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1. What is brain 
parcellation?
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In computational neuroimaging, brain 
parcellation methods subdivide the brain into 
individual regions <...> to study its structure 

and function. 

Brain parcellation based on information theory

https://www.sciencedirect.com/science/article/pii/S0169260715303230


2. Why do we need
 parcellations?



1. Because brain structure is somehow related to its 
function.

2. Because typical MRI consists of ~10^5 up to ~ 10^7 
voxels and typical study has ~10^1 up to ~10^3 
observations (dimensionality reduction).

3. Because in multimodal studies we need to have 1 to 1 
correspondence between different modalities.

4. Because in population studies we need to have 1 to 1 
correspondence between subjects.

5. To build connectomes;)
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30 x 80 x 80 = 
192000 voxels



Disclaimer: voxels are 
not necessarily squared! 
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Source is lost ;(



source

https://www.fz-juelich.de/ias/jsc/EN/Expertise/SimLab/slns/research/haf/_node.html
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Heritability of the shape of 
subcortical brain structures in 
the general population

https://www.nature.com/articles/ncomms13738
https://www.nature.com/articles/ncomms13738
https://www.nature.com/articles/ncomms13738


Robust Identification of Alzheimer’s 
Disease subtypes based on cortical 
atrophy patterns

https://www.nature.com/articles/srep43270
https://www.nature.com/articles/srep43270
https://www.nature.com/articles/srep43270


Gray 
matter

White 
matterFreesurfer 

segmentation

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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Brain network = Connectome

Neural connections between
regions become edges

Brain regions become nodes Graph G = (V , E , l , w), where

● V is the set of nodes

● E is the set of edges

● l  is node’s labeling mapping

● w is edge’s weighting mapping

is called a brain network or a connectome

Classification of Normal and Pathological Brain Networks Based 
on Similarity in Graph Partitions

https://ieeexplore.ieee.org/abstract/document/7836654
https://ieeexplore.ieee.org/abstract/document/7836654


3. Anatomical 
parcellations



Cortical parcellations = parcellation of the brain 
surface, popular examples are:
1. Destrieux Atlas
2. Desikan-Killiany Atlas
3. DKT Atlas
4. Lausanne atlas
5. Harvard-Oxford atlas
6. Automated Anatomical Labeling
7. more

https://surfer.nmr.mgh.harvard.edu/ftp/articles/fischl04-parcellation.pdf
https://surfer.nmr.mgh.harvard.edu/ftp/articles/desikan06-parcellation.pdf
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048121
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://www.ncbi.nlm.nih.gov/pubmed/11771995
https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/cortical-atlas-parcellations-mni-space/


101 labeled brain images 
and a consistent human 
cortical labeling protocol

They used DKT protocol. 
Manual segmentation of 
anatomical areas

https://www.frontiersin.org/articles/10.3389/fnins.2012.00171/full
https://www.frontiersin.org/articles/10.3389/fnins.2012.00171/full
https://www.frontiersin.org/articles/10.3389/fnins.2012.00171/full


source implementation

Lausanne atlas

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048121
https://github.com/mattcieslak/easy_lausanne


4. Couple of words 
on Image 

Registration 





Voxel-wise 
registration



Register on template





Register on modality



Surface-based 
registration



Freesurfer

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferCommandsRegistration




4. Data driven brain 
parcellations



 Human Brain Mapping: A Systematic Comparison of Parcellation 
Methods for the Human Cerebral Cortex

Dozens (or even hundreds) of them

https://biomedia.doc.ic.ac.uk/brain-parcellation-survey/
https://biomedia.doc.ic.ac.uk/brain-parcellation-survey/


1. 2015 Multi-Level Parcellation of the Cerebral Cortex Using Resting-State fMRI, Salim Arslan, Daniel Rueckert 
https://www.doc.ic.ac.uk/~sa1013/pub/2015_S_Arslan_MICCAI.pdf

a. 100 HCP subjects. Initial parcellation using k-means, distance is a combination of geodesic distance and time series correlation (from fMRI) -> 
hierarchical (agglomerative) clustering of these supervertices into larger ones -> Construct meta-graph edges - #times vertices co-occur in the 
same community -> Cluster this graph using n-cut

2. 2015 A Continuous Flow-Maximisation Approach to Connectivity-driven Cortical Parcellation, Sarah Parisot, Martin Rajchl, Jonathan 
Passerat-Palmbach, Daniel Rueckert, 2015

a. Start with random parcellation (spatially constrained) -> Update parcel centers seeking for a point with maximum correlation with all other 
nodes in a parcel (correlation from fMRI) -> Attach each node to a parcel with the highest correlation (s.t. Spatially smoothness constraints) -> 
Repeat until convergence. 

b. 25 HCP Subjects
3. 2008 Normalized Cut Group Clustering of Resting-State fMRI Data, Martijn van den Heuvel ,Rene Mandl, Hilleke Hulshoff Pol, 2008, 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002001#s2
a. 2-level procedure. 1 construct subject level parcellation from fMRI (correlation, 0.4 cutoff) - 20 clusters (authors call them resting-state 

networks RSNs). Individual graph consist of 8500-9500 nodes. Use ncut clustering, no spatial constraints. Construct group graph edge +1 
between 2 nodes if they were in the same cluster (for a subject). Finally group graph was clustered using ncut. 26 fMRI subjects.

