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Motivation

m Knowledge Bases (KBs) like DBpedia, WikiData, and
Freebase contain rich information about entities and their
typed relationships.
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Knowledge Base (KB)

m KB = (E, R) — knowledge base is a multi-label graph

m E — a set of entities (nodes)

m R C E x T x E —a set of directed typed relations between
entities (edges)

m T —set of all relation types (sometimes just called
relations)

m (s,p,0) = (e, 1, ex) C R-an spo triple (subject, predicate,
object)

m Graph-tensor duality: Alternatively, a KB can be
represented as a set of | T| adjacency matrices each of
dimensionality |E| x |E|. They can be stacked into a
3-dimensional tensor of dimensionality |E| x |T| x |E|,
where an spo triple is a point (e;, ;, ex) € RRS.
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A sample sub-graph from the WikiData KB
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Information from KB is useful for semantic processing
algorithms

m A search engine that is able to retrieve mentions in the
news during the last month of all retired NBA players with a
net income of more than 1 billion USD.
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Information from KB is useful for semantic processing
algorithms

A search engine that is able to retrieve mentions in the
news during the last month of all retired NBA players with a
net income of more than 1 billion USD.

The list of players together with their income and
retirement information may be available in a KB.
Equipped with this information, it appears to be
straightforward to look up mentions of such retired
basketball players in the newswire.

However, the main obstacle for such a direct counting
algorithm is the lexical ambiguity of entities.

Only retrieve all mentions of “Michael Jordan (basketball
player)” and exclude mentions of other persons with the

same name such as “Michael Jordan (mathematician)”.
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Entity Linking (EL) to the rescue: a technology for
disentangling ambiguous entity mentions in text

m There will be more than one entity for the same mention
string — “Michael Jordan (basketball player)” vs “Micheal
Jordan (mathematician)”.
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Entity Linking (EL) to the rescue: a technology for
disentangling ambiguous entity mentions in text

m There will be more than one entity for the same mention
string — “Michael Jordan (basketball player)” vs “Micheal
Jordan (mathematician)”.

m The mapping between a mention in a context and KB entry
is required to retrieve the correct information.

m Entity Linking (EL) is the process of matching a mention,
e.g. “Michael Jordan”, in a textual context to a KB entity
(e.g. “basketball player” or “mathematician”) fitting the
context.

m This is the key technology enabling various semantic
applications.
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Another application: KB question answering (KBQA)

m A type of question answering, where an answer is available
in a KB.

m Typically, an answer is an entity e € E or a value (an object
of an spo triple which does not belong to E).

m Occasionally an answer may be a relation or a more
complex subset of the KB.
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Another application: KB question answering (KBQA
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Implementation of the KBQA in the DeepPavlov
framework over the WikiData knowledge base

m The following models are used to find the answer:

BERT model for prediction of query template type. Model
performs classification of questions into 8 classes
corresponding to 8 query template types.

BERT entity detection model for extraction of entity
substrings from the questions.

Substring extracted by the entity detection model is used for
entity linking. Entity linking performs matching the substring
with one of the Wikidata entities. Matching is based on
Levenshtein distance between the substring and an entity
title. The result of the matching procedure is a set of
candidate entities.

BiGRU model for ranking of candidate relations.

BERT model for ranking of candidate relation paths.
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Problem definition

m EL model takes a raw textual input and enriches it with
entity mention links in a KB.

m Commonly the task is split into entity recognition (ER) and
entity disambiguation (ED) sub-tasks:

ER:C — M"ED: (M, C)" — E".
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General architecture

m Recent neural EL models use a generic architecture that is
applicable for the most of the neural models.

m Most of the systems focus on ED by referring it as EL.
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General architecture: four main components

Candidate Generation
Mention-Context Encoder
Entity Encoder

Entity Ranking
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Candidate generation

m The goal of this step is given an ambiguous entity mention,
such as “Big Blue”, to provide a list of its possible “senses”
as specified by entities in a KB:

CG:M"— (eq,€2,....,6)"

Method 10 sample candidate entities for the example mention “Big Blue”

Santa_Monica_Big_Blue_Bus, Bear_in_the_big_blue_house, The_Big_Blue_Bug,
The_Big_Blue_Marble, IBM_Big_Blue_(rugby_union), The_Blue_Mouse_and_the_Big_Faced_Cat,
The_Big_Blue_(A-League), The_Big_Blue_Megamix, Millikin_Big_Blue_football, IBM_Big_Blue_(disambiguation)
Big_Blue_River_(Indiana), Big_Blue_River_(Kansas), Big_Blue_(crane), Big_Red_(drink),

