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Abstract

Accurate computational identification of promoters remains a challenge as these key DNA

regulatory regions have variable structures composed of functional motifs that provide

gene-specific initiation of transcription. In this paper we utilize Convolutional Neural Net-

works (CNN) to analyze sequence characteristics of prokaryotic and eukaryotic promoters

and build their predictive models. We trained a similar CNN architecture on promoters of five

distant organisms: human, mouse, plant (Arabidopsis), and two bacteria (Escherichia coli

and Bacillus subtilis). We found that CNN trained on sigma70 subclass of Escherichia coli

promoter gives an excellent classification of promoters and non-promoter sequences (Sn =

0.90, Sp = 0.96, CC = 0.84). The Bacillus subtilis promoters identification CNN model

achieves Sn = 0.91, Sp = 0.95, and CC = 0.86. For human, mouse and Arabidopsis promot-

ers we employed CNNs for identification of two well-known promoter classes (TATA and

non-TATA promoters). CNN models nicely recognize these complex functional regions. For

human promoters Sn/Sp/CC accuracy of prediction reached 0.95/0.98/0,90 on TATA and

0.90/0.98/0.89 for non-TATA promoter sequences, respectively. For Arabidopsis we

observed Sn/Sp/CC 0.95/0.97/0.91 (TATA) and 0.94/0.94/0.86 (non-TATA) promoters.

Thus, the developed CNN models, implemented in CNNProm program, demonstrated the

ability of deep learning approach to grasp complex promoter sequence characteristics and

achieve significantly higher accuracy compared to the previously developed promoter pre-

diction programs. We also propose random substitution procedure to discover positionally

conserved promoter functional elements. As the suggested approach does not require

knowledge of any specific promoter features, it can be easily extended to identify promoters

and other complex functional regions in sequences of many other and especially newly

sequenced genomes. The CNNProm program is available to run at web server http://www.

softberry.com.
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Introduction

Promoter is a key region that is involved in differential transcription regulation of protein-

coding and RNA genes. Gene-specific architecture of promoter sequences makes it extremely

difficult to devise the general strategy for their computational identification [1, 2]. Promoter

5’-flanking regions may contain many short (5–10 bases long) motifs that serve as recognition

sites for proteins providing initiation of transcription as well as specific regulation of gene

expression.

A minimal eukaryotic promoter region, called core promoter, is capable of initiating basal

transcription and contains a transcription start site (TSS). About 30–50% of all known eukary-

otic promoters contain a TATA-box at a position *30 bp upstream from the transcription

start site. Many highly expressed genes contain a strong TATA box in their core promoter. At

the same time, large groups of genes including housekeeping genes, some oncogenes and

growth factor genes possess TATA-less promoters. In these promoters Inr (the initiator

region) or the recently found downstream promoter element (DPE), usually located *25–30

bp downstream of TSS, may control the exact position of the transcription start [1, 2].

Bacterial promoters contain two short conserved sequence elements approximately -10 and

-35 nucleotides upstream from the transcription start site. The -10 box is absolutely essential

to start transcription in prokaryotes. The sequence of -35 box affects the transcription rate [3–

6]. Those consensus sequences, while conserved on average, are not found intact in most

promoters.

Accurate prediction of promoters is fundamental for interpreting gene expression patterns,

and for constructing and understanding genetic regulatory networks. In the last decade,

genomes of many organisms have been sequenced and their gene content was mainly compu-

tationally identified. Promoters and transcriptional start sites (TSS), however, are still left

largely undetermined and the efficient software able to accurately predict promoters in newly

sequenced genomes is not yet available in public domain.

There were many attempts to develop promoter prediction software as for bacterial as well

as for eukaryotic genomes. Most of them implemented very diverse computational algorithms,

which often account some specific sequence features discovered during experimental studies.

Fickett and Hatzigeorgiou [7] presented one of the first reviews of eukaryotic promoter predic-

tion programs. Among these were oligonucleotide content-based neural network and linear

discriminant approaches.

It was shown that many general-purpose promoter prediction programs can typically rec-

ognize only *50% of the promoters with false positive (FP) rate of *1 per 700–1000 bp [7].

The study to make a critical assessment of the human promoter prediction field also demon-

strated a pretty low level of sensitivity of 58% for the specificity of 92% and correlation coeffi-

cient (CC) ranged from 0.52 to 0.73 for evaluated promoter predictors [8]. Much better

accuracy has been observed for methods of identification of plant promoters [9–14]. Their

specificity level, however, does not exceed 90% that will generate significant number of false

positives when the methods would be applied to analyze long genomic sequences. The top two

performers TSSP_TCM [9] and Promobot [10] with Sn = 0.88-0.89 and Sp = 0.84-0.86 outper-

form NNPP [11] (Sn/Sp:0.74/0.70), PromoterScan [12] (Sn/Sp:0.08/0.04), Promoter [13] (Sn/

Sp:0.24/0.34), and Prom-Machine [14] (Sn/Sp:0.86/0.81).

