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What can go wrong with smooth convex functions?

Framework:
Very small scale very smooth convex coercive problems!

Ï f convex in C k(Rn,R) with k arbitrarily large, and eventually n= 2

Ï C ⊂Rn closed convex, most of the time C =Rn, solve minC f .

Many things work:

Complexity FOM, acceleration, tensor’s methods...

Yet many open questions:

Convergence of some basic methods?
Directional convergence?
Rigidity à la Lojasiewicz?
Length of generalized central paths?...
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Open questions...
(i) Gauss-Seidel method - Block coordinate descent: (1823, Gauss)

ui+1 = argmin
u∈Rp

f (u,vi )

vi+1 = argmin
v∈Rq

f (ui+1,v)

f (ui ,vi ) converges to min f but what about (ui ,vi )i∈N if it is uniquely defined?

(ii) Gradient descent with exact line search: (1944, Curry)

xi+1 = argmin
t≥0

f (xi − t∇f (xi ))

f (xi ) converges to min f but what about (xi )i∈N?

(iii) Bregman or mirror descent method (1983, Nemirovskii-Yudin)

xi+1 = [∇h]−1
(
∇h(xi )−

1
L
∇f (xi )

)
with Lh− f convex (relative smoothness).
f (xi ) converges to min

domh
f but what about (xi )i∈N?
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Open questions: continuous time ODE...
(iv) Directional convergence for gradient curves:

x ′(t)=−∇f (x(t)), t ≥ 0. (1847, Cauchy’s descent)

Theorem (Bruck 75)

f lower semicontinuous convex ⇒ x(t) converges whenever argmin f 6= ;

Assume f has positive definite Hessian on R2 \ {x∗} where x∗ is the unique
minimizer.

Does the direction
x(t)−x∗
‖x(t)−x∗‖ converges?

[Thom’s conjecture 1989 when f is analytic. Solved by Kurdyka-Mostovsky-Parusinsky] 4 / 36



A modus operandi for building counterexamples: Gauss-Seidel case

A modus operandi for building counterexamples: Gauss-Seidel case

The continuous convex interpolation problem

Smooth convex interpolation?

Smooth convex counterexamples
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A modus operandi for building counterexamples: Gauss-Seidel case

Intuitions around the Gauss-Seidel method in the plane

Consider min
(u,v)∈R2

f (u,v) and a uniquely defined GS sequence

ui+1 = argmin
u∈R

f (u,vi )

vi+1 = argmin
v∈R

f (ui+1,v)

Writing the optimality conditions

Ï ∂

∂u
f (ui+1,vi )= 0 thus ∇f (ui+1,vi ) parallel to the y -axis

Ï ∇f (ui+1,vi+1) parallel to the x-axis
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A modus operandi for building counterexamples: Gauss-Seidel case

Rotating bumps
Imagine that we have a smooth convex function

Ï having the bluish rounded squares as sublevel sets
Ï minimal on the black square

• starting point

[f > 1]

[f ≤ 1]

∇f (uk ,vk )
(ui ,vi )

∇f (ui+1 ,vi )

∇f (ui+1 ,vi+1)

argminf
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A modus operandi for building counterexamples: Gauss-Seidel case

Rotating bumps yield a spiraling sequence
Imagine that we have a smooth convex function

Ï having the bluish rounded squares as sublevel sets
Ï minimal on the black square

The sequence “spirals"

(ui ,vi−1)•

[f > 1]

[f ≤ 1]

∇f (uk ,vk )
(ui ,vi )

∇f (ui+1 ,vi )

∇f (ui+1 ,vi+1)

argmin f
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The continuous convex interpolation problem
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The continuous convex interpolation problem

The interpolation problem: continuous case
♣ “Strategy: Guess and draw a pathological sequence of convex sets and turn
it into a counterexample"

♣ Decreasing sequence (Ti )i∈N of convex compact with Ti+1 ⊂ int(Ti ) 6= ;.

C0 interpolation pb: Find f convex such that the Ti are sublevel sets of f .
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x

y

Questions: de Finetti, Fenchel (50’s).

Kannai, Torralba (77, 96): f exists
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The continuous convex interpolation problem

Interpolation between 2 sublevels: convex combination à la Minkowski

Ï Start with T0, T1: interpolate in between
Ï Set λ ∈ [0,1] and define the (convex) set

Tλ = (1−λ)T0+λT1.

Keep in mind the definition of Tλ

Ï Basic idea: “set f (∂Tλ)= 1−λ"
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The continuous convex interpolation problem

Interpolation with 3 or more sublevels
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Ï Let us build f quasi-convex interpolating the Ti .
Ï Choose λi ↓ 0.

1. Assign λi to Ti .

2. In between [f ≤λ] :=
(
λ−λi+1
λi −λi+1

)
Ti +

(
λi −λ

λi −λi+1

)
Ti+1.

Ï In addition get
argmin f = ⋂

i∈N
Ti , with min f = 0
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The continuous convex interpolation problem

Interpolating a sequence of concentric disks
But how to assign adequate values to enforce convexity?

