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Interacting with Yurii Nesterov was the
single most significant and defining
moment of my academic life.

Thank youl!
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Abstract

‘We develop several new communication-efficient second-order methods for distributed optimization.
Our first method, NEWTON-STAR, is a variant of Newton’s method from which it inherits its fast
local quadratic rate. However, unlike Newton’s method, NEWTON-STAR enjoys the same per iteration
communication cost as gradient descent. While this method is impractical as it relies on the use of certain
unknown parameters characterizing the Hessian of the objective function at the optimum, it serves as
the starting point which enables us design practical variants thereof with strong theoretical guarantees.
In particular, we design a stochastic sparsification strategy for learning the unknown parameters in an
iterative fashion in a communication efficient manner. Applying this strategy to NEWTON-STAR leads to
our next method, NEWTON-LEARN, for which we prove local linear and superlinear rates independent
of the condition number. When applicable, this method can have dramatically superior convergence
behavior when compared to state-of-the-art methods. Finally, we develop a globalization strategy using
cubic regularization which leads to our next method, CUBIC-NEWTON-LEARN, for which we prove
global sublinear and linear convergence rates, and a fast superlinear rate. Our results are supported with
experimental results on real datasets, and show several orders of magnitude improvement on baseline and
state-of-the-art methods in terms of communication complexity.
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Function f is convex, and has an “average of averages” structure:
L 15
-5 (@) = = fi(@), 2
LN R W O]
and X > 0 is a regularization parameter. Each f;; is a function of
the form: fi(x) := @ij(ajjz). The Hessian of fi; at point « is
Hy(2) = hy(@)agaj, hij(z) = glj(aja). @)
The Hessian H;(z) of local functions f;(x) and the Hessian H(z) of
f can be represented as linear combination of one-rank matrices.

Assumptions

We assume that Problem (1) has at least one optimal solution z*.
For all i and j, g;; is y-smooth, twice differentiable, and its second
derivative ¢f; is v-Lipschitz continuous.

Main goal

Our goal is to develop a
method for distributed optimization.

efficient Newton-t;

P

Naive distributed implementation of
Newton’s method

1 -
Newton’s step: 2! &) zF— (H(xh) + /\I) lVP(I").

Each node: computes the local Hessian H(z*) and gradient
V fi(z*), then sends them to the server.

Server: averages the local Hessians and gradients to produce H(z*)
and V f(a¥), respectively, adds AT to H(z¥) and Az* to Vf(z*),
then performs Newton step. Next, it sends 2¥+! back to the nodes.
Pros: e Fast local quadratic convergence rate

e Rate is independent on the condition number
Cons: e Requires O(d?) floats to be communicated by each worker
to the server, where d is typically very large

NEWTON-STAR (NS)

Assume that the server has access to coefficients h;;(«*) for all 7 and
J, i.e access to the Hessian H(z*).

Step of NEWTON-STAR: 2! = o — (H(z%) + AI) ™' VP(a).

Theorem 1 (Convergence of NS)

Assume that H(z*) > p*I for some p* > 0 and that p*+A > 0.
Then for any starting point z° € R%, the iterates of NEWTON-
STAR satisfy the following inequality:

n m 2
ek (7 ppo) uaﬂ-uﬁ) - |la* = =*

szﬂ _o <

Pros: e Fast local quadratic convergence rate
o Rate is independent on the condition number
e C ication cost is O(d) per-iterati

Cons: e Cannot be implemented in practice

© Taking advantage of the structure of the problem
In NEWTON-LEARN we maintain a sequence of vectors
= (..., ht) € R™, (@)

for all i = 1,...,n throughout the iterations k& > 0, with the goal
of learning the values h;j(z*) for all 7, j:

hij(z*) = hij(z*) as k- +oo. (5)

Using h¥; = hij(x"), we can estimate the Hessian H(z") via

li k w1 i": ko T
=Y "Hf, Hj:=—) hjaja;. (6)
n 2 M

Compressed learning

Compression operator: A randomized map C : R™ — R™

is a compression operator (¢ ) if there exists a constant
w > 0 such that for all z € R™
EC@] =2, E[lC@)I] < @+1)]al* Y]

Random sparsification (random-r) [1]: Compressor defined
as

m
o) =" goz, ©
where £ € R™ is a random vector distributed uniformly at random

on the discrete set {y € {0,1}™ : [lyllo = r} The variance param-
eter associated with this compressor is w = 2 — 1.

NEWTON-LEARN: NL1
Assumption: We assume that each ¢;j(x) is convex, and X > 0.
1 o

the coefficients: the idea

We design a learning rule for vectors hf via the DIANA
trick [2]:

hE = [t et (a®) = BE)] ©

where 7 > 0 is a learning rate, and C¥ is a freshly sampled
compressor by node i at iteration k.

