
OpenCL

(Open Computing Language)
is a framework for writing

programs that execute across
heterogeneous platforms

Е.М. Нанивская

НУГ геоинформатики

http://geolab.gis.land/

http://geolab.gis.land/

History of OpenCL. Why GPU Computing
An enlarging peak

performance advantage:

- Calculation: 1 TFLOPS vs.

100 GFLOPS

- Memory Bandwidth: 100-

150 GB/s vs. 32-64 GB/s

- GPU in every PC and

workstation – massive

volume and potential

impact

History of OpenCL. Role of GPUs - large data sets

History of OpenCL. Future Apps Reflect a
Concurrent World
● Excitingapplicationsinfuturecomputinghavebeen traditionally considered

“supercomputing applications”

○ Video and audio synthesis/analysis, 3D imaging and visualization, consumer

game physics, virtual reality products, computational financing, molecular

dynamics simulation, computational fluid dynamics

○ These “Super-apps” represent and model the physical, concurrent world

● Various granularities of parallelism exist, but...

○ programming model must not hinder scalable implementation

○ data delivery needs careful management

DRAM Bandwidth Trends Sets Programming Agenda

● Random access BW 1.2%

of peak for DDR3-1600,

0.8% for GDDR4-1600

(and falling)

● 3D stacking and optical

interconnects will unlikely

help.

History of OpenCL. UIUC/NCSA AC Cluster
● 32 nodes UIUC/NCSA AC Cluster

○ 4-GPU (GTX280, Tesla), 1-FPGA, quad-

core Opteron node at NCSA

○ GPUs donated by NVIDIA

○ FPGA donated by Xilinx

○ 128 TFLOPS single precision, 10

TFLOPS double precision

● Coulomb Summation:
○ 1.78 TFLOPS/node

○ 271x speedup vs. Intel QX6700 CPU

core w/ SSE

A partnership between NCSA and academic departments.

History of OpenCL. What is (Historical) GPGPU ?
● General Purpose computation using GPU and graphics API in applications other

than 3D graphics

○ GPU accelerates critical path of application

● Data parallel algorithms leverage GPU attributes

○ Large data arrays, streaming throughput

○ Fine-grain SIMD parallelism

○ Low-latency floating point (FP) computation

● Applications – see //GPGPU.org

○ Game effects (FX) physics, image processing

○ Physical modeling, computational engineering, matrix algebra, convolution,

correlation, sorting

History of OpenCL. Previous GPGPU Constraints
● Dealing with graphics API

○ Working with the corner cases of the graphics

API per thread

● Addressing modes

○ Limited texture size/dimension Constants

● Shader capabilities

○ Limited outputs Output Registers

● Instruction sets

○ Lack of Integer & bit ops FB Memory

● Communication limited

○ Between pixels

○ Scatter a[i] = p

History of OpenCL. G80 – Graphics Mode

● The future of

GPUs is

programmable

processing

● So – build the

architecture

around the

processor

History of OpenCL. CUDA – Recent OpenCL
Predecessor
● “Compute Unified Device Architecture”

● General purpose programming model

○ User kicks off batches of threads on the GPU

○ GPU = dedicated super-threaded, massively data parallel co-processor

● Targeted software stack

○ Compute oriented drivers, language, and tools

● Driver for loading computation programs into GPU

○ Standalone Driver - Optimized for computation

○ Interface designed for compute – graphics-free API

○ Data sharing with OpenGL buffer objects

○ Guaranteed maximum download & readback speeds

○ Explicit GPU memory management

History of OpenCL. G80 CUDA mode – A Device
Example
● Processors

execute

computing

threads

● New operating

mode/HW

interface for

computing

What is it?
● Cross-platform parallel computing API and C-like

language for heterogeneous computing devices

● Code is portable across various target devices:
○ Correctness is guaranteed

○ Performance of a given kernel is not guaranteed across

differing target devices

● OpenCL implementations already exist for AMD

and NVIDIA GPUs, x86 CPUs

● In principle, OpenCL could also target DSPs,Cell,

and perhaps also FPGAs

Problems with OpenCL
- poor performance

compared to CUDA, but

with each new driver

release, the

performance of

OpenCL under CUDA is

getting closer to the

performance of CUDA

applications

Processing speed for different problem sizes

Brief description
- the OpenCL model turned out to be very universal, while it remains low-

level, allowing you to optimize applications for a specific architecture.

