Constructive approaches to optimal first-order

methods for (strongly) convex minimization

Adrien Taylor

V4
informatiques V4 mathématiques

| PSL»

Optimization without borders, Soshi — July 2021

Francois Glineur

(UCLouvain)
| 4

Francis Bach

(Inria/ENS)

Mathieu Barré
(Inria/ENS)

Julien Hendrickx

(UCLouvain)

Jéréme Bolte

(TSE)

A-R. Dragomir
(ENS/TSE)

I ¢
C. Bergeling
(Lund)

Etienne de Klerk
(Tilburg & Delft)

A. d'Aspremont
(CNRS/ENS)

s B

B. Van Scoy
(W-Madison)

P. Giselssn
(Lund)

Ernest Ryu
(UCLA)

Yoel Drori
(Google)

L. Lessard
(W-Madison)

Yy

Yoel Drori

L8

Yoel Drori

Presentation based on joint works:
o “An optimal gradient method for smooth strongly convex minimization.” (2021)
© "On the oracle complexity of smooth strongly convex minimization.” (2021)

”~
Francois Glineur Julien Hendrickx

”~
Francois Glineur Julien Hendrickx

Introduction based on joint works:

© “Smooth strongly convex interpolation and exact worst-case performance of
first-order methods.” (2017)

o “Exact worst-case performance of first-order methods for composite convex
optimization.” (2017)

Many (very) related works; much more careful bibliographical treatment in papers.

Many (very) related works; much more careful bibliographical treatment in papers.

<

<

<o

B. Polyak. “Introduction to optimization” (1964)

Y. Nesterov. “A method of solving a convex programming problem with
convergence rate O(1/k?).” (1983)

A. Nemirovsky, and B. Polyak. “Iterative methods for solving linear ill-posed
problems under precise information.” (1984)

A. Nemirovsky. “Information-based complexity of linear operator
equations.” (1992)

A. Nemirovsky. “Information-based complexity of convex programming.”
(lecture notes, 1995)

¢ Y. Nesterov. “Introductory Lectures on Convex Optimization.” (2003/2018)

o Y. Drori, and M. Teboulle. “Performance of first-order methods for smooth

convex minimization: a novel approach.” (2014)

D. Kim, and F. Fessler. “Optimized first-order methods for smooth convex
minimization.” (2016)

L. Lessard, B. Recht, and A. Packard. “Analysis and design of optimization
algorithms via integral quadratic constraints.” (2016)

B. Van Scoy, R. Freeman, K. Lynch. “The fastest known globally convergent
first-order method for minimizing strongly convex functions.” (2017)

D. Kim, and F. Fessler. “Optimizing the efficiency of first-order methods for
decreasing the gradient of smooth convex functions.” (2021)

Take-home messages

Worst-cases are solutions to optimization problems

Acceleration /“optimal” methods by optimizing worst-cases

On worst-case analyses
Step-sizes optimization
Constructing lower bounds
Software

Concluding remarks

On worst-case analyses

Analysis of a first-order method
Say we aim to solve

min f(x
xeRd ()

where f is p-strongly convex and L-smooth.

Analysis of a first-order method
Say we aim to solve

min f(x
xeRd ()

where f is p-strongly convex and L-smooth.

(Given first-order method) We decide to use:

x1 = xg — h1,0f' (x0)
x2 =x1 — haof (x0) — h2,1f' (x1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2 (x2)
(FOM)

XN = XN— I*ZhN: ;)

for some coefficients {h; ;}.

Analysis of a first-order method
(Given first-order method) We decide to use:

X1 = Xo — hlyof/(xo)
Xp = X1 — hgyof/(xo) — h271f/(X1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2 (x2)
(FOM)

XN = XN— I*ZhN: ;)

for some coefficients {h; ;}.

Analysis of a first-order method
(Given first-order method) We decide to use:

x1 = xo — h1,0f"(x0)
Xp = X1 — hgyof/(xo) — h271f/(X1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2 (x2)
(FOM)

XN = XN— I*ZhN: ;)

for some coefficients {h; ;}.

Question 1: what a priori guarantees after N iterations?

Analysis of a first-order method
(Given first-order method) We decide to use:

x1 = xo — h1,0f"(x0)
Xp = X1 — hgyof/(xo) — h271f/(X1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2 (x2)
(FOM)

XN = XN— I*ZhN: ;)

for some coefficients {h; ;}.

Question 1: what a priori guarantees after N iterations?

Examples: how small should f(xn) — f(xx), ||f'(xn)]|l, |Ixn — x«|| be?

Analysis of a first-order method
(Given first-order method) We decide to use:

x1 = xo — h1,0f"(x0)
Xp = X1 — hgyof/(xo) — h271f/(X1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2 (x2)
(FOM)

XN = XN— I*ZhN: ;)

for some coefficients {h; ;}.

Question 1: what a priori guarantees after N iterations?

Examples: how small should f(xn) — f(xx), ||f'(xn)]|l, |Ixn — x«|| be?

Question 2: how to choose the step-sizes {h; ;}?

Smooth strongly convex functions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

10

Smooth strongly convex functions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

f

10

Smooth strongly convex functions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

f

(1) (Convexity) f(x) = f(y) +(f'(y),x —),

10

Smooth strongly convex functions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

f

(1) (Convexity) f(x) = f(y) +(f'(y),x —),

(1b) (u-strong convexity) F(x) > F(y) + (F/(y),x — y) + &[x - yII%,

10

Smooth strongly convex functions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

f

(1) (Convexity) f(x) = f(y) +(f'(y),x —),
(1b) (u-strong convexity) f(x) > f(y) + (f'(y),x — y) + §lIx = yI%,

(2) (L-smoothness) f(x) < f(y) + (f'(y),x — y) + 5lx -y

10

Smooth strongly convex functions

Consider a differentiable function f : RY — R, f is (u-strongly) convex and L-smooth
iff Vx,y € R? we have:

f

(1) (Convexity) f(x) = f(y) +(f'(y),x —),
(1b) (u-strong convexity) f(x) > f(y) + (f'(y),x — y) + §lIx = yI%,

(2) (L-smoothness) f(x) < f(y) + (f'(y),x — y) + 5lx -y

10

Convergence rate of a gradient step

11

Convergence rate of a gradient step

éexample: What is the smallest 7 such that:

for all

© xx = argmin f(x)?
X

_

[Ix1 = x:? < 7llxo — x|,

o L-smooth and p-strongly convex function f (notation f € 7, |),
o xp, and x1 generated by gradient step x1 = xo — h1,0f’(x0),

~

)

11

Convergence rate of a gradient step

éexample: What is the smallest 7 such that:
1 = xel? < 7llxo — xl?,

for all
o L-smooth and p-strongly convex function f (notation f € 7, |),

o xp, and x1 generated by gradient step x1 = xo — h1,0f’(x0),

© xx = argmin f(x)?
X

QI goal: optimize 7 (as a function of the step-size, h1 o)

Convergence rate of a gradient step

éexample: What is the smallest 7 such that:
1 = xel? < 7llxo — xl?,

for all
o L-smooth and p-strongly convex function f (notation f € 7, |),

o xp, and x1 generated by gradient step x1 = xo — h1,0f’(x0),

© xx = argmin f(x)?
X

QI goal: optimize 7 (as a function of the step-size, h1 o)

First: let's compute 7!