IBM., IBM_Big_Blue, Millville_Football_&_Athletic_Club,

Our_Lady_of Mount_Carmel_High_School_(Baltimore, Maryland), The_Big_Blue, Tift_County_High_School

surface form matching
based on DBpedia

dictionary lookup
based on YAGO-means

prior probability IBM, Big_Blue_River_(Kansas), The_Big_Blue, Utah_State_University, New_York_Giants, Big_Blue_River_(Indiana),
based on CrossWikis Big_Blue_(crane), Big_Blue_(disambiguation), Deep_Blue_(chess_computer), Superman
Table 1
Candidate generation Ten sample didate entities for the example mention “Big Blue” for each method. The highlighted are

“correct” candidates assuming that given mention refers to the IBM corporation and not its sport teams, e.g. IBM_Big_Blue_(rugby_union).
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Context-mention encoder

m To capture the information of entity mention from its
context, the streamline approach is to construct a dense
contextualized vector representation of a mention:

mMENC : (C, M)" = (Ymy, Ymy, > Ymn)
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Context-mention encoder

m To capture the information of entity mention from its
context, the streamline approach is to construct a dense
contextualized vector representation of a mention:

mMENC : (C, M)" = (Ymy, Ymy, > Ymn)

m Early techniques depend on CNN architecture, however in
recent models, two approaches prevail: recurrent networks
and self-attention.

m A recurrent network with LSTM cells are ubiquitous to
encode left and right context of a mention.

m A self-attention based models rely on the outputs from
pre-trained BERT layers for context and mention encoding.
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Entity encoder

m Good representations ye of entity candidates that capture
various semantic information are essential for making EL
systems robust:

eENC : Ek — (ye1ay627 "'ayEk)

m Entities are encoded into low-dimensional vectors in such
a way that spatial proximity between them in a vector
space correlates with their semantic relatedness
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Visualization of entity embeddings for “Scott Young”
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Entity encoder

m Commonly, entities are represented with their dense
vectors to use unstructural (e.g. description pages) or
structural entity information (e.g. incoming links).
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Entity encoder

m Commonly, entities are represented with their dense
vectors to use unstructural (e.g. description pages) or
structural entity information (e.g. incoming links).

m Some techniques depend on statistics features like
word-entity co-occurrences from labeled/anchor data to
train encoder.

m There are some other models, which directly replace the
anchor text with an entity descriptor and train the word
representation model like word2vec.

m There are few recent studies, which perform entity
encoding without entity annotated text data, using distant
supervision or using only structural information.
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res of entity embeddings

Annotated | Entity-Entity | Entity-Mention Entity Entity | Entity Joint Space of

‘ Text ‘ Links Links Descriptions | Titles | Types || Entities and Words
Huang et al. (2015) [45] X X X X
Sun et al. (2015) [102] X X X x16
Fang et al. (2016) [25] X X X X X
Yamada et al. (2016) [116] X X X
Zwicklbauer et al. (2016) [125] x2 X
Tsai and Roth (2016) [104] X X X
Ganea and Hofmann (2017) [32] X X
Caoetal. (2017) [11] X 4 X 4
Moreno et al. (2017) [69] X X
Gupta et al. (2017) [38] X x x x40
Sil et al. (2018) [98] X X
Upadhyay et al. (2018) [106] X X X X
Newman-Griffis et al. (2018) [75] X b 4 X
Radhakrishnan et al. (2018) [87] X X
Rijhwani et al. (2019) [90] X X X X
Logeswaran et al. (2019) [62] X x36
Gillick et al. (2019) [34] X X X X x°
Le and Titov (2019) [55] X X6
Sevgili et al. (2019) [92] X X
Shahbazi et al. (2019) [94] X 4
Shi et al. (2020) [97] X X X X
Zhou et al. (2020) [124] X X X X X
Wu et al. (2019) [114] X x x50
Yamada et al. (2020) [117] X xS
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Entity ranking

m Given a list of entity candidates from a KB and a context
with a mention to rank these entities:
RNK : ((61 , 60, ..., ek), C, M)n — RnXk

Local scores

[Feed-forward Neural Network ]4— Mention-entity prior, ...

