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Take-home messages

Worst-cases are solutions to optimization problems

Acceleration/�optimal� methods by optimizing worst-cases
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On worst-case analyses

Step-sizes optimization

Constructing lower bounds

Software

Concluding remarks
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Analysis of a �rst-order method

Say we aim to solve

min
x∈Rd

f (x)

where f is µ-strongly convex and L-smooth.

(Given �rst-order method) We decide to use:

x1 = x0 − h1,0f
′(x0)

x2 = x1 − h2,0f
′(x0)− h2,1f

′(x1)

x3 = x2 − h3,0f
′(x0)− h3,1f

′(x1)− h3,2f
′(x2)

...

xN = xN−1 −
N−1∑
i=0

hN,i f
′(xi ),

(FOM)

for some coe�cients {hi,j}.
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Question 1: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖ be?

Question 2: how to choose the step-sizes {hi,j}?
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Smooth strongly convex functions

Consider a di�erentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
i� ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2
‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2
‖x − y‖2.
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Convergence rate of a gradient step

'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − h1,0f

′(x0),

� x? = argmin
x

f (x)?

Final goal: optimize τ (as a function of the step-size, h1,0)

First: let's compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − h1,0f
′(x0) Algorithm

f ′(x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, h1,0.
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Sampled version

� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − h1,0f
′(x0)

f ′(x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that

{
fi = f (xi ) i = 0, ?
gi = f ′(xi ) i = 0, ?

x1 = x0 − h1,0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.
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Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to �nd f ∈ Fµ,L such that

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

- Necessary and su�cient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj )

∥∥2.
- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

13
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fi > fj +
〈
gj , xi − xj

〉
.

13



Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to �nd f ∈ Fµ,L such that

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

- Necessary and su�cient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj )

∥∥2.
- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

13



Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that

{
fi = f (xi ) i = 0, ?
gi = f ′(xi ) i = 0, ?

x1 = x0 − h1,0g0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L
‖g? − g0‖2 + µ

2(1−µ/L)
∥∥x? − x0 − 1

L
(g? − g0)

∥∥2
f0 > f? + 〈g?, x0 − x?〉+ 1

2L
‖g0 − g?‖2 + µ

2(1−µ/L)
∥∥x0 − x? − 1

L
(g0 − g?)

∥∥2.
� Same optimal value (no relaxation); but still non-convex quadratic problem.
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Semide�nite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + h21,0G2,2 − 2h1,0G1,2

G1,1

subject to F + Lµ
2(L−µ)G1,1 +

1
2(L−µ)G2,2 − L

L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 +

1
2(L−µ)G2,2 − µ

L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.
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Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of h1,0.

−1 0 1 2 3
0

1

2

3

4

step-size h1,0

‖x1−x?‖2
‖x0−x?‖2

� Observation: numerics match max{(1− h1,0L)2, (1− h1,0µ)2}.
� We recover the celebrated 2

L+µ
as the optimal step-size.
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Translation to worst-case guarantees

� Summary: we can compute for the smallest τ(h1,0) such that

‖x1 − x?‖2 ≤ τ(h1,0)‖x0 − x?‖2

is satis�ed for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − h1,0f
′(x0).

� Feasible points to the previous SDP correspond to lower bounds on τ(h1,0).

� Note: many things can be said on such problems (obtaining rigorous proof, etc.)

− Many details & references in
https://francisbach.com/computer-aided-analyses/

− Performance-Estimation-Toolbox (PESTO) on Github.

� For now: what about minimizing τ(h1,0)? And for more complicated methods?
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On worst-case analyses

Step-sizes optimization

Constructing lower bounds

Software

Concluding remarks
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Primal problem

� Recall primal problem, with step-size optimization

min
h1,0

max
G , F

G1,1 + h21,0G2,2 − 2h1,0G1,2

subject to F + Lµ
2(L−µ)G1,1 +

1
2(L−µ)G2,2 − L

L−µG1,2 6 0

− F + Lµ
2(L−µ)G1,1 +

1
2(L−µ)G2,2 − µ

L−µG1,2 6 0

G1,1 = 1

G < 0.

� �Simple� minimization problem by dualizing inner maximization.