Convergence rate of a gradient step

éexample: What is the smallest 7 such that:
1 = xel? < 7llxo — xl?,

for all

© xx = argmin f(x)?
X

o L-smooth and p-strongly convex function f (notation f € 7, |),
o xp, and x1 generated by gradient step x1 = xo — h1,0f’(x0),

QI goal: optimize 7 (as a function of the step-size, h1 o)

~

)

First: let's compute 7!

_ [— x|1?
T = L ol L
f X0 ,x1,Xx HXO _X*Hz

st. feF,L
x1 = xo0 — h1,0f (x0)

f'(xx) =0

Functional class
Algorithm

Optimality of x,

11

Convergence rate of a gradient step

éexample: What is the smallest 7 such that:
1 = xel? < 7llxo — xl?,

for all

© xx = argmin f(x)?
X

o L-smooth and p-strongly convex function f (notation f € 7, |),
o xp, and x1 generated by gradient step x1 = xo — h1,0f’(x0),

QI goal: optimize 7 (as a function of the step-size, h1 o)

First: let's compute 7!

_ [— x|1?
T = L ol L
f X0 ,x1,Xx HXO _X*Hz

st. feF,L
X1 = X0 — hl’of/(xo)
f'(xx) =0

Variables: f, xo, x1, x«; parameters: u, L, h1o.

Functional class
Algorithm

Optimality of x,

11

Sampled version

12

Sampled version

© Performance estimation problem:

lIx1 — x|
fxoxa,xe ||Xo — x«||?
subject to f is L-smooth and p-strongly convex,

x1 = xo0 — h1,0f" (x0)

f'(xx) = 0.

12

Sampled version

© Performance estimation problem:

lIx1 — x|
fxoxa,xe ||Xo — x«||?
subject to f is L-smooth and p-strongly convex,

X1 = X0 — hl’of/(xo)

f'(xx) = 0.

o Variables: f, xg, x1, X«.

12

Sampled version

© Performance estimation problem:

lIx1 — x|

fxoxa,xe ||Xo — x«||?
subject to f is L-smooth and p-strongly convex,

x1 = xo0 — h1,0f" (x0)

f'(xx) = 0.
o Variables: f, xo, X1, X«.
o Sampled version: f is only used at xo and x. (no need to sample other points)

12

Sampled version

© Performance estimation problem:

lIx1 — x|
fxoxa,xe ||Xo — x«||?
subject to f is L-smooth and p-strongly convex,

x1 = xo0 — h1,0f" (x0)
f'(x«) = 0.
o Variables: f, xg, x1, X«.

o Sampled version: f is only used at xo and x. (no need to sample other points)

X1 — xol?
X0 ,X1 X4 _ 2
oo ixo = x«l
fo,fi
. fi = f(x) i=0,%
subject to 3f € F,, 1 such that { . — () i=0.x

x1 = X0 — h1,080
gx = 0.

12

Sampled version

© Performance estimation problem:

lIx1 — x|
fxoxa,xe ||Xo — x«||?
subject to f is L-smooth and p-strongly convex,

x1 = xo0 — h1,0f" (x0)
f'(x«) = 0.
o Variables: f, xg, x1, X«.

o Sampled version: f is only used at xo and x. (no need to sample other points)

X1 — xol?
S g — xa?
80,8+
fo,fx
. fi = f(x) i=0,%
subject to 3f € F,, 1 such that { . — () i=0.x

x1 = X0 — h1,080
gx = 0.

Variables: xo, x1, X+, g0, &+, fo,

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, i) };cs With coordinates x;,
(sub)gradients g; and function values ;.

13

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, i) };cs With coordinates x;,
(sub)gradients g; and function values ;.

f
AN .

X1

? Possible to find f € 7, ; such that
f(x;) =1, and g € 0f(x), Vies.

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, i) };cs With coordinates x;,
(sub)gradients g; and function values ;.

f
AN .

X1

? Possible to find f € 7, ; such that
f(x;) =1, and g € 0f(x), Vies.

- Necessary and sufficient condition: Vi,j € S

fi>f+(gx =) + e — &l + sl — % — He - el

Smooth strongly convex interpolation (or extension)

Consider an index set S, and its associated values {(x;, gi, i) };cs With coordinates x;,

(sub)gradients g; and function values ;.

f

o

X1

<

? Possible to find f € 7, ; such that

f(x)="f,

and g; € Of(x;),

- Necessary and sufficient condition: Vi,j € S

fi> i+ (gxi —x) + % |l&i — gl + saog i —xi -

vies.

- Simpler example: pick ¢ =0 and L = co (just convexity):

fi > £+ (g, % — xj)-

g —g)|*

13

Replace constraints

14

Replace constraints

¢ Interpolation conditions allow removing red constraints

max
X0, X1, Xx

80,8+

fo.fe

subject to

[— x|
lIxo — x«[12

£ .
3f € F,,,L such that { gi = F(x)

x1 = xo — h1,080
g« =0,

14

Replace constraints

¢ Interpolation conditions allow removing red constraints

max
X0, X1, Xx

80,8+

fo,fx

subject to

o replacing them by

f* > fO + (g07X* -

[= x|?

lIxo — x«|12
f; i i

3f € F,,,L such that { gi=f(5) i=

x1 = xo — h1,080
g« =0,

2
xo) + 71L||g* — gl + ﬁ“x* — X0 — %(g* - go)||

7 2
fo > fi + (g, x0 — xx) + ﬁ”go - g*llz + WHXO — X — %(go - g*)H .

14

Replace constraints

¢ Interpolation conditions allow removing red constraints

[— xl|?
S [[xo — xx| |2
80.8% 07 ™
fo,fx
. fi =f(x i=0,%
subject to If € F,, 1 such that { gi—f(x) i—=0.x

x1 = xo — h1,080
g« =0,

o replacing them by

2
fi > fo + (g0, xx — Xo0) + 57 |lgx — gl + ﬁ“x* —x0 — 1(gx — &)

7 2
fo > fi + (g, x0 — xx) + ﬁHgo - g*llz + WHXO — X — %(go - g*)H .

© Same optimal value (no relaxation); but still non-convex quadratic problem.

14

Semidefinite lifting

15

Semidefinite lifting
o Using the new variables G = 0 and F

G = ”XO_X*”2 <g07X0_X*>
(80, %0 — Xx) llgoll?

)

F=fy—f,

15

Semidefinite lifting
o Using the new variables G = 0 and F

G = ||X0 _X*”z <g07X0_X*>
(80, %0 — Xx) llgoll?

)

o previous problem can be reformulated as a 2 x 2 SDP

Gi1+ hi gGa2 — 2h1,0G12
max .
G, F Gi1

subject to F + (L u)Gll+ 3= u)G

—F Gt ey 2 -

G0,

_L
L—

m

L

F=1f —f,

Gi12<0

=G12<0

o ’

15

Semidefinite lifting

& Using the new variables G = 0 and F

IX — x> (g0, x0 — xx)
G= , =fo—Ff,
(80, X0 — x4 lgol? o

© previous problem can be reformulated as a 2 x 2 SDP

max G1,1+ hioGz,z —2h10G12

subject to F + 2()G1 T)Gz,z o

—F+ (L IL)G11+ 2(L— }L)szz_L%Gl2<0
Gi1=1
G =0,

(using an an homogeneity argument and substituting x; and gy).