Similarity: .
Mention N Candidate
eor g;;;;gduc' (500 enity vestors

Context-mention Encoder: Entity Encoder:
-LST™M - Graph embedding model

- BERT, ... - Neural network encoder, ...
Mention Coﬁext A2 Scott Young_(American football)
‘e = N |_Scott_Young_(writer),
"Scott Young played for the Cleveland Browns." Scott_Young_(Welsh _footballer)
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Entity ranking: unsupervised models

m Most of the state-of-the-art studies compute similarity
between representations of a mention and an entity using
dot product s(m, &;) = ¥, - ¥, Or cosine similarity

Ym'Ye
s(m, ej) = cos(Ym; Ve,) = ||Y7m[\7\1'||;’e,-|l"
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Entity ranking: unsupervised models

m Most of the state-of-the-art studies compute similarity
between representations of a mention and an entity using
dot product s(m, &;) = ¥, - ¥, Or cosine similarity

YmYe,
s(m, ej) = cos(Ym; Ve,) = ||YmH'||}”e,-|| -

m The final decision is inferred via probability distribution,
which is usually approximated by a softmax function over
the candidates.

1m) = —exe(s(men))
P(el|m) - Zf(:1 exp(s(m,e;))
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Entity ranking: supervised models

m There are several approaches to frame a training objective
in the literature on EL. Consider we have k candidates for
the target mention m, one of which is a true entity e,.

m In some works, the models are trained with the standard
negative log likelihood objective like in classification tasks
[Logeswaran et al., 2019, Wu et al., 2019]. However,
instead of classes, negative candidates are used:

k
L(m) = —s(me)+Y s(m.e)
i=1
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Entity ranking: supervised models

m There are several approaches to frame a training objective
in the literature on EL. Consider we have k candidates for
the target mention m, one of which is a true entity e,.

m In some works, the models are trained with the standard
negative log likelihood objective like in classification tasks
[Logeswaran et al., 2019, Wu et al., 2019]. However,
instead of classes, negative candidates are used:

k
L(m) = —s(me)+Y s(m.e)
i=1

m Instead of the the negative log likelihood, some works use
variants of a ranking loss.
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NIL prediction

m The referent entities of some mentions can be absent in
the KBs, e.g. there is no Wikipedia entry about Scott Young
as a cricket player of the Stenhousemuir cricket club.
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NIL prediction

m The referent entities of some mentions can be absent in
the KBs, e.g. there is no Wikipedia entry about Scott Young
as a cricket player of the Stenhousemuir cricket club.

m Therefore, an EL system should be able to predict the
absence of a reference if a mention appears in specific
contexts, which is known as NIL prediction task.

NIL : (C,M)" — {0,1}"

50/108



General Architecture
000000000000

NIL prediction

m The referent entities of some mentions can be absent in
the KBs, e.g. there is no Wikipedia entry about Scott Young
as a cricket player of the Stenhousemuir cricket club.

m Therefore, an EL system should be able to predict the
absence of a reference if a mention appears in specific
contexts, which is known as NIL prediction task.

NIL : (C,M)" — {0,1}"

m This is similar to the “reject option”.
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Modifications: Joint ER+ED Architectures

m The main difference of joint models is the necessity to
produce also mention candidates.

EL:C — (M,E)".
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Modifications: Joint ER+ED Architectures

m The main difference of joint models is the necessity to
produce also mention candidates.

EL:C — (M,E)".

m Mostly the models treat every span (with a certain width)
as a mention candidate and check whether it has possible
entity candidate.

m Therefore, the decision during the entity disambiguation
phase affects entity recognition. However, the interaction
between these steps can be beneficial.
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Modifications: Global Context Architectures

Candidates for "Scott Young"
Input text with three

Scott_Young] ( Scott_Young, l
ambiguous entity mentions (writer) American_footballer)

... Scorers: Wales - John |
Hartson (12th, 56th and 83rd

Globally-linked entities

Scott_Young.
Welsh_footballer)

Scolt Young
(politician)

(Wales_national under)
21 football team
John Hartson

John Hartson

minutes), Scott Young (24th)
attendance: 1,800 ...

