A Bestiary of Counterexamples in Smooth Convex Optimization

Jérôme Bolte, with Edouard Pauwels (Toulouse)

Toulouse School of Economics Université Toulouse Capitole & ANITI, France

Nesterov's 65th birthday

Sochi, Russia July 12th, 2021

What can go wrong with smooth convex functions?

Framework:

Very small scale very smooth convex coercive problems!

- ▶ f convex in $C^k(\mathbb{R}^n,\mathbb{R})$ with k arbitrarily large, and eventually n=2
- $C \subset \mathbb{R}^n$ closed convex, most of the time $C = \mathbb{R}^n$, solve min_C f.

Many things work:

Complexity FOM, acceleration, tensor's methods...

Yet many open questions:

Convergence of some basic methods? Directional convergence? Rigidity à la Lojasiewicz? Length of generalized central paths?...

Open questions...

(i) Gauss-Seidel method - Block coordinate descent: (1823, Gauss)

$$u_{i+1} = \underset{u \in \mathbb{R}^p}{\operatorname{argmin}} f(u, v_i)$$
$$v_{i+1} = \underset{v \in \mathbb{R}^q}{\operatorname{argmin}} f(u_{i+1}, v_i)$$

 $f(u_i, v_i)$ converges to min f but what about $(u_i, v_i)_{i \in \mathbb{N}}$ if it is uniquely defined?

(ii) Gradient descent with exact line search: (1944, Curry)

$$x_{i+1} = \operatorname*{argmin}_{t \ge 0} f(x_i - t \nabla f(x_i))$$

 $f(x_i)$ converges to min f **but** what about $(x_i)_{i \in \mathbb{N}}$?

(iii) Bregman or mirror descent method (1983, Nemirovskii-Yudin)

$$x_{i+1} = [\nabla h]^{-1} \left(\nabla h(x_i) - \frac{1}{L} \nabla f(x_i) \right)$$

with Lh - f convex (relative smoothness). $f(x_i)$ converges to min $\frac{1}{\text{dom }h}f$ but what about $(x_i)_{i \in \mathbb{N}}$? Open questions: continuous time ODE...

(iv) Directional convergence for gradient curves:

 $x'(t) = -\nabla f(x(t)), t \ge 0.$ (1847, Cauchy's descent)

Theorem (Bruck 75)

f lower semicontinuous convex $\Rightarrow x(t)$ converges whenever $\operatorname{argmin} f \neq \emptyset$

Assume f has positive definite Hessian on $\mathbb{R}^2 \setminus \{x^*\}$ where x^* is the unique minimizer.

Does the direction $\frac{x(t) - x^*}{\|x(t) - x^*\|}$ converges?

Thom's conjecture 1989 when *f* is analytic. Solved by Kurdyka-Mostovsky-Parusinsky]

A modus operandi for building counterexamples: Gauss-Seidel case

The continuous convex interpolation problem

Smooth convex interpolation?

Smooth convex counterexamples

Intuitions around the Gauss-Seidel method in the plane

Consider $\min_{(u,v)\in\mathbb{R}^2} f(u,v)$ and a *uniquely* defined GS sequence

$$u_{i+1} = \operatorname*{argmin}_{u \in \mathbb{R}} f(u, v_i)$$
$$v_{i+1} = \operatorname*{argmin}_{v \in \mathbb{R}} f(u_{i+1}, v)$$

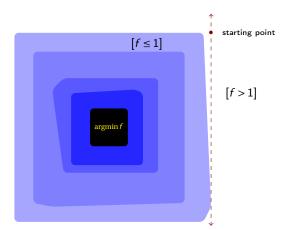
Writing the optimality conditions

- $\frac{\partial}{\partial u} f(u_{i+1}, v_i) = 0$ thus $\nabla f(u_{i+1}, v_i)$ parallel to the y-axis
- $\nabla f(u_{i+1}, v_{i+1})$ parallel to the x-axis

Rotating bumps

Imagine that we have a smooth convex function

- having the bluish rounded squares as sublevel sets
- minimal on the black square

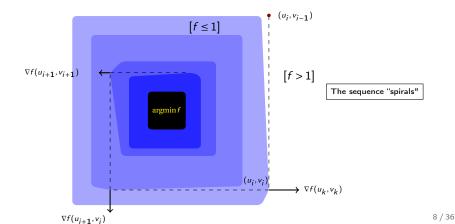


A modus operandi for building counterexamples: Gauss-Seidel case

Rotating bumps yield a spiraling sequence

Imagine that we have a smooth convex function

- having the bluish rounded squares as sublevel sets
- minimal on the black square



A modus operandi for building counterexamples: Gauss-Seidel case

The continuous convex interpolation problem

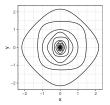
Smooth convex interpolation?