15

Semidefinite lifting

o Using the new variables G =

G =

lIxo — x|
(80 X0 — Xx)

0and F

(80, X0 — X«)
2

, F=fo—f,
llgoll o

© previous problem can be reformulated as a 2 x 2 SDP

max
G, F

subject to

G1,1+ hio Gao —2h10G12

L
F+2()Gll+2(022~ =;612<0
- F+ (L ,L)G11+ = M)Gz,z—ﬁ61,2<0
Gi1=1
G0,

(using an an homogeneity argument and substituting x; and gy).

o Assuming Xo, Xx, go € R? with d >

2, same optimal value as original problem!

15

Semidefinite lifting

& Using the new variables G = 0 and F

IX — x> (g0, x0 — xx)
G= , =fo—Ff,
(80, X0 — x4 lgol? o

© previous problem can be reformulated as a 2 x 2 SDP

max G1,1+ hioGz,z —2h10G12

subject to F + 2()G1 T)Gz,z o

-F+ 2(L—[L) Gi1+ 2(,__}‘,) Gao— =612 <0
Gi1=1
G»o0,

(using an an homogeneity argument and substituting x; and gy).
o Assuming Xo, Xx, 8o € RY with d > 2, same optimal value as original problem!

o For d =1 same optimal value by adding rank(G) < 1.

15

Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of hy o.

16

Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of hy o.

4

[Ixa =, ||
lIxo—x |12

step-size h1 o

16

Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of hy o.

4

[Ixa =, ||
lIxo—x |12

0 | | |
-1 0 1 2 3

step-size h1 o

o Observation: numerics match max{(1 — h1oL)?, (1 — h1ou)?}.

16

Solving the SDP...

Fix L =1, p = .1 and solve the SDP for a few values of hy o.

4
3 - -
llxa—x |1 | |
[Ix0 —xx |2
1 | _
0 L L L
—1 0 1 2 3

step-size h1 o

o Observation: numerics match max{(1 — h1oL)?, (1 — h1ou)?}.

o We recover the celebrated Li—u as the optimal step-size.

16

Translation to worst-case guarantees

© Summary: we can compute for the smallest 7(h1) such that
lIxa = xel|? < 7(h10)llx0 — x|

is satisfied for all xo € R4, d €N, f € Fu,L. and x1 = xo — h10f’(x0).

17

https://francisbach.com/computer-aided-analyses/

Translation to worst-case guarantees

© Summary: we can compute for the smallest 7(h1) such that
lIxa = xel|? < 7(h10)llx0 — x|

is satisfied for all xo € R4, d €N, f € Fu,L. and x1 = xo — h10f’(x0).

© Feasible points to the previous SDP correspond to lower bounds on 7(hy o).

17

https://francisbach.com/computer-aided-analyses/

Translation to worst-case guarantees

© Summary: we can compute for the smallest 7(h1) such that

lxi = x> < 7(h1,0)lI%0 — x« 1

is satisfied for all xo € R4, d €N, f € Fu,L. and x1 = xo — h10f’(x0).
© Feasible points to the previous SDP correspond to lower bounds on 7(hy o).
< Note: many things can be said on such problems (obtaining rigorous proof, etc.)
Many details & references in

https://francisbach.com/computer-aided-analyses/
Performance-Estimation-Toolbox (PESTO) on Github.

17

https://francisbach.com/computer-aided-analyses/

Translation to worst-case guarantees

© Summary: we can compute for the smallest 7(h1) such that

lxi = x> < 7(h1,0)lI%0 — x« 1

is satisfied for all xo € R4, d €N, f € Fu,L. and x1 = xo — h10f’(x0).
© Feasible points to the previous SDP correspond to lower bounds on 7(hy o).

many things can be said on such problems (obtaining rigorous proof, etc.)

o Note:
— Many details & references in
https://francisbach.com/computer-aided-analyses/

— Performance-Estimation-Toolbox (PESTO) on Github.

o For now: what about minimizing 7(h1,0)? And for more complicated methods?

17

https://francisbach.com/computer-aided-analyses/

Step-sizes optimization

18

Primal problem

19

Primal problem

¢ Recall primal problem, with step-size optimization

min max G171 -+ h% 06272 - 2h1106172
hi1o G,F ’

subject to F + ()G11+ PT=)Gz,z—ﬁGl,zéo

—F+ 2(L*u) Gi11+ 2(,_7“) G2 — 7qu G12<0
Gi1=1
G =0.

Primal problem

¢ Recall primal problem, with step-size optimization
min max G171 -+ h% 06272 - 2h1’0 6172
hio G, ’

subject to F + ()G1 1+ L=)Gz,z — ﬁGLz <0

—F+ 2(L*u) Gi11+ 2(,_7“) G2 — 7qu G12<0
Gi1=1
G =0.

¢ “Simple” minimization problem by dualizing inner maximization.

Primal problem

¢ Recall primal problem, with step-size optimization

min max Gi1+ hioGz,z —2h10G12

hio G,
subject to F + (STy Ot + s)Gz,z — ﬁcm <0
—F+ 2(1'”)G1,1 + 2(L7M) Gao — ﬁGl,z <0
Gi1=1
G = 0.

¢ “Simple” minimization problem by dualizing inner maximization.

o Introduce dual variables A1, \» and 7 for the linear constraints, and dualize.

19

Dual problem

o Dual problem is

subject to S =

0=

L—

1,0 —

pAbQap—1)

(n+L)

2(L—p)

20

Dual problem

o Dual problem is

yA1,A220
ptl(Aaip—1) (n+L)
e e hio—
subject to S = L=p (u+L) 2“‘2_“) <0
1,0 = Z(L=p) L—p hl,o

0= —

o Weak duality: any dual feasible point = valid worst-case convergence rate

20

Dual problem

o Dual problem is

,A1,4220
ptL(Aap—1) (ptL)
—_— =t hi0 —
subject to S = L=n (L) 2("2_“) <0
1,0 = Z(L=p) L—p hl,o

0=, —

o Weak duality: any dual feasible point = valid worst-case convergence rate

o Direct consequence: for any 7 > 0 we have

X1 — xel2 < 7l|Ix0 — x«||2 for all f € F, 1, all xo € R, all d € N,
with x3 = xp — hl,Of,(XO)-

pAL(Ap—1) _ Mptl)
3.>0 TN) I
= by o — oletl) A p2 A
0" al—w L-n Mo

20

Dual problem

o Dual problem is

,A1,4220
ptLO s p—1) (L)
T+ hi0 —
subject to S = L=y (u+L) 2“‘2_“) <0
1,0 = Z(L=p) L—p hl,o

0=, —

o Weak duality: any dual feasible point = valid worst-case convergence rate (1}).
o Direct consequence: for any = > 0 we have