Wales NY

Candidates for "Wales"

al ul
21 football team
L

John Hartson

Scott Young
Candidates for "John Hartson" (Welsh_football)

m Global approaches to ED take into account semantic
consistency across multiple entities in a context.
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Modifications: Global Context Architectures

Candidates for "Scott Young" Globally-linked entities
Input text with three Scott_Young ( Scolt_Young_ l
ambiguous entity mentions (writer) American_footballer)

| (Wales national under)
Wales NY 21 football team

‘ [ {  don Hartson

— Scott Young
Candidates for "Wales" Candidates for "John Hartson" (Weish _football)

m Global approaches to ED take into account semantic
consistency across multiple entities in a context.
m Compare:

Scott_Young.
Welsh_footballer)

Scott_Young,
(politician). (Wales_national under)

= 21 football team
/
/

John Hartson

John Hartson

LED : (M,C) — E

and
GED : ((my, ms,...,mq),C) — EY
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Modifications: Global Context Architectures

Scott_Young.
(Welsh_footballer)

Scott_Young, l
American_footballer)

Scott_Young] ( Scott_Young] Wales
(writer) (politician) (Wales_national under)
S8 21 football team

— /
/ John Hartson

John Hartson
Scott Young
Scott Young_
(Welsh_football)

m Global approaches to ED take into account semantic
consistency across multiple entities in a context.
m Compare:

L John Hartson

LED: (M,C) — E
and
GED : ((my, ms,...,mq),C) — EY
m All entity mentions are disambiguated interdependently: a

disambiguation decision for one entity is affected by

decisions made for other entities in the context.
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Modifications: Global Context Architectures

m Although the extra information of the global context
improves the disambiguation accuracy, the number of
possible entity assignments is combinatorial, which results
in a high time complexity of disambiguation.
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Modifications: Global Context Architectures

m Although the extra information of the global context
improves the disambiguation accuracy, the number of
possible entity assignments is combinatorial, which results
in a high time complexity of disambiguation.

m Most of the solutions depend on pairwise entity scores.

m Some studies define the problem as a sequential decision
task, where the disambiguation of new entities is based on
the already disambiguated ones, using reinforcement
learning or LSTM
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m Annotated resources are very limited and exist only for a
few domains. Obtaining labeled data in a new domain
requires much labor.
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Modifications: Domain-Independent Architectures

m Annotated resources are very limited and exist only for a
few domains. Obtaining labeled data in a new domain
requires much labor.

m Early solutions are based on unsupervised or
semi-supervised models, recently zero-shot models are
proposed.

m In zero-shot setting, the only entity information available is
its description. For training, texts with mention-entity pairs
are also available. The key idea here is to train in one
domain and test it in another.

m Recent zero-shot solutions are based on BERT
architecture.
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m There is a big gap between resource-rich Wikipedia
languages, like English, and low-resource ones.
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Modifications: Cross-lingual Architectures

m There is a big gap between resource-rich Wikipedia
languages, like English, and low-resource ones.

m The cross-lingual EL methods aim at overcoming the lack
of annotation for some languages.

m The inter-language links in Wikipedia is one of the most
widely used sources of cross-lingual supervision. These
links map pages to equivalent pages in another language.

m Existing techniques of cross-lingual entity linking heavily
rely on pre-trained multilingual embeddings for entity
ranking. Although there are also zero-shot cross-lingual
approaches, they are not powerful.
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Classical application of entity linking

m Biomedical: Clinical text processing — COVIDASK a system
to answer coronavirus related questions. EL is used to link
objects, like drugs, symptoms, disease mentions.
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Classical application of entity linking

m Biomedical: Clinical text processing — COVIDASK a system
to answer coronavirus related questions. EL is used to link
objects, like drugs, symptoms, disease mentions.

m Relation extraction: extraction of relations between

mentions such as “child-of”, “politician-from”, “born-in”, etc.
EL helps to build a resource.

m Semantic parsing, question answering, information
retrieval: EL helps to restrict the search space of a query.
“Who first voiced Meg on Family Guy?”, after linking “Meg’
and “Family Guy” to entities in a KB, the task becomes to
resolve the predicates to the “Family Guy (the TV show)”
entry rather than all entries in the KB.
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Novel applications: training of neural language models

m Neural EL models have unlocked the new category of
application.

m Neural models allow the integration of an entire entity
linking system inside a larger neural network such as
BERT [Devlin et al., 2019].