- It also provides cross-platform when moving from one type of OpenCL-

devices to another.

- The provider of the OpenCL implementation has the ability to optimize

the interaction of its device with the OpenCL API in every possible way,

seeking to increase the efficiency of resource allocation for the device.

- In addition, a correctly written OpenCL application will remain effective

over generations of devices.

To sum up
OpenCL technology is of interest to various IT

companies - from game developers to chip

manufacturers.

OpenCL was conceived as a technology for

creating applications that could run in a

heterogeneous environment.

Moreover, it is designed to provide

comfortable operation with such devices

that are now only in the plans and even with

those that no one has yet invented.

OpenCL Programs
● An OpenCL “program” contains

one or more “kernels” and any

supporting routines that run on a

target device

● An OpenCL kernel is the basic

unit of parallel code that can be

executed on a target device

More information
To coordinate the work of all these devices, a

heterogeneous system always has one “main”

device that interacts with all other means of the

OpenCL API. Such a device is called a "host", it is

defined outside of OpenCL.

This device is supposed to be used for

calculations, it has a certain “processor” in the

general sense of the word. Something that can

execute commands. OpenCL is designed for

parallel computing, such a processor may have

means of parallelism within itself.

In addition to computing resources, the device

has a certain amount of memory.

Platform Model

- The OpenCL platform consists of a host

connected to devices that support

OpenCL.

- Each OpenCL device consists of Compute

Unit, which are further divided into one or

more processing elements (Processing

Elements, hereinafter referred to as PE).

The application is not rigidly connected with

OpenCL, which means you can always replace

the OpenCL implementation without disrupting

the program’s performance

One Host + one or more Compute Devices

Execution Model
Running an OpenCL Program

host part of the program kernels

Execution Model
The main purpose of the host

program is to create and query the

platform and device attributes, define

a context for the kernels, build the

kernel, and manage the execution of

these kernels.

Execution Model
On submission of the kernel by the

host to the device, an N dimensional

index space is created. N is at least 1

and not greater than 3. Each kernel

instance is created at each of the

coordinates of this index space. This

instance is called as the "work item"

and the index space is called as the

NDRange. In the following screenshot

we have shown the three scenarios

for 1, 2 and 3 dimensional NDRange

An N-dimension domain of work-items
● Kernels executed across a global domain of work-items

● Work-items grouped into local workgroups

● Define the “best” N-dimensioned index space for your algorithm
○ Global Dimensions: 1024 x 1024 (whole problem space)

○ Local Dimensions: 128 x 128 (work group ... executes together)

Execution context and command queues in the
OpenCL execution model.
The host determines the execution context of the kernel.

The context includes the following resources:

- Devices: A set of OpenCL devices that the host uses.

- Kernels: OpenCL functions that run on devices.

- Program Objects: source codes and kernel’s

executable files.

- Memory Objects: A collection of objects in memory

that are visible to both the host and the OpenCL

device. Memory objects contain values ​​that kernels

can work with.

Execution context and command queues in the
OpenCL execution model.
The context is created and managed by means of functions

from the OpenCL API. The host creates a data structure

called a command-queue to control the execution of the

kernel’s devices. The host sends the commands to the

queue, after which they are set by the scheduler for

execution on devices in the desired context.

Commands can be of the following types:

- Kernel execution command: execute the kernel on a

PEs device.

- Memory Commands: Move data to, from, or between

memory objects.

- Synchronization Commands: Controls the execution

order of commands.

Execution context and command queues in the
OpenCL execution model.
The command queue schedules

commands for execution on the

device. They execute asynchronously

between the host and device.

Commands can be executed relative to

each other in two ways:

- Execution in order

- Inconsistent execution

Execution context and command queues in the
OpenCL execution model.
Using the command queue allows for great versatility and flexibility when

using OpenCL.

Modern GPUs have their own scheduler, which decides what to execute and

when and on which computing units.

Using the queue does not hamper the work of the scheduler, which has its

own queue of commands.

