
Homogeneous polynomials & spurious local minima on the unit sphere

On optimization on the Euclidean unit sphere

Jean B. Lasserre∗

LAAS-CNRS and Institute of Mathematics, Toulouse, France

Optimization without Borders
Sotchi, July 12th - 17th, 2021

Nesterov’s 60th and Protasov’s 50th birthdate

? Research funded by ANITI institute, within the framework of the French
Program “Investing for the Future C PIA3"" under grant ANR-19-PIA3-0004

Jean B. Lasserre∗ Upper & lower bounds



Homogeneous polynomials & spurious local minima on the unit sphere

Based on :

Homogeneous polynomials and spurious local minima on the unit sphere
arXiv:2010.07066

Optimization on the Euclidean unit sphere
hal-03284041

Jean B. Lasserre∗ Upper & lower bounds



Homogeneous polynomials & spurious local minima on the unit sphere

Homogeneous optimization on Sn−1

� Simple and complete characterization of first and second-order
optimality conditions

Sparse optimization on Sn−1

� (when the criterion to minimize is a function of a few linear forms)
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I. Homogeneous polynomials & spurious local minima on
the unit sphere

Let Sn−1 be the Euclidean unit sphere {x : ‖x‖ ≤ 1} ⊂ Rn, and En the
Euclidean unit ball {x : ‖x‖ ≤ 1}.

Consider the optimization problem

P : f ∗ = min {f (x) : x ∈ Sn−1 }

where f is a homogeneous polynomial of degree t.

� Problem P is NP-hard in general with several important applications, and
in particular for some well-known combinatorial optimization problems.
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Finding the maximal cardinality α(G) of a stable set in a graph G
reduces to minimizing a cubic form on Sn−1.
Deciding convexity of an n-variate form reduces to minimizing a form
on Sn−1.
Deciding nonnegativity of an even-degree form reduces to minimizing
this form on Sn−1.
Deciding copositivity of a symmetric matrix reduces to check whether
some associated quartic form is nonnegative on Sn−1.
In quantum information, the Best Separable State problem also relates
to homogeneous polynomial optimization on Sn−1 (Fawzi et al.)
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In the first part of the talk, f is a form of degree t > 2.

This talk
A complete & simple characterization of Second-Order Necessary

Optimality conditions (SONC) at x∗ ∈ Sn−1 solely in terms of

f (x∗)
The first two smallest eigenvalues λ1(∇2f (x∗)) and λ2(∇2f (x∗)) of the
Hessian ∇2f at x∗ ∈ Sn−1.
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First-Order Necessary Optimality Conditions (FONC)

A point x∗ ∈ Sn−1 satisfies (FONC) if and only if

∇f (x∗) = t f (x∗) x∗

Equivalently, if and only if

‖∇f (x∗)‖2 = t2 f (x∗)2 .

Démonstration.
KKT-optimality conditions yield

∇f (x∗) = 2λ∗x∗ , for some λ∗

Euler’s identity for homogeneous functions yields

t f (x∗) = 〈x∗,∇f (x∗)〉 = 2λ∗ ‖x∗‖2 = 2λ∗ .

⇒ ∇f (x∗) = t f (x∗) x∗ and ‖∇f (x∗)‖2 = t2 f (x∗)2 .
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Démonstration.

(Continued) Conversely, suppose that ‖∇f (x∗)‖2 = t2 f (x∗)2. Then

‖∇f (x∗)− t f (x∗) x∗‖2 = ‖∇f (x∗)‖2 − 2t f (x∗)〈∇f (x∗), x∗〉︸ ︷︷ ︸
=−2t2f (x∗)2

+t2f (x∗)2‖x∗‖2

= ‖∇f (x∗)‖2 − t2 f (x∗)2 = 0
⇒ ∇f (x∗) = t f (x∗) x∗ ,

that is, (FONC) holds with 2λ∗ = t f (x∗).

Jean B. Lasserre∗ Upper & lower bounds



Homogeneous polynomials & spurious local minima on the unit sphere

Given x ∈ Rn, let
x⊥ := {u ∈ Sn−1 : u ⊥ x∗ } .

Second-Order Necessary Optimality Conditions (SONC)

Definition : A point x∗ ∈ Sn−1 which satisfies (FONC) satisfies (SONC) if

〈u, (∇2f (x∗)− 2λ∗ I)u〉 ≥ 0 , ∀u ⊥ x∗ .

Equivalently, if and only if

〈u,∇2f (x∗)u〉 ≥ 2λ∗(= t f (x∗)) , ∀u ∈ (x∗)⊥ .
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Lemma

If x∗ ∈ Sn−1 satisfies (FONC) then x∗ is an eigenvector of ∇2f (x∗) with
associated eigenvalue t (t − 1) f (x∗).