LyoINT = LBERT + LEL-related -

m EL helps in language models to benefit from information
stored in KBs by incorporating EL into deep models for
transfer learning.
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Novel applications: the use-case of KnowBERT

m The original objective of BERT consists of the masked
language model (MLM) task and the next sentence
prediction (NSP) task:

LBerT = LNsp + LmiM-
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Novel applications: the use-case of KnowBERT

m The original objective of BERT consists of the masked
language model (MLM) task and the next sentence
prediction (NSP) task:

LBerT = LNsp + LmiM-

m KnowBERT [Peters et al., 2019] injects one or several
entity linkers between top layers of the BERT architecture.

m It optimizes the whole network for three tasks: (1) the
masked language model (MLM) task, (2) next sentence
prediction (NSP) from the original BERT model, and (3) EL:

LxnowBert = L£nsp + Lvim + LEL -
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Novel applications: other similar applications

m ERNIE [Zhang et al., 2019] expands the BERT
[Devlin et al., 2019] architecture with a knowledgeable
encoder (K-Encoder), which fuses contextualized word
representations obtained from the underlying self-attention
network with entity representations from a pre-trained
TransE model [Bordes et al., 2013]:

LernEe = Lnsp + Lvim + LdgA -

m [Wang et al., 2019] train a disambiguation network using
the composition of two losses: regular MLM and a
Knowledge Embedding (KE) loss based on the TransE
[Bordes et al., 2013] objective for encoding graph
structures:

LxepLer = Lmim + LKE.-
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Two main types of evaluation settings

Entity disambiguation evaluation

m Input: a text with a set of provided entity mentions.
m Output: an entity-linked text.

m The list of candidates can be fixed to ensure a better
comparability of the disambiguation models.

End-to-end entity linking evaluation

m Input: a raw text
m Output: an entity-linked text

m End-to-end evaluation performs mention detection / entity
recognition + entity disambiguation)
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Common evaluation dataset used to compare entity
linking models and perform experiments

Corpus | Text Type | # of Docs | # of Mentions
AIDA-B News 231 4485
MSNBC News 20 656
AQUAINT News 50 727
ACE2004 News 36 257
CWEB ClueWeb & Wikipedia 320 11154
WW ClueWeb & Wikipedia 320 6821

TAC KBP 2010 News & Web 1013 1020

TAC KBP 2015 Chinese News & Forums 166 11066
TAC KBP 2015 Spanish News & Forums 167 5822
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Common evaluation dataset used to compare entity
linking models and perform experiments

Corpus | Text Type | # of Docs | # of Mentions
AIDA-B News 231 4485
MSNBC News 20 656
AQUAINT News 50 727
ACE2004 News 36 257
CWEB ClueWeb & Wikipedia 320 11154
WW ClueWeb & Wikipedia 320 6821

TAC KBP 2010 News & Web 1013 1020

TAC KBP 2015 Chinese News & Forums 166 11066
TAC KBP 2015 Spanish News & Forums 167 5822

m Note that, both evaluation setups can be used with these
dataset

®m ... and even more, e.g. entity typing (predicting “hypernym
of an entity”)

m ... or even the simple entity recognition.
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IC VS neura
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Entity disambiguation

m Performance of the best classic entity linking models (red)

with the more recent neural models ( blue) on the AIDA

dataset shows an improvement over 15 points of accuracy.
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Entity disambiguation: Sparsity of the evaluation

| AIDA-B | KBP'10 | MSNBC | AQUAINT | ACE-2004 | CWEB | WW | KBP'15(es) | KBP'1S (zh)