Main properties: o hf; > 0 for all 4, j

. update is sparse: [|hF*! —

s=0(1)

e H -0
Each node: Computes update hf*! = [hf +nCf (hl(a:’c) - hf)] .
and gradient V f;(z*). Then the node broadcasts the gradient, up-
date h¥*! — h¥ and data points a;; for which hf™ — h¥ # 0
Server: averages the local gradients to produce V f(z*
structs H¥ via (6). Then it performs a Newton-like step:

-1
gk (H‘ 1) (VI + Azk) s (10)

and finally broadcasts z**! back to the nodes.
Pros e Local linear and superlinear rates

© Rates are independent on the condition number
© Communication cost O(d) per iteration

BE[ly < s, where

) and con-

H = ":" LY ]h”at]a € ]R'ix“
for k=0,1,... do
Broadcast 7* to all workers
for each nodei =1,...,n do
Compute local gradient V f;(z*)
i = [t +nC(hi(z*) — hf)]. Send V fi(a®), hE*! — hf
and corresponding a;; to server
end

ot =gk — ( ) (l i Vi) + /\zk)
n om
HA = HE 4L g z::(hkﬂ R )aga]
end

Convergence theory

The analysis relies on the Lyapunov function
2

= sz =

k
nnmyzRZH L

—ha)

where R = max |aj;|.
i

Theorem 2 (convergence of NL1)

Theorem 2. Let each ¢;; is convex, A > 0, and n < %n
Assume that [|o* — 2*[> < Xz for all & > 0. Then for
Algorithm 1 we have the inequalities

E[2}] < 6{af,

KHL_ g2
B < ot (o0 + 1) et

o L

o ==
where 6; = 1 — min {g, g} , which is independent on the condi-
tion number.

Assumption on [|z¥ —z*|| can be relaxed using the following lemmaz:

Assume hf; is a convex combination of {h;;(x"), ..

- hig(@¥)}
for all 7, j and k. Assume ||z°—z I?<

Then

A
2R

|la* — 2|2 < for all k> 0.

120 ZR6

It is casy to verify that if we choose A; = h;;(«”), use the random

sparsification compressor (8) and 7 < iy then hY is always a
convex combination of {hqj(z°), .. ., hij(z*)} for k > 0.

NEWTON-LEARN: NL2

We additionally develop a modified method (NL2) which handles
the case where P is p-strongly convex, |h¥| <, and A > 0.
Pros: e Local linear and superlinear rates
o Rates are ind: d on the diti
© O(d) bits are communicated per iteration

number

IKAUST 2MIPT
The Problem NEWTON-LEARN Algorithm T: NLT: NEWTON-LEARN (A > 0 case) CUBIC-NEWTON-LEARN
e e Parameters learning rate n > 0 e
N N 1, X x alll d. p0 0 . i e
min [p(z) = fla)+ 5”1"2] X ) How to address the_ : ication b ? € R4 BY,..., B, €RT; We also constructed a method (CNL) with global convergence guar-
zeR? 2 o Compressed communication

antees using cubic regularization [3].

Pros: e Local linear and superlinear rates
o Global linear rate in the strongly convex case and
global sublinear rate in the convex case
© Rates are independent on the condition number
© O(d) bits are communicated per iteration

Experiments

R T

(a) w8a, A =10 (b) a9a, A =10"*

ot s ammcates e

(c) phishing, A

=073 (d) a7a, A=10"*

(e) a2a, A =1073 (f) phishing, A = 107°

o

(g) a2a, A=10"%
Figure 1:Comparison of NL1, NL2 with (a), (b) BFGS; (c), (d) ADIANA; (e),
(f) DINGO in terms of communication complexity. Comparison of CNL with
(&), () DIANA and DCGD in terms of communication complexity:

(h) a7a, A=10"*
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Embarrassingly Brief Motivation

* Distributed optimization/training is important!

 The rate of all 1st order methods depends on the condition number

e Existing 2nd order methods suffer from at least one of these issues:
* Communication cost in each communication round is prohibitively high
* Convergence rate depends on the condition number

GOAL Develop a communication-efficient distributed

Newton-type method whose (local) convergence
rate is independent of the condition number




# training data points

# machines .
on each machine

n m

1=1

, 1 1
2 \ o 2 im 2P

Loss function

Pij - R—R

ML model represented by
d parameters / features

3 (5) — @i (B)] < vls —

L2 regularizer
(optional)

A

2
8 |+ Sllel

j-th training data point
on machine i



The Problem: Local and Global Functions

Local function owned by machine i: fz (ZE)
, 1« 1 « - A o
— — a AL — || L
min n;:lﬁm;:lﬁ%( i) |+ 5zl

Global function we want to minimize: F({E)