While bacterial promoters have simpler structure than transcription initiation regions of

higher organisms, their identification is also a challenging task. Using sequence alignment ker-

nel and SVM classifier Gordon et al. [15] achieved Sn = 0.82 and Sp = 0.84 discriminating

between σ70 promoter and non-promoter E.coli sequences. Similar accuracy was observed for

popular bacterial promoter prediction program Bprom [16]. These programs clearly
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outperform the NNPP (trained on E.coli K12 sequences) [11] and SIDD [17] programs. For

example, SIDD correctly predicted only 74.6% of actual promoters with a false positive rate of

18%. When NNPP correctly predicted 66.4% of the real promoters, its false positive rate was

22.4%.

Thousands bacteria and eukaryotic genomes are already sequenced and many more are on

the way, while little transcriptional information is available for most of them. Moreover, new

genomes may have promoter features that are different from those observed in model organ-

isms. For example, recent studies have shown that TATA boxes and Initiators are not universal

features of plant promoters, and that other motifs such as Y patches may play a major role in

the transcription initiation in plants [10, 18, 19]. We face the situation that specific promoter

characteristics that are often used in developing promoter predictors are poorly understood in

many new genomes. This creates favorable circumstances for developing universally applicable

algorithm of promoter prediction and in this paper we propose the use of convolutional neural

networks, with an input consisting of only genomic sequence, as a rather general approach to

solution of this problem.

Deep convolutional neural networks are capable of achieving record-breaking results in

processing images, video, speech and audio on highly challenging datasets using purely super-

vised learning and they have recently won a large number of contests in pattern recognition

and machine learning [20–23]. There are a few successful examples of applying them to biolog-

ical problems. Deep learning–based algorithmic framework, DeepSEA, can predict chromatin

effects of sequence alterations and prioritize functional SNPs by learning a regulatory sequence

code from large-scale chromatin-profiling data [24]. Improved performance for this task was

reported using DanQ [25], a hybrid framework that combines convolutional and bi-direc-

tional long short-term memory recurrent neural networks [26]. Chen et al. applied deep learn-

ing method (abbreviated as D-GEX) to infer the expression of target genes from the

expression of landmark genes [27]. Finally, DeepBind, a computational approach based on

deep convolutional neural networks, can discover new DNA and RNA binding sites using a set

of sequences and, for each sequence, an experimentally determined binding score [28].

In this paper we utilize Convolutional Neural Networks (CNN) to analyze sequence charac-

teristics of prokaryotic and eukaryotic promoters and build their predictive models. The devel-

oped CNN models, implemented in CNNProm program, demonstrated the ability of deep

learning to grasp complex promoter sequence characteristics and achieve significantly higher

accuracy compared to previously developed promoter prediction programs.

Materials and methods

Training and testing data

In this study, in order to demonstrate universality of the suggested approach to promoter pre-

diction problem we selected promoter sequences from very distant groups of organisms: two

bacteria, human, mouse and a plant. The studied number of promoter and non-promoter

sequences for each organism is shown in Table 1.

We used bacterial promoter and non-promoter sequences of length 81 nt (nucleotides).

Bacterial non-promoter sequences were taken from the corresponding genome sequences: we

randomly selected fragments of protein-coding genes and took their opposite (non-coding)

chain sequences. Escherichia coli σ70 promoter sequences were extracted from manually

curated RegulonDB [29]. Bacillus subtilis promoters were taken from a collection described in

[30]. As for human, mouse and Arabidopsis non-promoter sequences (size 251 nt) we used

random fragments of their genes located after first exons. Eukaryotic promoter sequences

were extracted from the well-known EPD database [31].
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We used 20% of each set sequences in our test sets. 70% of the remaining sequences were

used as training and 10% as validation sets. Training sets provide data to generate parameters

of CNNmodels, while validation sets are used to find the optimum number of learning epochs

(cycles) that should be limited to avoid over-fitting.

Convolutional networks

Convolutional layer is a core building block of convolutional networks [20–23]. A layer con-

sists of filters, which are small matrices (W), for example L × L × D, where D is depth of input

data and L is called filter length. These filters are convolved with an input, i.e. moved spatially

across an input, and a dot product is calculated for each position: W × x + b, where W is our fil-

ter, x is a small chunk of an input and b is bias. A local L × L area in our input is called a recep-

tive field, and a distance of each step of a filter sliding across an input is called stride.