Démonstration.

Observe that x 7→ ∂f (x)/∂xi is homogeneous of degree t − 1, for every
i = 1, . . . , n, and therefore by Euler’s identity

∇2f (x) x = (t − 1)∇f (x) , ∀x ∈ Rn .

So if x∗ ∈ Sn−1 satisfies (FONC) then

∇2f (x∗) x∗ = (t − 1)∇f (x∗) = t (t − 1) f (x∗) x∗.
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Let
τ(x∗) := min {〈u, (∇2f (x∗)u〉 : u ∈ (x∗)⊥ } ,

so that if x∗ ∈ Sn−1 then

(SONC) ⇔ τ(x∗) ≥ t f (x∗) .

Lemma

If x∗ ∈ Sn−1 satisfies (FONC) then

λ1(∇2f (x∗)) = min [ t (t − 1) f (x∗) , τ(x∗) ] .

Démonstration.

Observe that any z ∈ Sn−1 reads

z = α x∗ ⊕ β u : u ∈ (x∗)⊥ ; α2 + β2 = 1

and observe that if x∗ ∈ Sn−1 satisfies (FONC)

〈u ,∇2f (x∗) x∗〉 = t (t − 1) f (x∗) 〈u , x∗〉 = 0 .
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Démonstration.
Hence

λ1(∇2f (x∗)) = min {〈z ,∇2f (x∗) z〉 : z ∈ Sn−1}
= min {〈(αx∗ + βu) ,∇2f (x∗) (αx∗ + βu)〉 : α2 + β2 = 1}
= min {α2 t (t − 1) f (x∗) + β2 τ(x∗) : α2 + β2 = 1 }
= min [ t (t − 1) f (x∗) , τ(x∗) ] .

In particular

If x∗ ∈ Sn−1 satisfies (FONC) then :

λ1(∇2f (x∗)) = t (t − 1) f (x∗) ⇒ τ(x∗) = λ2(∇2f (x∗))

and (SONC) ⇔ λ2(∇2f (x∗)) ≥ t f (x∗) =
λ1(∇2f (x∗))

t − 1
.
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Theorem

Let x∗ ∈ Sn−1 satisfy (FONC) . Then x∗ satisfies (SONC) if and only if

λ1(∇2f (x∗)) ≥ t f (x∗) if f (x∗) ≥ 0
λ2(∇2f (x∗)) ≥ t f (x∗) if f (x∗) < 0.

So all (SONC) points x∗ ∈ Sn−1 are characterized by :
- the value f (x∗), and
- The first and second smallest eigenvalues of ∇2f at x∗.

In particular

If x∗ ∈ Sn−1 satisfies (FONC) and f (x∗) < 0 then :

(SONC) ⇔ λ2(∇2f (x∗)) ≥ λ1(∇2f (x∗))

t − 1

and x∗ is the eigenvector associated with λ1(∇2f (x∗)).

� λ2(∇2f (x∗)) is significantly larger than λ1(∇2f (x∗)).
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The case of odd degree forms

The only interesting local minima are negative since if x ∈ Sn−1 with
f (x) > 0 then u := −x ∈ Sn−1 with value f (u) = −f (x) < 0.

So in this case

a negative local minimizer x∗ ∈ Sn−1 is necessarily the eigenvector of the
Hessian ∇2f (x∗) associated with the SMALLEST EIGENVALUE

λ1(∇2f (x∗)) = t (t − 1) f (x∗).

Moreover

all negative local minima of f on Sn−1 are all negative local minima of f on
the Euclidean ball En.

It is then much easier to minimize f on the convex set En rather than on the
“nasty" non-convex set Sn−1.
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The case of cubic forms

� For instance if t = 3 (i.e., f is a cubic form) then
∇2f (x∗) is a matrix whose entries are linear forms, and so
x 7→ λ1(∇2f (x)) is a CONCAVE function
x 7→ λ1(∇2f (x)) + λ2(∇2f (x)) is also a CONCAVE function.

Hence the (SONC) condition

λ2(∇2f (x∗)) ≥ λ1(∇2f (x∗))
t − 1

is equivalent to the condition

λ1(∇2f (x∗)) + λ2(∇2f (x∗)) ≥ 3λ1(∇2f (x∗))

2
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Theorem
An odd degree-t form f (with t > 1) has no spurious negative local minimum

if the system

∇2f (x) x = t (t − 1) f (x) x

λ2(∇2f (x)) ≥ λ1(∇2f (x))
t − 1

has a unique solution x with f (x) < 0
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One may also relate the critical points of f on Sn−1 with the sub-varieties of
a certain gradient ideal.

Let f ∈ R[x] be homogeneous of degree t, and define g ∈ R[x] by :

x 7→ g(x) := f (x) (1 − t ‖x‖2

t + 2
) , x ∈ Rn .