OpenCL Kernels
● Code that actually executes on

target devices

● Kernel body is instantiated once

for each work
○ An OpenCL work item is equivalent to

a CUDA

● Each OpenCL work item gets a

unique index

Execution Model: kernel categories
- OpenCL kernel: written in OpenCL C and compiled by the OpenCL

compiler. All OpenCL implementations must support OpenCl-kernel.

- Naitive kernel: access to them is through host pointers to a function.

Native kernel is queued for execution, as well as OpenCL-kernel and

uses the same memory objects as OpenCL-kernel. For example, such

kernels can be functions defined in the application code or exported

from the library.

Array of Parallel Work Items
An OpenCL kernel is executed by an

array of work items

- All work items run the same code

(SPMD)

- Each work item has an index that

it uses to compute memory

addresses and make control

decisions

Work Groups: Scalable Cooperation
Divide monolithic work item array into work groups

- Work items within a work group cooperate via shared memory, atomic

operations and barrier synchronization

- Work items in different work groups cannot cooperate

Memory Model
- Global memory. This memory provides read and write access to

elements of all groups.

- Constant memory. A region of global memory that remains constant

during kernel execution.

- Local memory. A region of memory local to the group.

- Private (private) memory. A memory area owned by a Work-Item.

The specification defines 4 types of memory, but again does not impose any

requirements on the implementation of memory in hardware.

The existence of precisely these types of memory is quite logical: the

processor core has its own cache, the processor has a common cache and the

entire device has a certain amount of memory.

Memory Model
Memory management is

Explicit:

You must move data from

host -> global -> local ... and

back

Programming Model
OpenCL Execution Model

Data Parallel Task Parallel
hybrid models

A software model with data parallelism.
This model defines computation as a sequence of

instructions applied to many elements of a memory object.

OpenCL provides a hierarchical model of data

concurrency.

In an explicit model, the programmer determines the

total number of elements that must be executed in parallel

and how these elements will be distributed into groups.

In an implicit model, the programmer only determines

the total number of elements that must be executed in

parallel, and the division into work groups is performed

automatically.

Software model with job parallelism.
In this model, each copy of the kernel is

executed regardless of any index space.

In this model, users express

concurrency in the following ways:

- use vector data types implemented

in the device;

- queue a lot of tasks;

- queue native kernels using a

software model orthogonal to

OpenCL;

Which model is better?
For modern GPUs and Cells, the first model is well suited. But not all

algorithms can be effectively implemented within the framework of such a

model, and there is also the likelihood of a device appearing whose

architecture will be inconvenient for using the first model.

In this case, the second model allows you to write applications specific to

another architecture.

What does the OpenCL platform consist of?
- OpenCL Platform Layer: Allows

the host to discover OpenCL

devices, query their properties,

and create context.

- OpenCL Runtime: The runtime

allows a host program to manage

contexts after they have been

created.

- OpenCL Compiler: The OpenCL

compiler creates executable files

containing the OpenCL – kernel.

Creating an OpenCL Program

Introduction to Java and OpenCL Development
OpenCL is an open standard and there are

several implementations from different

manufacturers of hardware AMD, Intel, Nvidia,

IBM, etc. for the operating systems Windows,

Linux and MacOS.

When host code is part of the OpenCL code that

prepares data and coordinates the work of

OpenCL kernels, it is written in Java, there are

problems with debugging in Linux / Windows.

Introduction to Java and OpenCL Development
Recall the success of the Java platform in the

market for developing cross-platform server

software, it is not clear why hardware

vendors still do not develop OpenCL

development tools - debugging and profiling

built into the Eclipse IDE, Netbeans IDE, IntelliJ

Idea.

In the meantime, these development

environments do not include ready-made

tools that simplify working with the technology

in question.

Benefits of sharing Java and OpenCL
● Cross-platform

● A huge number of developers / architects who know this platform.

● A large number of open source libraries are available for use in

development.

● Platform for cloud applications

● Recognized corporate standard in banks, financial institutions,

telecommunications

● Many programming languages ​​that can be run in the JVM: jruby, PHP

(Caucho quercus), jython, javascript (Mozilla Rhino), Scala, etc.

● JavaCL is a compact and object-oriented API for OpenCL host code.