Calculating a dot product at each position gives us an activation map for our filter. Next layer

takes as an input activation maps from all filters. Activation map is in fact partially connected

neurons, which share the same weight, i.e. weight corresponding to a filter. This weight sharing

is an important property of convolutional networks. It dramatically reduces a number of

required parameters compared to a fully connected layer.

Convolutional layer can be followed by another convolutional layer, in which case the

depth of the input is the number of filters from a previous layer. Convolutional layers are even-

tually followed by a pooling layer. This is a simple layer that operates on each activation map,

making it smaller and more manageable. The most common pooling technique is Max-Pool-

ing, which chooses the largest of several values for further representation. Convolutional layers

augmented by Max-Pooling are prevalent in many modern Deep Learners [23]. They can be

useful for working with biological sequences because convolution filters can capture informa-

tion on functional sequence motifs.

CNN architecture for building promoter recognition models

There are many network architectures and the task is to choose a suitable one for a particular

research problem. In learnCNN.py program we implemented CNN model using Keras—a

minimalist, highly modular neural networks library, written in Python [32]. It uses Theano

library [33, 34] as a backend and utilizes GPU [35] for fast neural network training. Adam

optimizer [36] was used for training with categorical cross-entropy as a loss function. Our

CNN architecture (Fig 1) in most cases consisted of just one convolutional layer with 200 fil-

ters having length 21. After convolutional layer, we have a standard Max-Pooling layer. The

output from the Max-Pooling layer is fed into a standard fully connected ReLU layer with 128

Table 1. Numbers, lengths and locations of promoter and non-promoter sequences for studied organisms. Locations are given relative to the TSS

(Transcription Start Site) position.

Organism #promoter sequences #non-promoter sequences Length/Location

Escherichia coli s70 839 3000 81/-60 - +20

Bacillus subtilis 746 2000 81/-60 - +20

Human TATA 1426 8256 251/-200 - +50

Human non-TATA 19811 27731 251/-200 - +50

Mouse TATA 1255 3530 251/-200 - +50

Mouse non-TATA 16283 24822 251/-200 - +50

Arabidopsis TATA 1497 2879 251/-200 - +50

Arabidopsis non-TATA 5905 11459 251/-200 - +50

doi:10.1371/journal.pone.0171410.t001
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neurons. Pooling size was usually 2. Finally, the ReLU layer is connected to output layer with

sigmoid activation, where neurons correspond to promoter and non-promoter classes. The

batch size used for training was 16.

Input of the network consisted of nucleotide sequences where each nucleotide is encoded

by a four dimensional vector A (1,0,0,0), T(0,1,0,0), G(0,0,1,0) and C(0,0,0,1). Output is a two

dimensional vector: promoter (1, 0) and Non-promoter (0, 1) prediction. The training takes a

few minutes on GTX 980 Ti GPU.

We intentionally used, in most cases, one layer CNN architecture, but sometimes to get a

proper balance of accuracy between positives examples (promoters) and negative examples

(non-promoter) two or three layers may be applied. A typical example of the model computa-

tion is shown in Fig 2.

Performance measures

Several measures to estimate the accuracy of a recognition function were introduced in geno-

mic research [37, 38]. Consider that we have S sites (positive examples) and N non-sites (nega-

tive examples). By applying a recognition function, we correctly identify TP sites (true

positives) and TN non-sites (true negatives). At the same time FP (false positives) sites were

wrongly classified as non-sites and FN (false negative) non-sites were wrongly classified as

sites. Sensitivity (Sn) (true positive rate) measures a fraction of the true positive examples that

are correctly predicted: Sn = TP/(TP + FN). Specificity (Sp) (true negative rate) measures a

fraction of the predicted sites that are correct amongst those predicted: Sp = TN/(TN + FP).

Accuracy AC = (TP + TN)/(TN + TP + FN + FP) measures an average performance on positive

and negative datasets. However, this measures does not take into account the possible differ-

ence in sizes of site and non-sites sets. More correct single measure (correlation coefficient)

takes the relation between correctly predictive positives and negatives as well as false positives

and negatives into account [38]:

CC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð1Þ

Results and discussion

The accuracy of promoter identification by constructed CNN models

Using CNN architecture described above implemented in learnCNN.py program we analyzed

the promoter and non-promoter sequences (Table 1). LearnCNN.py learns parameters of

Fig 1. Basic CNN architecture that was used in building promoter models implemented in the learnCNN.py program (see text for description).

doi:10.1371/journal.pone.0171410.g001
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CNN model and outputs the accuracy of promoter prediction for the test set of sequences. It

also writes computed CNN Model (PPCNNmodel) to a file, which can be used later in pro-

grams for promoter identification in a given sequence.