Smooth convex counterexamples

The interpolation problem: continuous case

- **&** "Strategy: Guess and draw a pathological sequence of convex sets and turn it into a counterexample"
- ♣ Decreasing sequence $(T_i)_{i \in \mathbb{N}}$ of convex compact with $T_{i+1} \subset \operatorname{int}(T_i) \neq \emptyset$.

 C^0 interpolation pb: Find f convex such that the T_i are sublevel sets of f.



Questions: de Finetti, Fenchel (50's). **Kannai, Torralba (77, 96):** *f* exists -The continuous convex interpolation problem

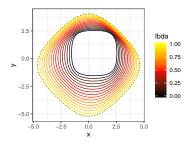
Interpolation between 2 sublevels: convex combination à la Minkowski

- Start with T_0 , T_1 : interpolate in between
- Set $\lambda \in [0,1]$ and define the (convex) set

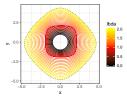
$$T_{\lambda} = (1 - \lambda) T_0 + \lambda T_1.$$

Keep in mind the definition of T_{λ}

• Basic idea: "set $f(\partial T_{\lambda}) = 1 - \lambda$ "



Interpolation with 3 or more sublevels



- Let us build f quasi-convex interpolating the T_i .
- Choose $\lambda_i \downarrow 0$.

1. Assign
$$\lambda_i$$
 to T_i .
2. In between $[f \le \lambda] := \left(\frac{\lambda - \lambda_{i+1}}{\lambda_i - \lambda_{i+1}}\right) T_i + \left(\frac{\lambda_i - \lambda}{\lambda_i - \lambda_{i+1}}\right) T_{i+1}$.

In addition get

$$\operatorname{argmin} f = \bigcap_{i \in \mathbb{N}} T_i, \text{ with } \min f = 0$$

Interpolating a sequence of concentric disks But how to assign adequate values to enforce convexity? Assume $(T_i)_{i \in \mathbb{N}}$ is a sequence of concentric disks:

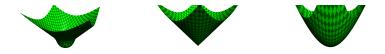


Figure: 3 interpolations: convexity (and smoothness) can easily be missed

Value assignation for convex interpolation

Translate the slope monotonicity characterization of convex functions in terms of sublevel sets.

For $S \subset \mathbb{R}^p$ set $\sigma_S(x) = \sup\{\langle x, z \rangle, z \in S\}$ support function.

Theorem (de Finetti-Fenchel-Crouzeix)

 $f: \mathbb{R}^p \to \mathbb{R}$ quasi-convex, T_{λ} the λ sublevel of f. f is convex $\iff F_v: \lambda \mapsto \sigma_{T_{\lambda}}(v)$ is concave for all fixed v is concave

Choose λ_i → 0 with a well adapted decrease rate. The ratio (λ_i − λ_{i+1})/(λ_{i-1} − λ_i) must be lower than

$$K_{i} = \max_{||x^{*}||=1} \frac{\sigma_{T_{i-1}}(x^{*}) - \sigma_{T_{i}}(x^{*})}{\sigma_{T_{i}}(x^{*}) - \sigma_{T_{i+1}}(x^{*})}$$

The continuous interpolation result

Theorem (Kannai-Torralba)

 $(T_i)_{i \in \mathbb{N}}$ convex compact in \mathbb{R}^n such that $T_{i+1} \subset \operatorname{int} T_i, \forall i \ge 0$.

Then there is a continuous convex function f such that

$$T_i = [f \le \lambda_i], \quad \text{for every } i \in \mathbb{N}$$

 $\operatorname{argmin} f = \bigcap_{i \in \mathbb{N}} T_i$

A modus operandi for building counterexamples: Gauss-Seidel case

The continuous convex interpolation problem

Smooth convex interpolation?

Smooth convex counterexamples

Obstructions to the smooth case

We pertain to the plane \mathbb{R}^2 (...). Smoothness degree: $k \ge 2$

 $(T_i)_{i \in \mathbb{N}}$ convex compact with C^k boundary, s.t. $T_{i+1} \subset \operatorname{int}(T_i) \neq \emptyset$.

Build $f : \mathbb{R}^2 \to \mathbb{R}$ convex C^k such that each T_i is a sublevel of f, and $\operatorname{argmin} f = \bigcap_{i \in \mathbb{N}} T_i$

(T_i uniformly convex \rightarrow Positive Hessian out of the argmin?)

Issue I: Building C^k sublevels?