X1 — xel2 < 7lIx0 — x«||2 for all f € F, 1, all xo € R, all d € N,
with x3 = xp — hl,Of,(XO)-

pAL(Ap—1) _ Mptl)
I >0 TR (2ol
= hy g — olptl) A g2 A
1.0 ™ 2(t—p) L—p 1,0

20

Dual problem

o Dual problem is

A1, 4220
L p—1) (utL)
R hi0 —
subject to S = L=n (L) 2("2_“) <0
L0~ 3t Lor Mo

0=, —

o Weak duality: any dual feasible point = valid worst-case convergence rate (1}).
o Direct consequence: for any = > 0 we have

X1 — xel2 < 7lIx0 — x«||2 for all f € F, 1, all xo € R, all d € N,
with x3 = xp — hl,Of,(XO)-

2(L—p)

2 <0
10 — 2(L—p) L—p hl,o

{M—L(p=l) 4 hio — (N‘*“—):|

o Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate = valid dual feasible point ()

20

Dual problem

o Dual problem is

,A1,4220
gL p—1) (L)
T+ hi0 —
subject to S = L=y (u+L) 2“‘2_“) <0
L0 2t Loa Mo

0=, —

o Weak duality: any dual feasible point = valid worst-case convergence rate (1}).
o Direct consequence: for any = > 0 we have

X1 — xel2 < 7lIx0 — x«||2 for all f € F, 1, all xo € R, all d € N,
with x3 = xp — hl,Of,(XO)-

2(L—p)

2 <0
10 — 2(L—p) L—p hl,o

|:,u+L(p—1) + hl,O_ (;L+L):|

o Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate = valid dual feasible point ({}) : hence “{".

20

Optimizing the step-sizes

21

Optimizing the step-sizes

o In this case (N = 1), optimizing over step-size h1 o remains convex!

21

Optimizing the step-sizes

o In this case (N = 1), optimizing over step-size h1 o remains convex!

¢ Indeed:

min
,A 20

ptL(Op—1) (ptl)

. ——+ hio —
subject to L=p 2(L—p) =0
_ Mptl) _R2
L0 ™ 2(L—pw) L—p 1.0

21

Optimizing the step-sizes

o In this case (N = 1), optimizing over step-size h1 o remains convex!

¢ Indeed:
min
,A20,h1 0
o [T 0 o= o]
subject to ® (u+L) hz“ =0
L0 ™ 2(L—pw) L—p — 71,0

21

Optimizing the step-sizes

o In this case (N = 1), optimizing over step-size h1 o remains convex!

¢ Indeed:
min
,A20,h1 0
o [T 0 o= o]
subject to ® (u+L) hz“ =0
L0 ™ 2(L—pw) L—p — 71,0

© Optimization jointly over hy o “for free” (still linear SDP via Schur complement).

min
,A20,h1 o
+L(Ap—1) (p+L)
Er—=+7 -5 1
subject to _ 2(([':’:; = —hyo| 70
1 —h1o 1

21

Optimizing the step-sizes
o Recall first-order method of interest
x1 = xo — h1,0f'(x0)
x2 = x1 — h2,0f'(x0) — h2,17"(x1)

x3 = x2 — h3,0f'(x0) — h3,1f'(x1) — h32f'(x2)

N—1

N =xn—1— Yy hnif (%),
i=0

22

Optimizing the step-sizes
o Recall first-order method of interest

x1=x0 — h1,0f (x0)
x2 = x1 — haof (x0) — h2,1f'(x1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2f'(x2)

XN = XN—1 — E hn i (x;)
¢ idea: solve minimization problem over
min 7({hi;}),
{h; j}

where 7(.) can be computed via (N + 1) x (N + 1) SDP.

22

Optimizing the step-sizes
o Recall first-order method of interest

x1=x0 — h1,0f (x0)
x2 = x1 — haof (x0) — h2,1f'(x1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2f'(x2)

XN = XN—1 — E hn i (x;)
¢ idea: solve minimization problem over
min 7({hi;}),
{h; j}

where 7(.) can be computed via (N + 1) x (N + 1) SDP.

¢ Using similar ideas and dualization: minimax transformed to minimization.

22

Optimizing the step-sizes
o Recall first-order method of interest

x1=x0 — h1,0f (x0)
x2 = x1 — haof (x0) — h2,1f'(x1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2f'(x2)

XN = XN— 1—2 hn it (xi)

¢ idea: solve minimization problem over
min 7({hi ;})
{hi j} ’

where 7(.) can be computed via (N + 1) x (N + 1) SDP.

¢ Using similar ideas and dualization: minimax transformed to minimization.

¢ This time, more complicated, and nonconvex (example with N = 2 next slide).

22

Optimizing the step-sizes
o Recall first-order method of interest

x1=x0 — h1,0f (x0)
x2 = x1 — haof (x0) — h2,1f'(x1)
x3 = x2 — h3of (x0) — h3,1f (x1) — h3 2f'(x2)

XN = XN—1 — E hn i (x;)
¢ idea: solve minimization problem over
min 7({hi;}),
{h; j}

where 7(.) can be computed via (N + 1) x (N + 1) SDP.
¢ Using similar ideas and dualization: minimax transformed to minimization.
¢ This time, more complicated, and nonconvex (example with N = 2 next slide).

¢ Idea: use numerical inspiration to find tractable relaxations/reformulations.

22

Optimizing the step-sizes

23

Optimizing the step-sizes
o When N = 2, the problem becomes

min T
sALy. 0y N6 20
{h; j}

subject to

23

Optimizing the step-sizes

o When N = 2, the problem becomes

min T
sALy. 0y N6 20
{h; j}
S11 S12
subject to [S12 S22
513 S23
+ —
—A1+ A3+

23

Optimizing the step-sizes
o When N = 2, the problem becomes

min T
sALy. 0y N6 20
{h; j}

S11 S12 Si13
subjectto [S12 S22 S23| =0
513 S23 S33

[— A }:0’

for some 514’1, 51727 5173, 5272, 52737 5373 (functions of 7,

g

)

and {h,"j}).

23

Optimizing the step-sizes
o When N = 2, the problem becomes

min T
sALy. 0y N6 20
{hi j}
S11 S12 S13
subjectto [S12 S22 S23| =0
513 S23 S33

[— A }:0’

for some 514’1, 51727 5173, 5272, 52737 5373 (functions of s yeooy and {h,"j}).
¢ In particular
Sq o — Los—2(L—p)h2 o+prs+Lp(A2+25)h0
12 = — I—x
S —2(pAe+LAa)h1,0—2(L—p)h3 g+Lp(A2+ ra+As+A6)hE g+ 1+ As+hat
2,2 = * — *
’ iz

23

Optimizing the step-sizes

o When N = 2, the problem becomes

min T
630
{hi j}
S11 S12 Si13
subjectto [S12 S22 S23| =0
513 S23 S33
+th-da-x]_g
for some 511,512,513, 52,2, 52,3, 53,3 (functions of 7, \1,..., \s and {h; j}).
¢ In particular
Sq o — Lo —2(L—p)ha o+p s +Lp(A2+25)hy o
1,2 = — L—p
—2(p 6 +L0a)ha 0 —2(L—p)h3 o +Lp(Co+ at A5 +26)hE g+ A+ A5 Aat
S22 = (=

o LMI remains convex in some step-sizes (h2 o and hz 1) but not in the others.