John Wallis
A treatise of algebra, both historical and practical
Philosophical Transactions of the Royal Society of London, 15(173):1095-1106, 1685

Josepho Raphson
Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus

generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrate
Oxford: Richard Davis, 1697




Year 1697

JONATHAN

HILL

SEARCH BROWSE CATALOGUES

A
Analyfis Aquationum
i ) o
| UNIVERSALIS
SEU
Ad EFQUATIONES A1 GEBRAICAS Refolvendas

METHODUS Generalis, & Expedita,

Ex nova Infinitarum Scricrum Methodo,
IDEDUCTAaDEMONSTRATA|
Editio Secunda cui accefTit / ippend.. de Infinito In/x}:i:.m;n

Serierum progreffu ad Equationum Algebraicarion Ra-
| dices eliciendas. g

‘7, o —— - |
| Cui etiam ,\m“ o cft, .
|

"I’ATIO REALI
ENTE INFINITO |

I
|
|
|
|

CONA MEN Mathematico- Metaphy rficum.
ml orc JOSEPHO RAPHS ON 4 M

& Reg. Soc. Sucin, i

BOOKSELLER

NEW ARRIVALS EVENTS ABOUT CONTACT search Q

“Raphson’s Method”; Not “Newton’s Method” or,
Maybe, the “Newton-Raphson Method”

RAPHSON, Joseph.

Analysis Aequationum Universalis, seu ad Aequationes Algebraicas resolvendas Methodus
generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrata. Editio
secunda cui accessit Appendix de Infinito Infinitarum Serierum progressu ad Equationum
Algebraicarum Radices eliciendas. Cui etiam Annexum est; De Spatio reali, seu Ente Infinito
Conamen Mathematico-Metaphysicum.

Woodcut diagrams in the text. 3 p.1., 5-55,[9], 95, [1] pp. Small 4to, 18th-cent. calf (rebacked & recornered),
red morocco lettering piece on spine. London: Typis TB. for A. & I. Churchill et al., 1702.

Third edition,; the first edition appeared in 1690 and the second in 1697. Raphson (d. 1715 or 1716), also wrote
the important History of Fluxions (1715) and translated Newton’s Arithmetica Universalis into English
(1720). He was a fellow of the Royal Society.

“In 1690, Joseph Raphson...published a tract, Analysis aequationum universalis. His method closely
resembles that of Newton. The only difference is this, that Newton derives each successive step, p, q, r, of
approach to the root, from a new equation, while Raphson finds it each time by substitution in the original
equation...Raphson does not mention Newton; he evidently considered the difference sufficient for his
method to be classed independently. To be emphasized is the fact that the process which in modern texts
goes by the name of ‘Newton’s method of approximation, is really not Newton’s method, but Raphson’s
modification of it...It is doubtful, whether this method should be named after Newton alone...Raphson’s
version of the process represents what J. Lagrange recognized as an advance on the scheme of Newton...
Perhaps the name ‘Newton-Raphson method’ would be a designation more nearly representing the facts of
history.-Cajori, A History of Mathematics, p. 203.

The first edition is very rare. The Appendix appears for the first time in the second edition of 1697 along
with the separately paginated second part De Spatio reali.

Fine fresh copy. 19th-century bookplate of P. Duncan.

Price: $4,500.00
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NEWTON

gt = o — (VQF(QEk))_l VF(z")




3 machines

Global function F(x)
1 o 1
= gb — | =) Vi) + Mg =) V(") + At
n 4 n 4
1=1 1=1
Can be computed Can be computed
by machine i by machine i
? K 1(z") ¢ R d7vf1(x’“)€Rd
— v2 k ERdXd,V k ERd —> 3 -1 3
. 9 ky e R : i=1 =1l
= hEHER 4,V fs(@) —
Bl — server




3 machines

N E WTO N e { (% g %g%(a;ﬂ)) + %||$||2}

CCk-l-l — Cl?k . = Z VZfz —l— )\Id 1 Z vfz + )\x

Can be computed Can be computed
by machine i by machine i

f
= .
o rh+1
DaRI I € R
k+1 d —
H =] zF+l e R m: .
e
k+1 ° -
X ° .
CEk—\—l ERCL I
Y =
3
server
xk—l—l .