4. 2012 A whole brain fMRI atlas generated via spatially constrained spectral clustering, R. Cameron Craddock, G. Andrew James,Paul E. Holtzheimer, 

Xiaoping P. Hu, and Helen S. Mayberg, 2012

a. Build a network from fMRI, such that every node is a voxel and an edge between two nodes exist only if they are in 3D neighborhood (for 
every voxel there are 26 neighborhood voxels), the weight on an edge is a correlation. Cluster it using ncut, group atlas generated either by 
averaging subject networks and cluster an averaged one, or by using the same technique as in [3] (Martijn van den Heuvel, 2008)

5. 2014 OPTIMIZING BRAIN CONNECTIVITY NETWORKS FOR DISEASE CLASSIFICATION USING EPIC Gautam Prasad, Shantanu H. Joshi, 

and Paul M. Thompson https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232940/

a. Start with Desikan atlas proposed algorithm combine separate regions into bigger ones, recompute connectivity matrix and run a classification 
algorithm on it (using PCA as prep step). In such a way authors find “optimal” in terms of classification (AD vs NC) brain parcellation. The 
search of best combination of regions is done in a probabilistic manner (simulated annealing/random search).

https://www.doc.ic.ac.uk/~sa1013/pub/2015_S_Arslan_MICCAI.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002001#s2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232940/


Multi-Level Parcellation of the 
Cerebral Cortex Using 
Resting-State fMRI

Short presentation video

https://link.springer.com/chapter/10.1007/978-3-319-24574-4_6
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_6
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_6
https://www.youtube.com/watch?v=zDWdgtfzOvo


A Continuous 
Flow-Maximisation 
Approach to 
Connectivity-driven Cortical 
Parcellation

Short presentation video

https://link.springer.com/chapter/10.1007/978-3-319-24574-4_20
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_20
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_20
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_20
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_20
https://www.youtube.com/watch?v=AqmDB5CZS7o


Connectivity-Driven Brain Parcellation via 
Consensus Clustering

1. Surface mesh
2. Individual continuous connectomes

3. Partitions of the individual connectomes
4. Consensus vertex clustering

5. Mapping clusters on brain surface

Connectivity-Driven Brain 
Parcellation via Consensus 
Clustering

https://arxiv.org/abs/1808.04262
https://arxiv.org/abs/1808.04262
https://arxiv.org/abs/1808.04262


Features
● Obtained parcellation is highly symmetrical (left vs right 

hemisphere)
● Has substantial intersection with classical gyral based 

parcellations
● Spatially continuous without specific spatial constraints
● Arbitrar subject to clustering approach and averaging approach
● Could be used for subject or group analysis
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http://www.clipartpanda.com/clipart_images/black-and-white-human-brain-3-29489506
https://braintumor.org/brain-tumor-information/signs-and-symptoms/brain-illustration/
https://www.britannica.com/topic/phrenology
https://www.humanbrainfacts.org/basic-structure-and-function-of-human-brain.php
http://cs.wellesley.edu/~cs112/courseMaterials/assignments/assign5/assign5.html
https://miykael.github.io/nipype-beginner-s-guide/neuroimaging.html
http://www.clinica.run/doc/Pipelines/T1_FreeSurfer/
https://fcp-indi.github.io/docs/user/anat.html
http://brainsuite.org/processing/svreg/details/
https://en.wikipedia.org/wiki/Image_registration
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10133/1/Multi-atlas-based-CT-synthesis-from-conventional-MRI-with-patch/10.1117/12.2254571.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10133/1/Multi-atlas-based-CT-synthesis-from-conventional-MRI-with-patch/10.1117/12.2254571.short?SSO=1
https://www.sciencedirect.com/science/article/pii/S2319417017300653
https://www.semanticscholar.org/paper/Shape-analysis-of-the-human-brain.-Nitzken-Joseph/c47a238ce4a943a30da38f1047c01580a47fab7d/figure/63
https://www.semanticscholar.org/paper/Shape-analysis-of-the-human-brain.-Nitzken-Joseph/c47a238ce4a943a30da38f1047c01580a47fab7d/figure/63
https://www.semanticscholar.org/paper/Shape-analysis-of-the-human-brain.-Nitzken-Joseph/c47a238ce4a943a30da38f1047c01580a47fab7d
https://www.semanticscholar.org/paper/Shape-analysis-of-the-human-brain.-Nitzken-Joseph/c47a238ce4a943a30da38f1047c01580a47fab7d
https://brainder.org/2016/05/31/downsampling-decimating-a-brain-surface/


Conclusion
● Problems:

○ Huge amount of different parcellation 
approaches

○ No obvious way to choose amongst them
● Solution:

○ Use common sense
○ Use anatomical parcellations, they are good 

enough in most cases.
○ Do not use parcellation at all.
○ In case of structural connectomes use 

Connectivity-driven parcellation!