If $A \subset \mathbb{R}^2$ and $B \subset \mathbb{R}^2$ are C^k , A + B is automatically C^k , uniquely when k = 1, 2, 3, 4... (Kiselman 1987, Boman 1990).

Obstructions to the smooth case

We pertain to the plane \mathbb{R}^2 (...). Smoothness degree: $k \ge 2$

 $(T_i)_{i \in \mathbb{N}}$ convex compact with C^k boundary, s.t. $T_{i+1} \subset \operatorname{int}(T_i) \neq \emptyset$.

Build $f : \mathbb{R}^2 \to \mathbb{R}$ convex C^k such that each T_i is a sublevel of f, and $\operatorname{argmin} f = \bigcap_{i \in \mathbb{N}} T_i$

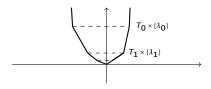
(T_i uniformly convex -> Positive Hessian out of the argmin?)

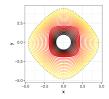
Issue I: Building C^k sublevels?

If $A \subset \mathbb{R}^2$ and $B \subset \mathbb{R}^2$ are C^k , A + B is automatically C^k , uniquely when k = 1, 2, 3, 4... (Kiselman 1987, Boman 1990). False for $k \ge 5$!

Obstructions to the smooth case II – III

Issue II: How to deal with more than 2 sets: "smooth the junctions"?

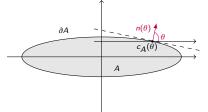




Issue III: Smooth near the argmin

$$\operatorname{argmin} f = \bigcap_{i=1}^{+\infty} T_i$$

Solve issue I: Positive curvature & smoothness of Minkowski sum



A smooth convex set, ∂A is C^2

$$n(\theta) = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix} \in S^1,$$

Choose $c_A(\theta) \in \operatorname{argmax} \{ \langle n(\theta), u \rangle : u \in A \}$

We have a **normal parametrization**, if $c_A : S^1 \rightarrow \partial A$ is uniquely-defined and is a diffeomorphism.

Then A is said to have positive curvature.

Lemma (Parametrization of a sum)

Let A, B with positive curvature

- ► Then c_{A+B} = c_A + c_B and A + B has positive curvature
- ► A,B have C^k boundary then A+B has C^k boundary

Parametrization of rings: $T_i \setminus \operatorname{int} T_i$

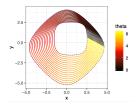
▶ $T_1 \subset int(T_0)$, compact C^k convex with positive curvature, then

$$T_{\lambda} = (1 - \lambda) T_0 + \lambda T_1 \text{ is } C^k \quad \forall \lambda \in [0, 1]$$

• Gives a family of normal parametrizations of T_{λ} through

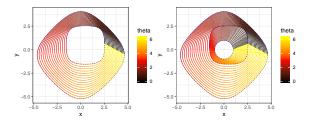
 $c_{\lambda} = (1 - \lambda)c_0 + \lambda c_1.$

- $c: (\lambda, \theta) \to c_{\lambda}(\theta)$ is a parametrization of the ring $T_0 \setminus \operatorname{int} T_1$
 - 1. **Iso-value**: $\theta \rightarrow c_{\lambda}(\theta)$ is the normal parametrization of ∂T_{λ}
 - 2. **Iso-angle**: $\lambda \rightarrow c_{\lambda}(\theta)$ are monochromatic segments



Issue II: beyond 2 sets? The normal vector gluing issue

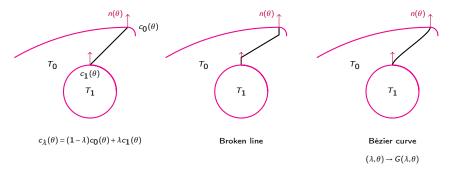
Iso-angle figures:



- On the yellow-black iso-angle line $n(\theta) = (1,0)$ and $\theta = 0$.
- ∇f colinear to $n(\theta) \Rightarrow$ non differentiability at the junction.

Gluing normal and preserving convexity

Bend iso-angles $\lambda \to c_\lambda(\theta)$ to match their derivatives with the normals at endpoints



▲ Need to preserve convexity of the sets: fundamental properties of Bézier curves and Bernstein polynomial

Smoothing: angles and values

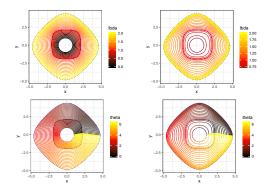


Figure: Left: Raw Minkowski sum Right: "Smoothed pictures"

The C^k convex interpolation theorem

Let $k \ge 2$.

