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The Double Descent (DD) phenomenon [1]
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Model-wise DD

A vast range of studies tackle the model-wise DD both empirically
and theoretically [1–7]. But what about the epoch-wise DD?..
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Epoch-wise DD [8, 9]
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The “flat minima” intuition [10]

There exist a whole bunch of “flatness” definitions (with
critique) [10–18], but the intuition is simple: the “wider” the
minimum the better it generalizes.
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Flat minima visualization [14]
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Volume of the minimum vs. generalization gap [14]
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Normalized sharpness vs. generalization gap [16]
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Fisher Information Matrix (FIM)

I Suppose we have a discriminative model pw(y | x)
parameterized by w and a data distribution Q(x)

I The Fisher Information Matrix (FIM) is defined as

F := Ex∼Q(x)Ey∼pw(y|x)
[
∇w log pw(y | x)∇w log pw(y | x)T

]
=

= −Ex∼Q(x)Ey∼pw(y|x)
[
∇2

w log pw(y | x)
]
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FIM properties

I FIM is positive semidefinite: F � 0

I Let w′ = w + δw, then

Ex∼Q(x)KL (pw′(y | x)‖pw(y | x)) = δwTFδw + o
(
δw2

)
I FIM is a semidefinite approximation of the loss Hessian [19]

I FIM trace is easy to estimate and measures the average model
robustness to small parameters perturbations [20]:

tr(F ) = Ex∼Q(x)Ey∼pw(y|x)

[
‖∇w log pw(y | x)‖2

]
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FIM, loss Hessian, and gradient noise [21]

I C — (uncentered) covariance matrix of the gradients

I H — Hessian of the loss

I F — FIM

C ∝ F ≈ H

FIM is a good proxy of both loss curvature and gradient noise.
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Epoch-wise DD and generalization vs. memorization
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Epoch-wise DD = generalization + memorization +
consolidation

1. At first, model learns simple useful features and generalizes on
normal examples [22–24] — test error decreases. This can be
partially explained by clustering of gradients [25, 26].

2. Then it starts memorizing noise examples [22, 27] — test
error increases.

3. Finally, network consolidates [9, 20]: removes redundancy,
enters flat regions, improves generalization — test error
decreases again.
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Epoch-wise DD and FIM

FIM sheds light on model dynamics after the test error peak: the
model enjoys the second test risk descent exactly when it traverses
from the firstly found sharp unstable regions to flat
well-generalizing minima.
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Minefields in loss landscape [14]

It seems that most minima are bad [14, 28]!
What helps neural networks avoid them?
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NNs avoid bad minima due to:

I Small volume of bad optima [14]

I Architecture tricks: surprisingly, it’s mostly Batch Norm, not
Skip Connections [29]

I SGD noise induced by small batch size [10, 30–33], large
LR [28, 30–34], gradient covarience structure [30, 33, 35],
implicit regularization [36, 37]...
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Implicit Gradient Regularization (IGR) [36] sketch

I GD updates θi+1 = θi − h∇L (θi) are the explicit Euler
approximation of the following ODE: θ̇(t) = −∇L (θ(t))

I Consider Taylor expansion of the exact solution:
θ(h) = θ0 − h∇L (θ0) +

h2

2 ∇
2L (θ0)∇L (θ0) +O(h3)

I Then one-step difference is ‖θ1 − θ(h)‖ = O(h2)

I Consider modified loss L̃(θ) = L(θ) + h
4 ‖∇L(θ)‖

2

I Then one-step difference between GD and modified dynamics

is
∥∥∥θ1 − θ̃(h)∥∥∥ = O(h3), where ˙̃

θ(t) = −∇L̃
(
θ̃(t)

)
I This implies that modified loss L̃, which encourages the

discovery of flatter optima, better mimics the regularization
effect of discreteness of GD steps!
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Implicit Stochastic Gradient Regularization (ISGR) [37]

I Generalization of IGR for the SGD case

I Let the loss be L(θ) = 1
N

∑N
i=1 Li(θ)

I Then ISGR loss is

L̃SGD(θ) = L(θ) +
h

4m

m−1∑
k=0

∥∥∥∇L̂k (θ)
∥∥∥2 =

= L(θ)+
h

4
‖∇L (θ)‖2+ h

4m

m−1∑
k=0

∥∥∥∇L̂k (θ)−∇L (θ)
∥∥∥2 ,

where m is #mini-batches, L̂k is the k-th mini-batch loss

I This confirms that SGD selects not only wide, but also
uniform optima, i.e., satisfying each mini-batch [38]!
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Takeaways

I Epoch-wise DD is important and interesting, yet not
well-studied phenomenon

I Another spectacular fact is the connection between optimum
flatness and its ability to generalize

I Linking them together via loss geometry and information
theory (e.g., FIM) can be a promising direction to put further
our understanding of DNNs optimization and generalization

I The implicit noise of SGD explicitly helps neural networks to
converge into wide and “uniform” optima
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