Proposition

On Sn−1 : ∇g(x) = 0 ⇔ ∇f (x) = t f (x) x

and so all (FONC) points of f are critical points of g and conversely.
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Vgrad(g) := {z ∈ Cn : ∇g(x) = 0 }
= W0 ∪ W1 . . . ∪ Wp

where each Wi is an irreducible subvariety and g is constant on each Wi.

� Hence f has no spurious local minimum on Sn−1 if all the
(SONC) points belong to a single Wj ∩ Sn−1 for some index j∗ .

� an algebraic characterization
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II. Sparse optimization on Sn−1

Consider the problem

P : f ∗ = min {h(x) : x ∈ Sn−1 }
where h(x) = f ((`1 · x), (`2 · x), . . . , (`m · x))

- for some m linear forms `1, . . . , `m : Rn → R, and
- some function f : Rm → R.

� If m � n then P can be view a sparse optimization problem as in h, the
coupling of variables only occurs through the m linear forms (`j)j∈[m].
� Sometimes h is said to be low-rank

� However the constraint x ∈ Sn−1 is not expressed through the `j’s.
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Take home message

Problem P is in fact equivalent to an m variables problem on the Euclidean
unit ball Em := {x ∈ Rm : ‖x‖ ≤ 1} of Rm.
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Let ` ∈ Rm×n be the real matrix with rows (`j)j∈[m].

L := ` `T ∈ Rm×m, and L := L1/2,

and consider the problem

Q : min
y

{ f ((L1 · y), . . . , (Lm · y)) : y ∈ Em } .

Theorem
Assume that the `j are linearly independent.
(i) Let x∗ ∈ Sn−1 satisfy (SONC) for problem P. Then there exists y∗ ∈ Em

which satisfies (SONC) for problem Q and with same value

f ((L1 · y∗), . . . , (Lm · y∗)) = f (` x∗) = h(x∗) .

(ii) Conversely, let y∗ ∈ Em satisfy (SONC) for problem Q. Then there exists
x∗ ∈ Sn−1 which satisfies (SONC) for problem P and with same value

h(x∗) = f (` x∗) = f ((L1 · y∗), . . . , (Lm · y∗)) .
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Key observation

The KKT-optimality conditions at x∗ ∈ Sn−1 read :

`T∇f ((`1 · x∗), . . . , (`m · x∗)) = 2λ∗x∗ ,

for some λ∗.

In other words, whenever λ∗ 6= 0

any candidate local minimizer x∗ ∈ Sn−1 necessarily satisfies

x∗ ∈ Span(`1, . . . , `m)

� It is enough to search in Span(`1, . . . , `m) ∩ Sn−1 !
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(i) Let x∗ ∈ Sn−1 be such that λ∗ 6= 0. Then letting z = (zj),

x∗ =

m∑
j=1

zj `j and y∗ := L z ⇒ ‖y∗‖ = 1 ,

so that y∗ ∈ En and f ((L1 · y∗), . . . , (Lm · y∗)) = h(x∗).

(ii) If λ∗ = 0 then ∇f (` x∗) = 0.
Write x∗ = `Tu ⊕ v with v ∈ Ker(`), so that `Tu ⊥ v.
1 = ‖x∗‖ ⇒ ‖`Tu‖ ≤ 1, and y∗ := L u implies ‖y∗‖ ≤ 1, so that
y∗ ∈ Em.
` x∗ = ` `Tu = L L u = L y∗, and therefore

h(x∗) = f (` x∗) = f (L y∗) , with y∗ ∈ Em.

For the converse, similar calculations yield the desired result.
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Hence

solving P on Sn−1 is equivalent to solving Q on Em and the latter problem is
lower-dimensional on the CONVEX SET Em, a significant progress.

The case m = 1
If m = 1 (so that ` ∈ Rn) then Problem P reduces to the easy to solve

univariate problem

Q : f ∗ = min
y

{ f (‖`‖ y) : y ∈ [−1, 1] }
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The case m = 1 (continued)

If m = 1 and h is a quasi-convex polynomial then

f ∗ = min [ f (‖`‖) , f (−‖`‖) ]

and so h has no spurious local minimum on Sn−1.

� h quasi-convex implies h(x) = f (` · x) for some ` ∈ Rn and some
monotonic univariate polynomial f (Ahmadi et al. (2013), Math. Program.).
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Finally if h has the low-rank formulation

h(x) = f (` x) , x ∈ Rn ,

for some hidden ` ∈ Rm×n then by sufficiently many evaluations of ∇f at
randomly chosen points (x(i))i∈J (e.g. x(i) ∈ Sn−1) one may recover `.
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Happy Birthday !
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