The accuracy information and some parameters of CNN architecture used for the particular

datasets are show in Table 2.

We found that the computed CNN models demonstrated the ability of deep learning to

grasp complex promoter sequence characteristics and achieve significantly higher accuracy

compared to previously developed promoter prediction programs. For example, CNN trained

Table 2. The accuracy and parameters of CNN models. Architecture as 200, 21, 4 describes one layer with 200 filters, filter length 21 and pooling size 4; ‘/’

separates data for two layers.

Organism Sn Sp CC CNN architecture

Escherichia coli s70 0.90 0.96 0.84 100,7, 0 / 150, 21, 12

Bacillus subtilis 0.91 0.95 0.86 100,15, 2 / 250, 17, 2

Human TATA 0.95 0.98 0.90 200, 21, 4

Human non-TATA 0.90 0.98 0.89 300, 21, 231

Mouse TATA 0.97 0.97 0.93 200, 21, 6

Mouse non-TATA 0.88 0.94 0.83 100, 15, 2 / 250, 21, 2

Arabidopsis TATA 0.95 0.97 0.91 200, 21, 4

Arabidopsis non TATA 0.94 0.94 0.86 200, 21, 2

doi:10.1371/journal.pone.0171410.t002

Fig 2. An example of learning CNN models for mouse promoters. The training, and validation accuracy is

presented for each learning epoch. Finally, the performance on the test data is shown.

doi:10.1371/journal.pone.0171410.g002
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on sigma70 sub-class of Escherichia coli promoters provides an excellent classification of pro-

moters and non-promoter sequences (Sn = 0.90, Sp = 0.96). For human, mouse and Arabidop-
sis promoters, we employed CNNs to identify two well-known promoter classes (TATA and

non-TATA promoters). CNN models nicely recognize these complex functional regions. For

human, Sn/Sp accuracy of prediction reached 0.95/0.98 for TATA and 0.90/0.98 for non-

TATA promoter sequences. For mouse, Sn/Sp accuracy of prediction achieved 0.97/0.97 for

TATA and 0.88/0.94 for non-TATA promoters. The same outstanding performance was

observed on Arabidopsis data: Sp/Sn for TATA promoters 0.95/0.97 and for non-TATA pro-

moters 0.94/0.94. This is a very significant improvement in prediction performance compared

to previously evaluated human promoter predictors, where the sensitivity of 58% and specific-

ity of 92% with correlation coefficient (CC) in the range of 0.52–0.73 were observed [8].

In this work, we studied sequences of promoter regions extracted from the EPDnew pro-

moter database [31], which recently extended promoter collection beyond cases based on evi-

dence from TSS mapping experiments on single genes. Currently, TSS positions provided by

EPD are inferred from next-generation sequencing data and are automatically generated from

multiple, carefully selected input datasets that include chromatin signatures in addition to

mRNA 5’tags to improve location of promoters for weekly expressed genes. The authors of

EPDnew database have demonstrated its higher quality over ENSEMBL-derived [39] human

promoter set [31]. We also observed apparent better quality of a promoter identification pro-

gram when using EPDnew data. For example, for CNN predictor computed on 1083 mouse

TATA promoter regions extracted from DBTSS [40], we also reached a pretty good perfor-

mance on a test set of 271 promoters: Sn = 0.94, Sp = 0.94 and CC = 0.86. However, CNN

model trained using mouse TATA promoters regions from EPDnew demonstrated noticeably

better results: Sn = 0.94, Sp = 0.98 and CC = 0.93 (Table 2).

We would like to point out an important benefit of the considered CNN models. While

using only nucleotide sequences, they can outperform recognition functions built based on

preselected significant features. For example, widely used Bprom [16] promoter prediction

program utilizes a set of seven features (five relatively conserved sequence motifs, repre-

sented by their weight matrices, the distance between −10 and −35 elements and the ratio of

densities of octa-nucleotides overrepresented in known bacterial transcription factor bind-

ing sites relative to their occurrence in the coding regions). Computing these features for a

set of 839 experimentally verified σ70 promoters from Regulon database [29] and 3000 non-

promoter E.coli sequences and using LinearDiscriminantAnalysis and other discrimination

approaches from scikit-learn Python library [41], we reached an average accuracy of 0.92

for classification of promoter and non-promoter sequences by applying cross-validation

evaluation. The CNN model demonstrated a better recognition rate (Table 2) for the same

data.