| Accuracy | Accuracy | MicroFl | MicroFl | MicroFl | MicroFl | MicroFl | Accuracy | Accuracy
Non-Neural Baseline Models
DBpedia Spotlight (2011) [66] 0561 - 0421 0518 0539 - - - -
AIDA (2011) [44] 0.770 - 0.746 0571 0.798 - - - -
Ratinov et al. 2011) [89] - - 0750 0.830 0820 0.562 0672 - -
WAT (2014) [86] 0,805 - 0788 0754 0796 - - - -
Babelly (2014) [70] 0.758 - 0762 0704 0,619 - - - -
Lazic etal. (2015) [53] 0.864 - - - - - 5 5 5
Chisholm and Hachey (2015) [15] | _0.887 - - , - - B - 5
PBOH (2016) (3] 0.804 - 0861 0.841 05832 - - - -
Neural Models
Sun et al. (2015) [102] - 0839 - - - - B
Tsai and Roth (2016) [104] - - - - - - - 0824 0551
Fang ctal. (2016) (25 - 0.889 0755 0852 0.808 - - - -
Yamada ctal. 2016) [116] 0931 0855 - - , B 5 B 5
Zwicklbauer et al. (2016) [125] 0.784 - 0911 0842 0.907 - - - -
Francis-Landau ctal. (2016) [29] | 0855 - - - 0.899 - - 5 B
Eshel etal. (2017) [24] 0873 - - - , 5 5 B 5
Ganea and Hofmann (2017) (321 | 0922 - 0957 0885 0.885 0779 0775 - -
Gupta et al. 2017) [38] 0829 - - - 0.907 B - 5 B
Caoetal. Q017 [11] 085 - - - , B 5 B 5
Sil etal. 2018) (98] 0.940 0874 B B - - B 0544
Shahbazi et al. (2018) [93] 0.944 0879 - - - B 5 5 B
Kolitsas et al. 2018) [51] 0831 - 0864 0832 0855 - - - -
Le and Titov (2018) [54] 0931 - 0939 0884 0.899 0775 0780 - -
Radhakrishnan ctal_ 2018)(87] | 0.930 0.89% - - - B 5 5 B
Caoetal. (2018 [12] 0,500 0910 - 0870 0.880 - 0.860 - -
Raiman and Raiman (2018) [88] 0.949 0.909 - - - - - - 5
Upadhyay et al. 2018) [106] - - - - - - - 0.844 0.860
Gillick et al. (2019) [34] - 0870 - , , B 5 5 5
Le and Titov (2019) (53] 0815 - - - - - - - 5
Le and Titov (2019) [56] 0.897 - 0922 0.907 0.881 0.782 0817 - -
Fang ctal. (2019) [26] 0.943 - 0.928 0875 0912 0785 0.828 - -
Yang etal. (2019) [118] 0.946 - 0946 0883 0.901 0756 0788 - -
Shahbazi et al. (2019) [94] 0.962 0883 - - - - , 5 B
Onoc and Durrett (2020) [79] 0859 - - - , 5 5 B 5
Wuetal. (2019) [114] - 0940 B g - - - - - 83/108
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End-to-end evaluation: results of joint ER-ED models
on AIDA and MSNBC datasets

\ AIDA-B \ MSNBC
| Micro F1 | Micro F1
Non-Neural Baseline Models

DBpedia Spotlight [Mendes et al., 2011] 0.578 0.406
AIDA [Hoffart et al., 2011] 0.728 0.651
WAT [Piccinno and Ferragina, 2014] 0.730 0.645
Babelfy [Moro et al., 2014] 0.485 0.397
Neural Models
End-to-end [Kolitsas et al., 2018] 0.824 0.724
[Martins et al., 2019] 0.819 -
KnowBERT [Peters et al., 2019] 0.744 -
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Extrinsic evaluation

m Take an application, e.g. KBQA and measure its
performance.
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Other types of evaluation

Extrinsic evaluation

m Take an application, e.g. KBQA and measure its
performance.

m Compare two entity linkers (A and B) by integration them
inside the system in the same way.

m |f the overall performance of the application improved using
linker B then the linker B is better than the original linker A.

Evaluation of separate components

m Entity disambiguation evaluation.

m Given a set of relevant and irrelevant entity pairs, use entity
embeddings to perform the relevancy prediction.
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Entity relatedness evaluation

m Reported results for entity relatedness evaluation on the
dataset of [Ceccarelli et al., 2013].
| nDCG@1 | nDCG@5 | nDCG@10 | MAP

[Milne and Witten, 2008] 0.540 0.520 0.550 0.480
[Huang et al., 2015] 0.810 0.730 0.740 0.680
[Yamada et al., 2016] 0.590 0.560 0.590 0.520
[Ganea and Hofmann, 2017] 0.632 0.609 0.641 0.578
[Cao et al., 2017] 0.613 0.613 0.654 0.582
[El Vaigh et al., 2019] 0.690 0.640 0.580 -

[Shi et al., 2020] 0.680 0.814 0.820 -
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Summary

m Neural entity linking models generally perform the task with
higher accuracy than classical methods.

m Generic neural entity linking architecture is applicable for
most of the neural EL systems and features:
m candidate generation
m mention-context encoding
m entity encoding
m entity ranking

m The four main modifications of general architecture are:
m joint entity recognition and linking models
m global entity linking models
m domain-independent approaches including zero-shot and
distant supervision methods
m cross-lingual techniques
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step.
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Conclusion
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Future Directions

m End-to-end models featuring the candidate generation
step.

m Further development of zero-shot approaches.
m More use-cases of EL-enriched language models.
m Integration of EL loss in more neural models.

95/108



Conclusion

ooe

Thank you! Questions?
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