Drawbacks of sharing Java and OpenCL
● Non-dereferencing of the garbage collector. Your application may require

low latency in processing data and generating a response

● The presence of large overhead costs for copying data between the JVM

and native code, including implementations of OpenCL. This also includes

the lack of code for jvm that can read and write the data you need

● The algorithm cannot be effectively implemented within the framework of

the OpenCL architecture. Not all algorithms are well parallelized (Amdahl-

Ware law), the data transfer time on the bus can be many times longer

than the computation time on the device, etc.

To sum up about using Java and OpenCL
Due to the prospects for the development of computing devices along the

path of increasing parallelism, this approach to software development claims

to become one of the main in the development of high-performance

enterprise and cloud applications on the JVM.

Preparation
We need:

1. specification of the standard - https://www.khronos.org/registry/OpenCL

2. SDK (AMD or NVidia)

3. OpenCL literature - https://developer.nvidia.com/opencl

If you install the Nvidia Computing SDK, you will automatically receive all the

necessary documents.

https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/
https://developer.nvidia.com/opencl

Preparation
In addition, as a bonus, you will receive many interesting examples of

programs (30 pieces in the latest SDK release). Thanks to these examples, it’s

easy to learn how to use OpenCL correctly.

The OpenCL compiler is built into the driver, so the choice of IDE for

development is not limited in any way, therefore I will not describe the

process of setting up any specific IDE. All you have to do is write the paths to

the headers and libraries that the SDK will install.

Bibliography
● https://imagej.net/A_Tutorial_for_using_OpenCL_in_ImageJ

● https://habr.com/ru/post/73526/

● https://developer.nvidia.com/opencl

● http://developer.amd.com/GPU/ATISTREAMSDKBETAPROGRAM/Pages/de

fault.aspx

● https://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_Op

enCL_ProgrammingGuide.pdf

● https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/pap

ers/NVIDIA_OpenCL_BestPracticesGuide.pdf

● http://forums.amd.com/devforum/categories.cfm?catid=390&entercat=y

https://imagej.net/A_Tutorial_for_using_OpenCL_in_ImageJ
https://habr.com/ru/post/73526/
https://developer.nvidia.com/opencl
http://developer.amd.com/GPU/ATISTREAMSDKBETAPROGRAM/Pages/default.aspx
https://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://forums.amd.com/devforum/categories.cfm?catid=390&entercat=y

Bibliography
● https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/

● https://habr.com/ru/post/72247/

● https://habr.com/ru/post/72650/

● https://habr.com/ru/post/124873/

● https://www.researchgate.net/publication/273379680_Tutorial_para_Ope

nCL_en_ANSI_C_Java_y_C

● https://askvoprosy.com/voprosy/opencl-and-java

● https://habr.com/ru/post/261323/

● https://habr.com/ru/post/134500/

https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/
https://habr.com/ru/post/72247/
https://habr.com/ru/post/72650/
https://habr.com/ru/post/124873/
https://www.researchgate.net/publication/273379680_Tutorial_para_OpenCL_en_ANSI_C_Java_y_C
https://askvoprosy.com/voprosy/opencl-and-java
https://habr.com/ru/post/261323/
https://habr.com/ru/post/134500/

Bibliography
● https://subscription.packtpub.com/book/application_development/97818

49692342/2/ch02lvl1sec17/execution-model

● https://www.khronos.org/assets/uploads/developers/library/2012-pan-

pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf

● https://www.ks.uiuc.edu/Research/gpu/files/upcrc_opencl_lec1.pdf

● https://www.sciencedirect.com/topics/computer-science/opencl-platform

● http://www.ncsa.uiuc.edu/Projects/GPUcluster/

● https://arxiv.org/vc/arxiv/papers/1005/1005.2581v1.pdf

● http://multicore.doc.ic.ac.uk/opencl/opencl-2.0.pdf

https://subscription.packtpub.com/book/application_development/9781849692342/2/ch02lvl1sec17/execution-model
https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.ks.uiuc.edu/Research/gpu/files/upcrc_opencl_lec1.pdf
https://www.sciencedirect.com/topics/computer-science/opencl-platform
http://www.ncsa.uiuc.edu/Projects/GPUcluster/
https://arxiv.org/vc/arxiv/papers/1005/1005.2581v1.pdf
http://multicore.doc.ic.ac.uk/opencl/opencl-2.0.pdf