To apply our Promoter Prediction CNN (PPCNN) models to classifying sequences into

promoters and non-promoters we designed CNNprom.py program. It takes the fasta format

files as an input, together with the model parameters file, and outputs classification results for

each sequence. If a sequence is classified as a promoter, the score assigned by network is pro-

vided in an output as well. To build the CNNProm program execution environment we

installed Python, Theano and Keras libraries [32, 34] on the Softberry public Web server. The

program can be run to analyze sequences of five studied organisms (two bacterial and three

eukaryotic) at http://www.softberry.com/berry.phtml?topic=index&group=

programs&subgroup=deeplearn. The developed PPCNN models have been recently applied in

the programs for finding promoters in genomic sequences, which are also accessible at that

server. The data sets with promoter and non-promoter sequences used to train and test CNN

models can be downloaded at https://github.com/solovictor/CNNPromoterData.git.
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Random substitution method to discover positionally conserved

functional elements

By analyzing network behavior we can extract some information on significant elements of the

input data. Promoter sequences usually contain binding sites of regulatory proteins. Some of

them occupy various locations relative to TSS and can be found in direct or complementary

DNA chain. However, there are a number of well-known functional sites (such as bacterial -10

–box or eukaryotic TATA-box) that occupy approximately the same position in each promoter

sequence. To discover such sites we suggest the following procedure. Take a window of length

L (including positions from x1 to x2) and change the sequence within this window to a random

sequence. Evaluate the accuracy of the site prediction after such change. Using sliding window

moving from the beginning of a functional site sequence, we can build a performance profile

that reflects an effect of a random sequence, inserted in each sequence position in place of an

original sequence, on the accuracy of the site prediction. An example of such profile computed

with window size 6 nt is shown in Fig 3.

We can see that substitution of the sequence located between -45 and -20 positions relative

to TSS (located in position 201) of human promoters drastically decreases the prediction accu-

racy. These positions include the well-known functional motif called TATA-box. The sequence

logo [42] demonstrating conserved sequences of that motif is shown in Fig 4.

Another interesting example was observed while applying the random substitution proce-

dure to Arabidopsis non-TATA promoters, see Fig 5.

Here we observe two positionally conserved and potentially functionally important ele-

ments (Fig 6). One is located approximately in positions -34–-28 and another in positions -2–0

relatively to TSS (located in position 201).

Thus, the suggested random substitution procedure can enable discovery of functionally

important sites (sub-regions) that are still often unknown. Due to relatively high accuracy of

CNNprom promoter prediction it would be interesting to use it in known or predicted

upstream gene regions in combination with gene-recognition software tools to improve gene

identification accuracy, as well as to annotate promoter regions.

Fig 3. Effect of 6-nt sequence window substitution by randomsequence on accuracy of classification

of human TATA promoters. X-axis is the window position, Y-axis is promoter identification sensitivity after a

substitution.

doi:10.1371/journal.pone.0171410.g003
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Conclusion

Present study demonstrates very good performance of CNN models in classifying promoter

and non-promoter sequences. Accurate identification of promoters in long genome sequences,

however, remains a major challenge, requiring not only accurate classifiers, but also appropri-

ate selection of unique predictions among multiple overlapping high scoring genomic seg-

ments. In this task, it is also very important to account for multiple or alternative promoters

for each transcription unit, possibly applying nonparametric methods recently described and

tested on promoter regions of a model dicot plant Arabidopsis thaliana [43]. While we already

incorporate developed CNN classifiers into a program of promoter identification in genome

sequences, the approaches to resolve many difficult aspects of this task will be considered in

our follow-up studies.

Fig 4. Sequence logo for human TATA promoter sequences in the TATA-box region and TSS region. X-

axis is a position in promoter sequence, Y-axis is informational content in bits.

doi:10.1371/journal.pone.0171410.g004

Fig 5. Effect of 6-nt sequence window substitution by random sequence on accuracy of classification

of Arabidopsis non-TATA promoters. X-axis is a position of a window, Y-axis is promoter identification

sensitivity after a substitution.

doi:10.1371/journal.pone.0171410.g005
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The suggested application of deep learning in promoter prediction and positional analysis

of functional sites does not require knowledge of any specific promoter features. Since the con-

volution filters are able to automatically capture sequence motifs and other significant charac-

teristics of biological/genomic sequences, this approach can be easily extended to identify

promoters and other complex functional regions in sequences of many other genomes, making

it very useful, especially considering that complete genomic sequence of thousand organisms

will soon be available and how little transcriptional information is available for most of them.
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