Assume (Ti )i∈N is a sequence of concentric disks:

Figure: 3 interpolations: convexity (and smoothness) can easily be missed
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The continuous convex interpolation problem

Value assignation for convex interpolation

Translate the slope monotonicity characterization of convex functions in terms of
sublevel sets.

Ï For S ⊂Rp set σS (x)= sup{〈x ,z〉 , z ∈S} support function.

Theorem (de Finetti-Fenchel-Crouzeix)
f :Rp →R quasi-convex, Tλ the λ sublevel of f .
f is convex ⇐⇒ Fv :λ 7→σTλ

(v) is concave for all fixed v is concave

Ï Choose λi → 0 with a well adapted decrease rate.
The ratio (λi −λi+1)/(λi−1−λi ) must be lower than

Ki = max
||x∗||=1

σTi−1 (x
∗)−σTi

(x∗)
σTi

(x∗)−σTi+1 (x
∗)
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The continuous convex interpolation problem

The continuous interpolation result

Theorem (Kannai-Torralba)
(Ti )i∈N convex compact in Rn such that Ti+1 ⊂ intTi , ∀i ≥ 0 .

Then there is a continuous convex function f such that

Ti = [f ≤λi ], for every i ∈N

argmin f = ⋂
i∈N

Ti
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Smooth convex interpolation?

A modus operandi for building counterexamples: Gauss-Seidel case

The continuous convex interpolation problem

Smooth convex interpolation?

Smooth convex counterexamples
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Smooth convex interpolation?

Obstructions to the smooth case

We pertain to the plane R2 (...). Smoothness degree: k ≥ 2

(Ti )i∈N convex compact with Ck boundary, s.t. Ti+1 ⊂ int(Ti ) 6= ;.

Build f :R2→R convex Ck such that each Ti is a sublevel of f , and

argmin f = ⋂
i∈N

Ti

(Ti uniformly convex –> Positive Hessian out of the argmin?)

Issue I: Building Ck sublevels?

If A⊂R2 and B ⊂R2 are Ck , A+B is automatically Ck , uniquely when
k = 1,2,3,4... (Kiselman 1987, Boman 1990).

False for k ≥ 5!
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Smooth convex interpolation?

Obstructions to the smooth case II – III

Issue II: How to deal with more than 2 sets: “smooth the junctions"?

T1 × {λ1}

T0 × {λ0}

Issue III: Smooth near the argmin

argmin f =
+∞⋂
i=1

Ti
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Smooth convex interpolation?

Solve issue I: Positive curvature & smoothness of Minkowski sum

n(θ)
θ

cA(θ)
•

A

∂A A smooth convex set, ∂A is C2

n(θ)=
(
cos(θ)
sin(θ)

)
∈S1,

Choose cA(θ) ∈ argmax {〈n(θ),u〉 : u ∈A}

We have a normal parametrization, if cA :S1→ ∂A is uniquely-defined and is a
diffeomorphism.
Then A is said to have positive curvature.

Lemma (Parametrization of a sum)

Let A,B with positive curvature
Ï Then cA+B = cA+cB and A+B has positive curvature

Ï A,B have Ck boundary then A+B has Ck boundary
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Smooth convex interpolation?

Parametrization of rings: Ti \ intTi

Ï T1 ⊂ int(T0), compact Ck convex with positive curvature, then

Tλ = (1−λ)T0+λT1 is Ck ∀λ ∈ [0,1]

Ï Gives a family of normal parametrizations of Tλ through

cλ = (1−λ)c0+λc1.

Ï c : (λ,θ)→ cλ(θ) is a parametrization of the ring T0 \ intT1
1. Iso-value: θ→ cλ(θ) is the normal parametrization of ∂Tλ
2. Iso-angle: λ→ cλ(θ) are monochromatic segments
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Smooth convex interpolation?

Issue II: beyond 2 sets? The normal vector gluing issue

Iso-angle figures:
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Ï On the yellow-black iso-angle line n(θ)= (1,0) and θ = 0.
Ï ∇f colinear to n(θ) ⇒ non differentiability at the junction.
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Smooth convex interpolation?

Gluing normal and preserving convexity
Bend iso-angles λ→ cλ(θ) to match their derivatives with the normals at
endpoints

n(θ)

c1(θ)

c0(θ)

cλ(θ)= (1−λ)c0(θ)+λc1(θ)

T0

T1

n(θ)

Broken line

T0

T1

n(θ)

Bézier curve

(λ,θ)→G(λ,θ)

T0

T1

B Need to preserve convexity of the sets: fundamental properties
of Bézier curves and Bernstein polynomial
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Smooth convex interpolation?

Smoothing: angles and values
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Figure: Left: Raw Minkowski sum
Right: “Smoothed pictures"
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Smooth convex interpolation?

The C k convex interpolation theorem

Let k ≥ 2.

Theorem (B-Pauwels, 2020)
(Ti )i∈Z a sequence of C k convex compact subsets of R2 with positive
curvature, with

Ti+1 ⊂ intTi 6= ; for all i .