Theorem (B-Pauwels, 2020)

 $(T_i)_{i \in \mathbb{Z}}$ a sequence of C^k convex compact subsets of \mathbb{R}^2 with positive curvature, with

$$T_{i+1} \subset \operatorname{int} T_i \neq \emptyset$$
 for all *i*.

Then there exists a C^k convex function f having the T_i as sublevel sets. In addition the Hessian of f is positive definite out of

$$\operatorname{argmin} f = \bigcap_{i \in \mathbb{Z}} T_i.$$

A modus operandi for building counterexamples: Gauss-Seidel case

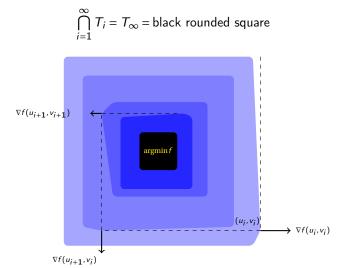
The continuous convex interpolation problem

Smooth convex interpolation?

Smooth convex counterexamples

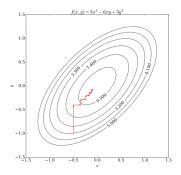
Gauss-Seidel method does not converge

Choose the rotating bumps sequence $(T_i)_{i \in \mathbb{N}}$ and add slight curvature...



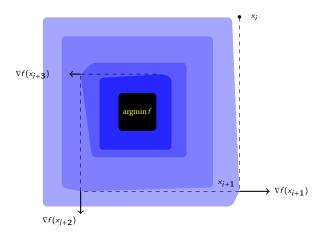
Exact line search does not converge $x_{i+1} = \operatorname{argmin} \{f(x_i - t\nabla f(x_i)) : t \ge 0\}$

Optimality condition: $\langle x_{i+1} - x_i, \nabla f(x_{i+1}) \rangle = 0.$



Exact line search does not converge

Same sequence $(T_i)_{i \in \mathbb{N}}$ as in Gauss-Seidel! Same starting point and same sequence of points!

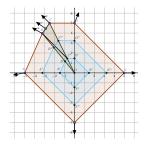


Secant convergence for convex potential

f convex C^k with compact sublevel sets, positive Hessian out of $\operatorname{argmin} f = \{0\}$

$$x'(t) = -\nabla f(x(t))$$
, does the secant $\frac{x(t)}{\|x(t)\|}$ converge?

No! "Build a swirling-decreasing sequence of repulsing-triangles".



Triangles exist at all scale near 0 and along "many" directions. Thus if $\frac{x(t)}{\|x(t)\|}$ converges, x should stay forever in some triangle...

Secant convergence for convex potential

A recent construction from Daniilidis-Haddou-Ley following our work has an appealing form.

"Rotating ellipses yield spiraling curves"

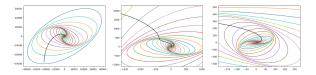


Figure: The sublevel sets and zoomed images from Daniilidis-Haddou-Ley

- h a Legendre function on C
 - *h* is a convex function int $C \subset \operatorname{dom} h \subset C$
 - h smooth on the interior
 - ∇h is a diffeomorphism from int C to its image
 - ▶ Blow-up: when $z_i \in \text{int } C$ is such that $\text{dist}(z_i, \partial C) \rightarrow 0$ then

 $\lim \|\nabla h(z_i)\| = +\infty.$

- Examples: $x \log x, -\log x, -\sqrt{x}$ for $x \in C = \mathbb{R}_+$
- The problem
 - ▶ Let f convex with Lh f convex ("relative smoothness")
 - Goal: minimize f over $C = \operatorname{dom} h$
 - ► Run $x_{i+1} = (\nabla h)^{-1} (\nabla h(x_i) \operatorname{step} \nabla f(x_i))$ with step < 1/*L*.

— Then

$$\lim_{i\to+\infty}f(x_i)=\min_C f$$

- h a Legendre function on C
 - *h* is a convex function int $C \subset \operatorname{dom} h \subset C$
 - h smooth on the interior
 - ∇h is a diffeomorphism from int C to its image
 - ▶ Blow-up: when $z_i \in \operatorname{int} C$ is such that $\operatorname{dist}(z_i, \partial C) \to 0$ then

 $\lim \|\nabla h(z_i)\| = +\infty.$

- Examples: $x \log x, -\log x, -\sqrt{x}$ for $x \in C = \mathbb{R}_+$
- The problem
 - ▶ Let *f* convex with *Lh*−*f* convex ("relative smoothness")
 - Goal: minimize f over $C = \operatorname{dom} h$
 - ► Run $x_{i+1} = (\nabla h)^{-1} (\nabla h(x_i) \operatorname{step} \nabla f(x_i))$ with step < 1/*L*.