23

Optimizing the step-sizes, numerically

o Even for N = 2 the problem does not seem “that simple”.

24

Optimizing the step-sizes, numerically

o Even for N = 2 the problem does not seem “that simple”.
& Our approach:
(i) “relax & reformulate” (details in the paper #1)

(i) a constructive technique (based on similar ingredients) for generating
algo-independent lower bounds (see paper #2)

24

Optimizing the step-sizes, numerically

o Even for N = 2 the problem does not seem “that simple”.
& Our approach:
(i) “relax & reformulate” (details in the paper #1)

(i) a constructive technique (based on similar ingredients) for generating
algo-independent lower bounds (see paper #2)

o It provides a recipe for designing methods, numerically.

24

Optimizing the step-sizes, numerically

o Even for N = 2 the problem does not seem “that simple”.
& Our approach:
(i) “relax & reformulate” (details in the paper #1)

(i) a constructive technique (based on similar ingredients) for generating
algo-independent lower bounds (see paper #2)

o It provides a recipe for designing methods, numerically.

o Allows obtaining analytical solutions to the design problem, in some cases.

24

Optimizing the step-sizes, numerically

o Even for N = 2 the problem does not seem “that simple”.
& Our approach:
(i) “relax & reformulate” (details in the paper #1)

(i) a constructive technique (based on similar ingredients) for generating
algo-independent lower bounds (see paper #2)

il

It provides a recipe for designing methods, numerically.

o Allows obtaining analytical solutions to the design problem, in some cases.

<

Recall again the first-order method of interest
x1 = xo — h1,0f (x0)
x2 = x1 — haof' (x0) — h2,1f' (x1)
x3 = xp — h3,0f (x0) — h3,1f (x1) — h3 2 (x2)

XN = XN—1 — E hn it (xi)

24

Numerical examples |
Example for L=1and p=.1

25

Numerical examples |
Example for L=1and p=.1

¢ For N =1, we obtain 5
[Ix0 = |l

llxa—xu |12

< 0.6694 with corresponding step-sizes

[h?,j] = [1.8182] .

25

Numerical examples |
Example for L=1and p=.1

llxa—xu |12

¢ For N =1, we obtain 5
[Ix0 = |l

< 0.6694 with corresponding step-sizes
[h};] = [1.8182] .
2
o For N =2, we obtain {22 < 0.3769 with

[t] = [1:5466
7l = 10,2038 2.4961]

25

Numerical examples |
Example for L=1and p=.1

llxa—=xx |12

¢ For N =1, we obtain < 0.6694 with corresponding step-sizes

[Ixo—xx 2

[h,-*’j] = [1.8182] .

2
o For N = 2, we obtain 2=+ < 03769 with

lIxo—xx 17

[t] = [1:5466
7l = 10,2038 2.4961]

2
& For N = 3, we obtain H < 0.1932 with

1.5466
[hf;]= |0.1142 1.8380
0.0642 04712 2.8404

25

Numerical examples |
Example for L=1and p=.1

2
o For N =1, we obtain H < 0.6694 with corresponding step-sizes

[h,-*’j] = [1.8182] .

2
o For N =2, we obtain {22 < 0.3769 with
(h] — [1-5466
Wil = 02038 2.4961)

2
o For N = 3, we obtain 1232+ < 0.1932 with
lIxo —xx |
1.5466
[hf;] = [0.1142 1.8380
0.0642 0.4712 2.8404

o For N = 4, we obtain [=%:I> < 0 0044 with
Txo = |
1.5466
] 01142 18380
117 00331 02432 1.9501
0.0217 01593 0.6224 3.0093

25

Numerical examples Il

What about different performance measure? Example

f(xp)—f«
f(xo0)—f«

and L=1, p=.1.

26

Numerical examples Il

What about different performance measure? Example %
o For N =1, we obtain ;EX‘# < 0.6694 with step-size
x0)—fx

[hi j] = [1.8182] .

and L=1, p=.1.

26

Numerical examples Il

What about different performance measure? Example fom)—fe

o For N =1, we obtain

¢ For N = 2, we obtain

f(x1)—Fx

f(xo0)—f«

o) =T, < 0.6694 with step-size

[hi j] = [1.8182] .

f()7& H
foo) 7 < 0.3554 with
2.0095
hi.il = |0.4220

2.0095| -

and L=1, p=.1.

26

Numerical examples Il

What about different performance measure? Example % and L=1, p=.1.

o For N =1, we obtain ;Exl)ff* < 0.6694 with step-size
x0)—fx

[hi j] = [1.8182] .

o For N = 2, we obtain f(xz):f: < 0.3554 with

~ [2.0095
= [0.4229 2.0095| "

o For N =3, we obtain £08)=f < 0 1698 with

1.9470
[hij] = [0.4599 2.2406 :
0.1705 0.4599 1.9470

26

Numerical examples Il

What about different performance measure? Example % and L=1, p=.1.
f(x1)—fs

o For N =1, we obtain (o) —F < 0.6694 with step-size

[hi j] = [1.8182] .

o For N = 2, we obtain f(xz):f: < 0.3554 with

[h] = [209%5
7l = lo.4229 2.0095] -

o For N = 3, we obtain f22)=f < 0.1698 with
(x0)—fx

1.9470
[hij] = [0.4599 2.2406 :
0.1705 0.4599 1.9470

o For N = 4, we obtain jEX“)‘f* < 0.0789 with
XO)_f*

1.9187

[h:] = |04098 21746

nil= 01796 05147 2.1746
0.0627 0.1796 0.4098 1.9187

Numerical examples Il

f(xpy)—fx

Worst-case performance (S
lxo —x« ||

with L =1 and p = .01. We compare

27

Numerical examples Il

f(xy)—fx

Worst-case performance Txo—xa]2 with L =1 and p = .01. We compare

o worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

27

Numerical examples Il

f(xy)—fx

Worst-case performance Txo—xa]2 with L =1 and p = .01. We compare

o worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),

27

Numerical examples Il

Worst-case performance I

<

f(xy)—fx
x0—xx |12

with L =1 and p = .01. We compare

worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),

© conjugate-gradient based method (numerically generated),

27

Numerical examples Il

Worst-case performance Hf(x"’i)7

<

f*z with L =1 and p = .01. We compare
x0—Xx ||
worst-case performance of known methods, namely Fast Gradient

Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),
© conjugate-gradient based method (numerically generated),
© Lower complexity bound (numerically generated).

27

Numerical examples Il

Worst-case performance Hf(x"’)ff*

<

Tromm T2 with L =1 and p = .01. We compare

worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),

conjugate-gradient based method (numerically generated),
Lower complexity bound (numerically generated).

10! — TMM

103

_7 | | | |
10 0 10 20 30 40 50

Iteration N

27

Numerical examples Il

Worst-case performance W

<

o2 with L =1 and p = .01. We compare

worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),

conjugate-gradient based method (numerically generated),

Lower complexity bound (numerically generated).