Then there exists a C k convex function f having the Ti as sublevel sets.
In addition the Hessian of f is positive definite out of

argmin f = ⋂
i∈Z

Ti .
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Smooth convex counterexamples

A modus operandi for building counterexamples: Gauss-Seidel case

The continuous convex interpolation problem

Smooth convex interpolation?

Smooth convex counterexamples
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Smooth convex counterexamples

Gauss-Seidel method does not converge
Choose the rotating bumps sequence (Ti )i∈N and add slight curvature...

∞⋂
i=1

Ti =T∞ = black rounded square

∇f (ui ,vi )
(ui ,vi )

∇f (ui+1 ,vi )

∇f (ui+1 ,vi+1)

argminf
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Smooth convex counterexamples

Exact line search does not converge
xi+1 = argmin

{
f (xi − t∇f (xi )) : t ≥ 0

}
Optimality condition:

〈
xi+1−xi ,∇f (xi+1)

〉= 0.
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Smooth convex counterexamples

Exact line search does not converge
Same sequence (Ti )i∈N as in Gauss-Seidel! Same starting point and same
sequence of points!

xi•

∇f (xi+1)
xi+1

∇f (xi+2)

∇f (xi+3)

argmin f
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Smooth convex counterexamples

Secant convergence for convex potential
f convex Ck with compact sublevel sets, positive Hessian out of argmin f = {0}

x ′(t)=−∇f (x(t)), does the secant
x(t)

‖x(t)‖ converge?

No! “Build a swirling-decreasing sequence of repulsing-triangles".
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Triangles exist at all scale near 0 and along "many" directions.
Thus if x(t)

‖x(t)‖ converges, x should stay forever in some triangle...
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Smooth convex counterexamples

Secant convergence for convex potential

A recent construction from Daniilidis-Haddou-Ley following our work has
an appealing form.

“Rotating ellipses yield spiraling curves"

Figure: The sublevel sets and zoomed images from Daniilidis-Haddou-Ley
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Smooth convex counterexamples

Mirror descent aka Bregman minimization: minC f .

— h a Legendre function on C
Ï h is a convex function intC ⊂ domh⊂C
Ï h smooth on the interior
Ï ∇h is a diffeomorphism from intC to its image
Ï Blow-up: when zi ∈ intC is such that dist(zi ,∂C)→ 0 then

lim‖∇h(zi )‖ =+∞.

— Examples: x logx ,− logx ,−px for x ∈C =R+
— The problem

Ï Let f convex with Lh− f convex (“relative smoothness")
Ï Goal: minimize f over C = domh

Ï Run xi+1 = (∇h)−1(∇h(xi )− step∇f (xi )) with step< 1/L.

— Then
lim

i→+∞
f (xi )=min

C
f

But convergence?
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Smooth convex counterexamples

Mirror descent aka Bregman minimization: minC f .

Ï min
C :=[0,1]2

f (x) := 〈e1,x〉 that is min
[0,1]2

x1

f is relatively smooth with respect to any kernel and for all L> 0
Ï Algorithm:

xi+1 = (∇h)−1(∇h(xi )−e1)

∇h(xi+1)−∇h(xi )=−e1
Thus by telescopic sum

∇h(xi+1)−∇h(x0)=−(i +1)e1

Ï Counterexample

Theorem (B-Pauwels 2020)

There is h : [0,1]2 7→R Legendre, continuous on [0,1]2, Ck on (0,1)2 such that
the accumulation set of xi is the entire left edge of the square [0,1]2.
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Smooth convex counterexamples

A Legendre function with sliding bumps
Ï Recall ∇h(xi+1)−∇h(x0)=−(i +1)e1.

−1/5e1
• C = [0,1]2

• In blue level lines of h

• ∇h(x0)= 0⇒∇h(xi+1)=−(i +1)e1

xi+3

xi+2

xi+1

xi

x0 = argminh
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Smooth convex counterexamples
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Smooth convex counterexamples

Other counterexamples

Ï a C k convex coercive function failing to have the KL property (as in
Bolte-Daniilidis-Ley-Mazet 2009 but C k and not merely C2).

Ï A non converging Newton’s curve

x ′ =−∇2f (x)−1∇f (x)

Ï a Tikhonov path of infinite length (à la Torralba 1996).

Ï a nonconverging central path

Ï nonconverging Hessian-Riemannian gradient curves
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Smooth convex counterexamples

Conclusion
Today’s results

Ï smooth convex interpolation in the plane
Ï counterexamples

What you did not see:
Ï Other counterexamples
Ï Subtle issues: hessian, global Lipschitz properties, Legendre functions
Ï Computational difficulties of the construction

What we are working on:
Ï More counterexamples
Ï Finite dimensional setting
Ï C∞ interpolation?
Ï Removing the curvature assumption??

36 / 36


	A modus operandi for building counterexamples: Gauss-Seidel case
	The continuous convex interpolation problem
	Smooth convex interpolation?
	Smooth convex counterexamples