� Introduce dual variables λ1, λ2 and τ for the linear constraints, and dualize.
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Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[µ+L(λ1µ−1)
L−µ + τ h1,0 − λ1(µ+L)

2(L−µ)
h1,0 − λ1(µ+L)

2(L−µ)
λ1
L−µ − h21,0

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

 

!

‖x1 − x?‖2 ≤ τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − h1,0f

′(x0).~ww
∃λ ≥ 0 :

[µ+L(λµ−1)
L−µ + τ h1,0 − λ(µ+L)

2(L−µ)
h1,0 − λ(µ+L)

2(L−µ)
λ

L−µ − h21,0

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence �m�

.
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Optimizing the step-sizes
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Optimizing the step-sizes
� Recall �rst-order method of interest

x1 = x0 − h1,0f
′(x0)

x2 = x1 − h2,0f
′(x0)− h2,1f

′(x1)

x3 = x2 − h3,0f
′(x0)− h3,1f

′(x1)− h3,2f
′(x2)

...

xN = xN−1 −
N−1∑
i=0

hN,i f
′(xi ),

� idea: solve minimization problem over

min
{hi,j}

τ({hi,j}),

where τ(.) can be computed via (N + 1)× (N + 1) SDP.

� Using similar ideas and dualization: minimax transformed to minimization.

� This time, more complicated, and nonconvex (example with N = 2 next slide).

� Idea: use numerical inspiration to �nd tractable relaxations/reformulations.
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Optimizing the step-sizes

� When N = 2, the problem becomes

min
τ,λ1,...,λ6>0
{hi,j}

τ

subject to

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 < 0

[
λ1 + λ2 − λ3 − λ5
−λ1 + λ3 + λ4 − λ6

]
= 0,

for some S1,1, S1,2,S1,3, S2,2, S2,3,S3,3 (functions of τ , λ1, . . . , λ6 and {hi,j}).

� In particular

S1,2 = − Lλ3−2(L−µ)h2,0+µλ1+Lµ(λ2+λ5)h1,0
L−µ

S2,2 =
−2(µλ6+Lλ4)h1,0−2(L−µ)h22,0+Lµ(λ2+λ4+λ5+λ6)h

2

1,0+λ1+λ3+λ4+λ6

L−µ

� LMI remains convex in some step-sizes (h2,0 and h2,1) but not in the others.
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Optimizing the step-sizes, numerically
� Even for N = 2 the problem does not seem �that simple�.

� Our approach:

(i) �relax & reformulate� (details in the paper #1)

(ii) a constructive technique (based on similar ingredients) for generating
algo-independent lower bounds (see paper #2)

� It provides a recipe for designing methods, numerically.

� Allows obtaining analytical solutions to the design problem, in some cases.

� Recall again the �rst-order method of interest

x1 = x0 − h1,0f
′(x0)

x2 = x1 − h2,0f
′(x0)− h2,1f

′(x1)

x3 = x2 − h3,0f
′(x0)− h3,1f

′(x1)− h3,2f
′(x2)

...

xN = xN−1 −
N−1∑
i=0

hN,i f
′(xi ).
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Numerical examples I
Example for L = 1 and µ = .1

� For N = 1, we obtain
‖x1−x?‖2
‖x0−x?‖2

≤ 0.6694 with corresponding step-sizes

[h?i,j ] =
[
1.8182

]
.

� For N = 2, we obtain
‖x2−x?‖2
‖x0−x?‖2

≤ 0.3769 with

[h?i,j ] =

[
1.5466
0.2038 2.4961

]
.

� For N = 3, we obtain
‖x3−x?‖2
‖x0−x?‖2

≤ 0.1932 with

[h?i,j ] =

1.54660.1142 1.8380
0.0642 0.4712 2.8404

 .
� For N = 4, we obtain

‖x4−x?‖2
‖x0−x?‖2

≤ 0.0944 with

[h?i,j ] =


1.5466
0.1142 1.8380
0.0331 0.2432 1.9501
0.0217 0.1593 0.6224 3.0093

 .
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Numerical examples II
What about di�erent performance measure? Example

f (xN )−f?
f (x0)−f?

and L = 1, µ = .1.