10t | 4 —TMM
—FGM
1073 \
1077

| | | |
0 10 20 30 40 50
Iteration N

27

Numerical examples Il

Worst-case performance W

<

o2 with L =1 and p = .01. We compare

worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),

conjugate-gradient based method (numerically generated),

Lower complexity bound (numerically generated).

10t | 41 —TMM
—FGM
—— Optimized method
1073 |
107

| | |
0 10 20 30 40 50
Iteration N

27

Numerical examples Il
Worst-case performance % with L =1 and p = .01. We compare
o worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),
© conjugate-gradient based method (numerically generated),
Lower complexity bound (numerically generated).

101 4 —TMM
—FGM
i — Optimized method
EE 10-3 -| --- Conjugate gradient bound
prag B
107

| | |
0 10 20 30 40 50
Iteration N

27

Numerical examples Il

Worst-case performance W

<

o} with L =1 and p = .01. We compare

worst-case performance of known methods, namely Fast Gradient
Method (FGM), Triple Momentum Method (TMM) computed using PEPs,

© worst-case performance of optimized method (numerically generated),
© conjugate-gradient based method (numerically generated),
© Lower complexity bound (numerically generated).

10t | 1 —TMM
—FGM
—— Optimized method
10-3| - --- Conjugate gradient bound

—— Lower bound

_7 | | | |
10 0 10 20 30 40 50

Iteration N

27

Analytical solutions

o It turns out that for ||‘

— 2 .
’;2’75((*““2, we can also solve the problem analytically.
X%

28

Analytical solutions

o It turns out that for ||“

¢ The method referred to as “Information-Theoretic Exact Method” (ITEM)

1
Y = (1 = Bi)zi + Bi (qu - Zf/(J/kq))
1
Zipy = (1 = £o)zic + £ ()/k - ;f,(}/k))7

for some sequences {8}, {0k} (depending on u, L, and k).

— 2 .
’;:‘)’7;:*““2, we can also solve the problem analytically.
X%

28

Analytical solutions

o It turns out that for ||“

¢ The method referred to as “Information-Theoretic Exact Method” (ITEM)
1 !
Yk =1 =Bz + B Yi—1 = 7 (k-1)
1
Zipy = (1 = £o)zic + £ ()/k - ;f,(}/k))7

for some sequences {8}, {0k} (depending on u, L, and k).

o The worst-case guarantee matches exactly a lower complexity bound.

— 2 .
’;:‘)’7;:*““2, we can also solve the problem analytically.
X%

28

Analytical solutions

— 2 .
o It turns out that for %, we can also solve the problem analytically.
X%

¢ The method referred to as “Information-Theoretic Exact Method” (ITEM)
v = (1= Bi)zk + Bk (qu - %f/(J/kq))
Ziyr = (L= Foi)zi + Fok ()/k - %f'(}/k))
for some sequences {8}, {0k} (depending on u, L, and k).

o The worst-case guarantee matches exactly a lower complexity bound.

o Worst-case guarantee of order

P 2N
||||zz:—zz*||||2 :O((l’\@)

28

Analytical solutions

— 2 .
o It turns out that for %, we can also solve the problem analytically.
X%

¢ The method referred to as “Information-Theoretic Exact Method” (ITEM)

1
Y = (1 = Bi)zi + Bi (kal - Zf/(J/kq))
1
Zipy = (1 = £o)zic + £ ()/k - ;f,(}/k))7

for some sequences {8}, {0k} (depending on u, L, and k).
o The worst-case guarantee matches exactly a lower complexity bound.

o Worst-case guarantee of order
_ 2 2N
llzn 2*||2 _o ((1 B \/—>)
llzo — 2]

o Asymptotically, this method corresponds to the Triple Momentum Method by
Van Scoy et al. (2017).

~E

28

Analytical solutions

— 2 .
H, we can also solve the problem analytically.
X%

¢ The method referred to as “Information-Theoretic Exact Method” (ITEM)

o It turns out that for ||‘

1
Y = (1 = Bi)zi + Bi (qu - Zf/(J/kq))

1
Ziyr = (L= Foi)zi + Fok ()/k - ;f,(}/k))7

for some sequences {8}, {0k} (depending on u, L, and k).
o The worst-case guarantee matches exactly a lower complexity bound.

o Worst-case guarantee of order
_ 2 2N
llzn Z*II2 _o ((1 B \/—>)
llzo — 2]
o Asymptotically, this method corresponds to the Triple Momentum Method by

Van Scoy et al. (2017).
o All details can be found in (T. & Drori, 2021), and (Drori & T., 2021).

~E

28

A few observations/limitations

Were we lucky? Some pieces might be missing!

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

29

A few observations/limitations

Were we lucky? Some pieces might be missing!
© Why/when are optimal step-sizes {h;} independent of horizon N?
o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)
The situation seems quite involved in general, apart from a few cases

o HFlm)=f \ith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

[Ixo —x« 1

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

o HFlm)=f \ith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

[Ix0 = ||

o %: information-theoretic exact method (ITEM, T & Drori 2021),

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

o HFlm)=f \ith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

[Ix0 = ||

o %: information-theoretic exact method (ITEM, T & Drori 2021),

o W with s = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

o HFlm)=f \ith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

[Ix0 = ||

o %: information-theoretic exact method (ITEM, T & Drori 2021),

o W with s = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

o HFlm)=f \ith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

[Ix0 = ||

o %: information-theoretic exact method (ITEM, T & Drori 2021),

o W with s = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

o LM \ith =0 (via Chebyshev polynomials),

[Ix0 —>xx]

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

o HFlm)=f \ith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

[Ix0 = ||

o %: information-theoretic exact method (ITEM, T & Drori 2021),

o W with s = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

o M with p = 0 (via Chebyshev polynomials),

[0 =« 1l

HXN Xk H

o
[Ixo—

(via Chebyshev polynomials), asymptotically Polyak's Heavy-Ball

29

A few observations/limitations

Were we lucky? Some pieces might be missing!

© Why/when are optimal step-sizes {h;} independent of horizon N?

o Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

fOn)—f: \yith 1 = 0: optimized gradient method (OGM, Kim & Fessler 2016),

To—xaz !

o %: information-theoretic exact method (ITEM, T & Drori 2021),

o W with s = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

o % with p = 0 (via Chebyshev polynomials),

llxp — X*H

[Ixo—

o see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

o (via Chebyshev polynomials), asymptotically Polyak's Heavy-Ball

29

Constructing lower bounds

30

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
o We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

31

Reminder: smooth strongly convex interpolation/extension

Consider a set S, and its associated values {(x;, gi, f;) };cs with coordinates x;,
subgradients g; and function values f;.

f

xo\ //Xz

X1

? Possible to find a f € F,, ; s.t.

f(x;)="1f, and g €df(x), VieS.

32

Special case: convex interpolation problem

Conditions for {(x;, g, f;)};cs to be interpolable by a function f € Fo oo (proper,
closed and convex function) ?

33

Special case: convex interpolation problem

Conditions for {(x;, g, f;)};cs to be interpolable by a function f € Fo oo (proper,
closed and convex function) ?

f

33

Special case: convex interpolation problem

Conditions for {(x;, g, f;)};cs to be interpolable by a function f € Fo oo (proper,
closed and convex function) ?

f

Conditions f; > f; + (gj, x; — x;) is nec.