— Then

$$\lim_{i\to+\infty}f(x_i)=\min_C f$$

- h a Legendre function on C
 - *h* is a convex function int $C \subset \operatorname{dom} h \subset C$
 - h smooth on the interior
 - ∇h is a diffeomorphism from int C to its image
 - ▶ Blow-up: when $z_i \in \text{int } C$ is such that $\text{dist}(z_i, \partial C) \rightarrow 0$ then

 $\lim \|\nabla h(z_i)\| = +\infty.$

- Examples: $x \log x, -\log x, -\sqrt{x}$ for $x \in C = \mathbb{R}_+$
- The problem
 - Let f convex with Lh f convex ("relative smoothness")
 - Goal: minimize f over $C = \overline{\operatorname{dom} h}$
 - Run $x_{i+1} = (\nabla h)^{-1} (\nabla h(x_i) \operatorname{step} \nabla f(x_i))$ with step < 1/L.

— Then

$$\lim_{i\to+\infty}f(x_i)=\min_C f$$

- h a Legendre function on C
 - *h* is a convex function int $C \subset \operatorname{dom} h \subset C$
 - h smooth on the interior
 - ∇h is a diffeomorphism from int C to its image
 - ▶ Blow-up: when $z_i \in \text{int } C$ is such that $\text{dist}(z_i, \partial C) \rightarrow 0$ then

 $\lim \|\nabla h(z_i)\| = +\infty.$

- Examples: $x \log x, -\log x, -\sqrt{x}$ for $x \in C = \mathbb{R}_+$
- The problem
 - Let f convex with Lh f convex ("relative smoothness")
 - Goal: minimize f over $C = \overline{\operatorname{dom} h}$
 - Run $x_{i+1} = (\nabla h)^{-1} (\nabla h(x_i) \operatorname{step} \nabla f(x_i))$ with step < 1/L.

— Then

$$\lim_{i \to +\infty} f(x_i) = \min_C f$$

- $\min_{C:=[0,1]^2} f(x) := \langle e_1, x \rangle \quad \text{that is} \quad \min_{[0,1]^2} x_1$
 - f is relatively smooth with respect to any kernel and for all L > 0
- Algorithm:

$$x_{i+1} = (\nabla h)^{-1} (\nabla h(x_i) - e_1)$$

$$\nabla h(x_{i+1}) - \nabla h(x_i) = -e_1$$

Thus by telescopic sum

$$\nabla h(x_{i+1}) - \nabla h(x_0) = -(i+1)e_1$$

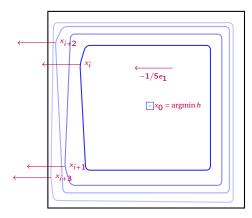
Counterexample

Theorem (B-Pauwels 2020)

There is $h: [0,1]^2 \mapsto \mathbb{R}$ Legendre, continuous on $[0,1]^2$, C^k on $(0,1)^2$ such that the accumulation set of x_i is the entire left edge of the square $[0,1]^2$.

A Legendre function with sliding bumps

• Recall $\nabla h(x_{i+1}) - \nabla h(x_0) = -(i+1)e_1$.



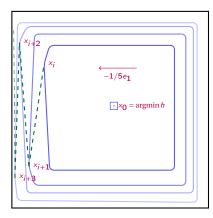
•
$$C = [0, 1]^2$$

• In blue level lines of h

•
$$\nabla h(x_0) = 0 \Rightarrow \nabla h(x_{i+1}) = -(i+1)e_1$$

A Legendre function with sliding bumps

• Recall $\nabla h(x_{i+1}) - \nabla h(x_0) = -(i+1)e_1$.



•
$$C = [0, 1]^2$$

• In blue level lines of h

•
$$\nabla h(x_0) = 0 \Rightarrow \nabla h(x_{i+1}) = -(i+1)e_1$$

Other counterexamples

► a C^k convex coercive function failing to have the KL property (as in Bolte-Daniilidis-Ley-Mazet 2009 but C^k and not merely C²).

A non converging Newton's curve

$$x' = -\nabla^2 f(x)^{-1} \nabla f(x)$$

- ▶ a Tikhonov path of infinite length (à la Torralba 1996).
- a nonconverging central path
- nonconverging Hessian-Riemannian gradient curves

Conclusion

Today's results

- smooth convex interpolation in the plane
- counterexamples

What you did not see:

- Other counterexamples
- Subtle issues: hessian, global Lipschitz properties, Legendre functions
- Computational difficulties of the construction

What we are working on:

- More counterexamples
- Finite dimensional setting
- C[∞] interpolation?
- Removing the curvature assumption??