} is the Kullback-Leibler divergence defined as

$$D_{KL}(\mu, \nu) := \begin{cases} \int_{\mathcal{X}} \log \frac{d\mu}{d\nu}(x) d\mu(x) & \mu \ll \nu, \\ +\infty & \text{otherwise,} \end{cases}$$

which discourages distributions that are too far from the empirical one.

Analytic formula for maximization w.r.t. p leads to the problem

$$\min_{\theta \in \Theta} \mathcal{L}(\theta) := \lambda \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\ell_i(\theta)/\lambda} \right). \tag{2}$$

Motivating example: Distributionally Robust Optimization

$$\min_{\theta \in \Theta} \mathcal{L}(\theta) := \lambda \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\ell_i(\theta)/\lambda} \right). \tag{3}$$

Challenge: When n is large, computing the full gradient $\nabla \mathcal{L}(\theta) = \sum_{i=1}^{n} p_i^*(\theta) \nabla \ell_i(\theta)$ with $p_i^*(\theta) := \frac{e^{\ell_i(\theta)/\lambda}}{\sum_i e^{\ell_j(\theta)/\lambda}}$ becomes costly.

Existing approach:

- sample a batch D;
- compute the respective softmax weights $p_i^D(\theta) := \frac{e^{\ell_i(\theta)/\lambda}}{\sum_{i \in D} e^{\ell_j(\theta)/\lambda}};$
- define a gradient estimator by

$$\tilde{\nabla}_D \mathcal{L}(\theta) = \sum_{i \in D} p_i^D(\theta) \nabla \ell_i(\theta). \tag{4}$$

Problem: This introduces a bias and requires using large batch sizes to keep it sufficiently small. A better approach to LogSumExp optimization is needed.

More applications

LogSumExp optimization also arises in:

- entropy-regularized optimal transport (OT);
- minimax problems;
- multiclass classification with softmax probabilities;
- entropy-regularized reinforcement learning (RL);
- \bullet and many other applications...

Log-partition function and its approximation

Generalization of LogSumExp is the log-partition functional (a.k.a. free energy)

$$F(\varphi; \mu) := \ln \int e^{\varphi(x)} d\mu(x), \tag{5}$$

mapping a measurable function φ to $(-\infty, \infty]$ based on a probability measure μ .

Theorem

Let $0 < \rho < 1$. The function

$$F_{\rho}(\varphi; \mu) = \inf_{\alpha \in \mathbb{R}} \alpha - 1 + \frac{1}{\rho} \int \log\left(1 + \rho e^{\varphi(x) - \alpha}\right) d\mu(x)$$
 (6)

satisfies

$$F_{\rho}(\varphi; \mu) - O(\rho) \le F(\varphi; \mu) \le F_{\rho}(\varphi; \mu)$$

for any probability measure μ and measurable function φ .

Properties of the approximation

In applications, φ is often defined as the parametric loss function $L(x,\theta)$:

$$\min_{\theta \in \Theta} F(\theta) := \ln \int e^{L(x,\theta)} d\mu(x).$$

Relaxed problem

$$\min_{\theta \in \Theta, \alpha \in \mathbb{R}} G_{\rho}(\theta, \alpha) := \alpha + \log \rho - 1 + \frac{1}{\rho} \int \log \left(1 + e^{L(x, \theta) - \alpha} \right) d\mu(x). \tag{7}$$

Denote $\sigma(t) := \frac{1}{1+e^{-t}}$, then we can define an unbiased gradient estimator

$$\nabla_{\theta} G_{\rho}(\theta, \alpha; x) = \frac{1}{\rho} \sigma \left(L(x, \theta) - \alpha \right) \nabla_{\theta} L(x, \theta),$$
$$\partial_{\alpha} G_{\rho}(\theta, \alpha; x) = 1 - \frac{1}{\rho} \sigma \left(L(x, \theta) - \alpha \right).$$

Log-partition function

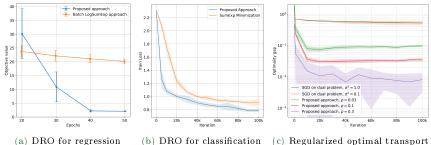
$$\min_{\theta \in \Theta, \alpha \in \mathbb{R}} G_{\rho}(\theta, \alpha) := \alpha + \log \rho - 1 + \frac{1}{\rho} \int \log \left(1 + e^{L(x, \theta) - \alpha} \right) d\mu(x). \tag{8}$$

Properties of the objective:

- G_{ρ} is convex in α ;
- if L is convex in θ , then G_{ρ} is jointly convex;
- if L is bounded from below, then G_{ρ} is Lipschitz-smooth on $\Theta \times (-\infty, a]$ for any $a \in \mathbb{R}$.

Numerical experiments

The proposed approach outperforms baselines in a number of experiments.



- (b) DRO for classification
- (c) Regularized optimal transport

Thank you for your attention!

Thank you for your attention!

Questions are welcome!

Contact: tg egorgladin