33

Special case: convex interpolation problem

Conditions for {(x;, g, f;) };cs to be interpolable by a function f € Fo o (proper,
closed and convex function) ?

f

Conditions f; > f; + <gj,x,- — XI> is nec. and suff.

Explicit construction:
F(x) = max {f; + (g, x = xj)} .
Not unique.

33

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

o Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f(x) = mJ?X{ﬂ' + (g x—x)} -

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

o Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form
f(x) = max {fj + (g, x = %)} -

o Similar constructions for smooth (possibly strongly) convex functions.

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

o Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f(x) = mj?X{ﬂ' + (g x—x)} -

o Similar constructions for smooth (possibly strongly) convex functions.

o We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

o Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f(x) = mj?X{ﬂ' + (g x—x)} -

o Similar constructions for smooth (possibly strongly) convex functions.

o We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

— idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “‘same information” at each iteration;

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

i

Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f(x) = mj?X{ﬂ' + (g x—x)} -

<

Similar constructions for smooth (possibly strongly) convex functions.

<

We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

— idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “‘same information” at each iteration;
— those constraints fit into a SDP;

34

Shape of lower complexity bounds

Role of extension/interpolation results, so far?
o For obtaining tight SDP representation of the worst-case computation problem.
© We can infer shapes for the worst-case functions!
— Why? Let's flashback into the interpolation/extension problem!

o Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f(x) = mj?X{ﬂ' + (g x—x)} -

o Similar constructions for smooth (possibly strongly) convex functions.

o We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)
— idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “‘same information” at each iteration;
— those constraints fit into a SDP;
such functions are sometimes referred to as being “zero-chain”.

34

Software

35

Avoiding semidefinite programming modeling steps?

¢ Performance Estimation Toolbox (PESTO) available on
ADRIENTAYLOR/PERFORMANCE-ESTIMATION-TOOLBOX
Contains about 50 examples.
o Python version should be available during summer.

36

Exam

%

Py

N
%

ple: convergence of Douglas-Rachford

(0) Initialize an empty PEP
pepl);

-1
(1) Set up the class of monotone inclusions

paramA.L = 1; paramA.mu = Q; % A is l-Lipschitz and O-strongly monotone

paranB.mu

A
B

w

M

Y

%

.1; % B 1s .l-strongly monotone

= P.DeclareFunction('LipschitzStronglyMonotons' ,parama) ;
= P.DeclareFunction('StronglyMonotone' , paramg) ;

= cell{n1,1]; wp = cell(M1,1);
= cellin,1); xp = cell(N,1);
= cell(n,1); yp = cell(n,1);

(2) Set up the starting points

w1} = P.StartingPoint(}; wp{1} = P.StartingPoint()

P.

%

InitialCondition((w{l}-wp{l})~2==1);

(3) Algorithm

lambda = 1.3; % step size (in the resolvents)

theta =

4
o
S
=~
1
-
wnonz

.9; % overrelaxation

proximal_step(w{k},B, lambda) ;
proximal_step(2*x{k}-w{k},a,lambda);
wik} - theta* Oefkl-y{k});

yik}
wllk+1}

xpl{k} proximal_step(wp{kl,&, lambda);
yp{k3 proximal_step(2*xp{k}-wpik},A, lambda);
wplk+1} = wplk}-theta*(xp{k}-yp{k});

end

o %

o &

%

(4) Set up the performance measure: ||z0-z1|[*2

.PerformanceMetric((wik+1}-wp{k+1})~2);

(5) Solve the PEP

.solve()

(6) Evaluate the output

double{ (wik+1}-wp{k+1})~2) % worst-case contraction factor

37

Example: convergence of Douglas-Rachford

% (0) Initialize an empty PEP

P=pep();

N=1;

% (1) Set up the class of monotone inclusions

paramA.L = 1; paramA.mu = Q; % A is l-Lipschitz and O-strongly monotone
paramB.mu = .1; % B 1s .1-strongly monotane

& = P.DeclareFunction('LipschitzStronglyMonotons' ,parama) ;

B = P.DeclareFunction('StronglyMonotone', params) ;

w = cellinel,1); wp = cell(m1,1);
= cellin,1); xp = cell(N,1);
y = cellin,1]; yp = cell(n,1);

M

% (2) Set up the starting points
w1} = P.StartingPoint(}; wp{1} = P.StartingPoint()
P.InitialCondition({w{l}-wp{l})~2==1);

% (3) Algorithm

lambda = 1.3; % step size (in the resolvents)
theta = .9; % overrelaxation
ik} = proximal_step(wik},B, Lambda);
yik} = proximal_step(2*x{k}-wikl, A, lambda);
wik+1} = wik}-theta*(x{k}-y{k});
ETL ToXImal_STeplwp k] /B, LambdzT;

=p
yp{k} = proximal_step(2*xp{k}-wp{k},A,lambda);
wplk+1} = wplk}-theta*(xp{k}-yp{k});

end

(4) Set up the performance measure: ||z@8-z1|[~2
.PerformanceMetric((wik+1}-wp{k+1})~2);

o %

(5) Solve the PEP
.solve()

o &

% (6) Evaluate the output
double{ (wik+1}-wp{k+1})~2) % worst-case contraction factor
37

Example: convergence of Douglas-Rachford

% (0) Initialize an empty PEP

P=pep();
N=1;
% (1) Set up the class of monotone inclusions
paramA.L = 1; paramA.mu = Q; % A is l-Lipschitz and O-strongly monotone
paramB.mu = .1; % B 1s .1-strongly monotane ~ 1
L — = 0.1
& = P.DeclareFunction('LipschitzStronglyMonotons' ,parama) ; g 0.8 0.5
B = P.DeclareFunction(' StronglyMonotone ', paramg) ; © r=
c 0.6 —_—u=1
w = cell(n1,1); wp = cell(m1,1); 0
x = cellin,1); xp = cell(N,1); 0.4 —— p = 1.5
y = cellin,1]; yp = cell(n,1); o M 2
| £ 0.2
% (2) Set up the starting points o
w{l}l = P.StartingPoint(); wp{1} = P.StartingPoint(); Y o9 | I
P.InitialCondition((w{l}-wp{1})"2==1); 0 0.5 1 1.5 2

% (3) Algorithm Lipschitz constant L

lambda = 1.3; % step size (in the resolvents)
theta = .9; % overrelaxation
ik} = proximal_step(wik},B, Lambda);
yik} = proximal_step(2*x{k}-wikl, A, lambda);
wik+1} = wik}-theta*(x{k}-y{k});
ETL ToXImal_STeplwp k] /B, LambdzT;

=p
yp{k} = proximal_step(2*xp{k}-wp{k},A,lambda);
wplk+1} = wplk}-theta*(xp{k}-yp{k});

end

(4) Set up the performance measure: ||z@8-z1|[~2
.PerformanceMetric((wik+1}-wp{k+1})~2);

o %

(5) Solve the PEP
.solve()

o &

% (6) Evaluate the output
double{ (wik+1}-wp{k+1})~2) % worst-case contraction factor
37