� For N = 1, we obtain
f (x1)−f?
f (x0)−f?

≤ 0.6694 with step-size

[hi,j ] =
[
1.8182

]
.

� For N = 2, we obtain
f (x2)−f?
f (x0)−f?

≤ 0.3554 with

[hi,j ] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain
f (x3)−f?
f (x0)−f?

≤ 0.1698 with

[hi,j ] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .
� For N = 4, we obtain

f (x4)−f?
f (x0)−f?

≤ 0.0789 with

[hi,j ] =


1.9187
0.4098 2.1746
0.1796 0.5147 2.1746
0.0627 0.1796 0.4098 1.9187

 .
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Numerical examples III

Worst-case performance
f (xN )−f?
‖x0−x?‖2

with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).
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Analytical solutions

� It turns out that for
‖xN−x?‖2
‖x0−x?‖2

, we can also solve the problem analytically.

� The method referred to as �Information-Theoretic Exact Method� (ITEM)

yk = (1− βk)zk + βk

(
yk−1 −

1

L
f ′(yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1

µ
f ′(yk)

)
,

for some sequences {βk}, {δk} (depending on µ, L, and k).

� The worst-case guarantee matches exactly a lower complexity bound.

� Worst-case guarantee of order

‖zN − z?‖2

‖z0 − z?‖2
= O

((
1−

√
µ
L

)2N)
.

� Asymptotically, this method corresponds to the Triple Momentum Method by
Van Scoy et al. (2017).

� All details can be found in (T. & Drori, 2021), and (Drori & T., 2021).
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A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step-sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed e�ciently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (xN )−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖
2

‖x0−x?‖2
: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(xN )‖2

f (x0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN )−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖
2

‖x0−x?‖2
(via Chebyshev polynomials), asymptotically Polyak's Heavy-Ball

� see e.g.: A. Nemirovsky's �Information-based complexity of convex
programming.� (lecture notes, 1995)
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Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!

− Why? Let's �ashback into the interpolation/extension problem!
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Reminder: smooth strongly convex interpolation/extension

Consider a set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
subgradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to �nd a f ∈ Fµ,L s.t.

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

32



Special case: convex interpolation problem
Conditions for {(xi , gi , fi )}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.
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x

f

•
•

•

•
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Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!

− Why? Let's �ashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly strongly) convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box �rst-order method has the �same information� at each iteration;

− those constraints �t into a SDP;
− such functions are sometimes referred to as being �zero-chain�.
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Avoiding semide�nite programming modeling steps?

� Performance Estimation Toolbox (PESTO) available on

AdrienTaylor/Performance-Estimation-Toolbox

Contains about 50 examples.

� Python version should be available during summer.
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Example: convergence of Douglas-Rachford

4 fast prototyping (∼ 20 e�ective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
o
n
tr
a
c
ti
o
n
ra
te
ρ
2

37



Example: convergence of Douglas-Rachford

4 fast prototyping (∼ 20 e�ective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
o
n
tr
a
c
ti
o
n
ra
te
ρ
2

37



Example: convergence of Douglas-Rachford

4 fast prototyping (∼ 20 e�ective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
o
n
tr
a
c
ti
o
n
ra
te
ρ
2

µ = 0.1

µ = 0.5

µ = 1

µ = 1.5

µ = 2

37



Example: convergence of Douglas-Rachford

4 fast prototyping (∼ 20 e�ective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
o
n
tr
a
c
ti
o
n
ra
te
ρ
2

µ = 0.1

µ = 0.5

µ = 1

µ = 1.5

µ = 2

37



Current library of examples within PESTO

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern �xed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.
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Concluding remarks

Performance estimation's philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� overall: principled approach (de�nition of worst-case),

� computer-assisted design of numerical methods.

Di�culties:

� su�ers from standard caveats of worst-case analyses,

� closed-form solutions might be involved.

Note: many links with theory on quadratics (Chebyshev methods).
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Take-home messages

Worst-cases are solutions to optimization problems

Acceleration/�optimal� methods by optimizing worst-cases

Design of theoretical methods via numerical experiments
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Thanks! Questions?
www.di.ens.fr/∼ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github
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