Example: convergence of Douglas-Rachford

% (0) Initialize an empty PEP
P=pep();

up the class of monotone inclusions

paramA.L = 1; paramA.mu = Q; % A is l-Lipschitz and O-strongly monotone
paramB.mu = .1; % B 1s .1-strongly monotane ~ 1

Q — = 0.1
& = P.DeclareFunction('LipschitzStronglyMonotons' ,parama) ; 2 0.8 — 0.5
B = P.DeclareFunction(' StronglyMonotone ', params) ; o K=

c 0.6 — =1
w = cellinel,1); wp = cell(M1,1); .0
x = cell(n,1); xp = cell(N,1); 0 0.4 —— p=15
y = cellin,1]; yp = cell(n,1); Id _

el =

. c 0.2

% (2) Set up the starting points o
wil} = P.StartingPoint(); wp{l} = P.StartingPoint(); © 0 | | |
P.InitialCondition((w{l}-wp{1})"2==1); 0 0.5 1 15 2

% (3) Algorithm

lambda = 1.3; % step size (in the resolvents)

Lipschitz constant L

theta = .9; % overrelaxation
x{k} = proximal_step(wik},B, Llambda);
yik} = proximal_step(2*x{k}-w{k},a, lambda);
wik+1} = wik}-theta*(x{k}-y{k});

XPIR] = proximal_cteplwpikl, B, lambds);

yp{k} = proximal_step(2*xp{k}-wp{k},A,lambda);

wplk+1} = wplk}-theta*(xp{k}-yp{k});
end . . .

v fast prototyping (~ 20 effective lines)
(4) Set up the performance measure: | [z0-21][~2

o %

.PerformanceMetric((wik+1}-wp{k+1})~2);

(5) Solve the PEP
.solve()

o &

% (6) Evaluate the output
double{ (wik+1}-wpi{k+1})~2]

v quick analyses (~ 10 minutes)
v computer-aided proofs (multipliers)

% worst-case contraction factor

37

Current library of examples within PESTO

Includes... but not limited to

<

Lo R S IR - B B VIR o

subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
proximal point algorithm,

projected and proximal gradient, accelerated/momentum versions,

steepest descent, greedy/conjugate gradient methods,
Douglas-Rachford/three operator splitting,

Frank-Wolfe/conditional gradient,

inexact gradient/fast gradient,

Krasnoselskii-Mann and Halpern fixed-point iterations,

mirror descent,

stochastic methods: SAG, SAGA, SGD and variants.

38

Current library of examples within PESTO

Includes... but not limited to

<

Lo R S IR - B B VIR o

subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
proximal point algorithm,

projected and proximal gradient, accelerated/momentum versions,

steepest descent, greedy/conjugate gradient methods,
Douglas-Rachford/three operator splitting,

Frank-Wolfe/conditional gradient,

inexact gradient/fast gradient,

Krasnoselskii-Mann and Halpern fixed-point iterations,

mirror descent,

stochastic methods: SAG, SAGA, SGD and variants.

38

Current library of examples within PESTO

Includes... but not limited to

o subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
proximal point algorithm,
projected and proximal gradient, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Douglas-Rachford/three operator splitting,
Frank-Wolfe/conditional gradient,
inexact gradient/fast gradient,
Krasnoselskii-Mann and Halpern fixed-point iterations,
mirror descent,
stochastic methods: SAG, SAGA, SGD and variants.

Lo R S IR - B B VIR o

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

38

Current library of examples within PESTO

Includes... but not limited to

o subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
proximal point algorithm,
projected and proximal gradient, accelerated/momentum versions,
steepest descent, greedy/conjugate gradient methods,
Douglas-Rachford/three operator splitting,
Frank-Wolfe/conditional gradient,
inexact gradient/fast gradient,
Krasnoselskii-Mann and Halpern fixed-point iterations,
mirror descent,
stochastic methods: SAG, SAGA, SGD and variants.

Lo R S IR - B B VIR o

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

38

Concluding remarks

39

Concluding remarks

Performance estimation’s philosophy

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),
o overall: principled approach (definition of worst-case),

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),
o overall: principled approach (definition of worst-case),
© computer-assisted design of numerical methods.

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),
o overall: principled approach (definition of worst-case),
© computer-assisted design of numerical methods.

Difficulties:

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),
o overall: principled approach (definition of worst-case),
© computer-assisted design of numerical methods.

Difficulties:

o suffers from standard caveats of worst-case analyses,

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),
o overall: principled approach (definition of worst-case),
© computer-assisted design of numerical methods.
Difficulties:
o suffers from standard caveats of worst-case analyses,

¢ closed-form solutions might be involved.

40

Concluding remarks

Performance estimation’s philosophy
o numerically allows obtaining tight bounds (rigorous baselines),
o overall: principled approach (definition of worst-case),
© computer-assisted design of numerical methods.
Difficulties:
o suffers from standard caveats of worst-case analyses,
¢ closed-form solutions might be involved.

Note: many links with theory on quadratics (Chebyshev methods).

40

Take-home messages

Worst-cases are solutions to optimization problems

Acceleration /“optimal” methods by optimizing worst-cases

Design of theoretical methods via numerical experiments

41

Short bibliography

42

Short bibliography
Presentation mainly based on

o T., Y. Drori. “An optimal gradient method for smooth strongly convex
minimization.” (2021)

o Y. Drori, T. “On the oracle complexity of smooth strongly convex
minimization.” (2021)

o T., J. Hendrickx, F. Glineur. “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.” (2017)

42

Short bibliography
Presentation mainly based on

o T., Y. Drori. “An optimal gradient method for smooth strongly convex
minimization.” (2021)

o Y. Drori, T. “On the oracle complexity of smooth strongly convex
minimization.” (2021)

o T., J. Hendrickx, F. Glineur. “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.” (2017)

Many (very) related works; much more careful bibliographical treatment in papers.

o Y. Nesterov. “A method of solving a convex programming problem with
convergence rate O(1/k?).” (1983)

o A. Nemirovsky, and B. Polyak. “lterative methods for solving linear ill-posed
problems under precise information.” (1984)

o A. Nemirovsky. “Information-based complexity of linear operator
equations.” (1992)

o A. Nemirovsky. “Information-based complexity of convex programming.”
(lecture notes, 1995)

o Y. Nesterov. “Introductory Lectures on Convex Optimization.” (2003/2018)

o Y. Drori, and M. Teboulle. “Performance of first-order methods for smooth
convex minimization: a novel approach.” (2014)

o D. Kim, and F. Fessler. “Optimized first-order methods for smooth convex
minimization.” (2017)

o B. Van Scoy, R. Freeman, K. Lynch. “The fastest known globally convergent
first-order method for minimizing strongly convex functions” (2017)

o D. Kim, and F. Fessler. “Optimizing the efficiency of first-order methods for
decreasing the gradient of smooth convex functions.” (2021) 42

Thanks! Questions?

www.di.ens.fr/~ataylor/

ADRIENTAYLOR/ PERFORMANCE-ESTIMATION-T0OOLBOX on GITHUB

	On worst-case analyses
	Step-sizes optimization
	Constructing lower bounds
	Software
	Concluding remarks