NEWTON: Summa ry ﬁ%‘i{(ﬁ;g;%(agjz)

Pl — gk (VQF(atk))_l VF(z")

v
X

Local quadratic convergence
independent of the condition number

Expensive O(d?) worker-master
communication




4. NEWTON-STAR ,
“One Hessian is Enough!”






Hessian at the (unknown!) optimum {(1 " m
. min EZEZ@Z’j(a;l—jw))"_ Ilelz}
= argmin F(x) NEWTON-STAR S aEin)-
Global function we want to mini F(z)
V2F(x*)
'1 n : 1\ —1 1 n
= ob — [ =) VP fi(aY) + My =Y Vi(z*) + Az*
n “ n -
1=1 1=1
We assume this is Can be computed
known! by machine i

fl e
» xk ? = vfl(xk) € R4
()]
(e — —). _
= V fo(z*) € RY 3 AR
-::% f; E 2( ) > E LS lzv2fz(m*) 1+ Ay lzvfz(afk) —|—>\ZL'k
E T ° k) c Rd — . 3 i—1 3 i—1
- J— V fal

=] - server

vl I




Hessian at the (unknown!) optimum {(1 nym
: ;Ielg}i EZEZS@U(%‘TJ‘@)“‘ ||$||2}
#* = arg min F(z) NEWTON-STAR )
Global function F(x)
V2F(x*)
A
11 n 1\ —1 |
k+1 k 2 k k
Tt = 2 — EE V= fi(x™) + My EE Vfi(x®) + \x
1=1 1=1
We assume this is Can be computed
known! by machine

fl ————
n rk+1 ? - xk+1€Rd
8 ———— B—
— k+1 Rd
s JE — =
EE -

I3 || — server

ol I
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NEWTON-STAR:
Local Quadratic Convergence _

i=1 " j=1




NEWTON-STAR: Summary (15 i) )

—1
"t =2k — (V2F(2%))  VF(z")
/
. The New Result
Local quadratic convergence For T
independent of the condition number Previous Slide

Cheap O(d) worker-master communication

We do not know the Hessian at the optimum!




5. NEWTON-LEARN
.‘fL'et’s Learn the Hessian!”



V*F(x) =

Structure of the Hessian

Rank-1 matrices formed from the training data vectors

n m

1 1 1/ T T
- Z . 221 Spij(az'ﬂ)aijaij
J:

1=1

Assumption 1

@;; : R = R 1s convex

(= wi5(t) 20 V)
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Assumption 2

A>0
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NEWTON NEWTON-STAR

Rl = gk (VZF(iﬂk))_l VFE(z") J i =t = (VQF(x*))_l VE(z*) J

e (15 1 S Sl ) -

Local quadratlc conyergence mdependent of ic cofpvergence independent of the

€ Expensive O(d?) work§r-ma rlff-master communication

we do not know the Hessian at the optimum!
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NEWTON-LEARN {(iEa L) 2]
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Wish list: - )

local rate independent of condition number




Compression operator (e.g., sparsification such as Rand-r)

Learning Mechanism in
NEWTON-LEARN E[cE(h)] =h VheR™

E[lICcE(MI°] < (w+1)l|Al* VR eR™

sepgte U< s == Compressing the update!
(inspired by first-order method DIANA)

pit = [hk_l_nck( (T ky hk)}_l_

Vector of coefficients giving rise to Hessian

approximation at machine i Projection onto nonnegative orthant
h¥ \ /max{zl, O}\
. hk, . ) max{zz,0}
hy = : e R = Zh aga,; ~ V2 fi(z) zeR™ = [z]4:= .
thm Kmax{zm, 0} )



NEWTON-LEARN: Local Linear Rate Independent
of the Condition Number!

This is a local result: 1
\ Rate depends on the | StePsize 0 <n < ===
0 . .
|l2” — 2| < /3R> compressor only! ]=h VheR

||ck ] <(w+1D)|A|> VReR™
k
N : 77 5
g [@’f] < (1—m1n{—,— ®Y
2" 8
Lyapunov function
w12 1 | — 1 — |2 k T
B ot =l g g 2 2 [ — el (ae”)| hiy = pis(ae) as k — oo

1= 7
We provably learn
the Hessian!
Bi= el
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NL2: Handles the non-regularized case

A=0
Convergence
Rate
Method result T type rate independent of the Theorem
condition number?
NEWTO'EIiz-)rAR (NS) Tet1 < cr% local quadratic v 2.1
MAX-NEWTON (MN .
» Algorithm i ) Tl < cri local quadratic v D.1
NEWTON-LEARN (NL1) o7 < 0707 local linear v 3.2
Algorithm 1 rer1 < cO¥ry local superlinear v 3.2
» NEWTON-LEARN (NL2) o5 < 05D local linear v 3.5
Algorithm 2 rer1 < cO¥ry local superlinear v 3.5
A < £ global sublinear X 4.3
»CUBIC—NEWTON—LEARN (CNL) Ag < cexp(—k/c) global linear X 4.4
Algorithm 3 or < 050 local linear v 4.5
Tyl < 00§rk local superlinear v 4.5
Quantities for which we prove convergeize: (i) distance to solution rp := Hazk — CL'*H, (ii) Lyapunov function
2 ‘
<I>’; = ‘:ck —z|| +ecqdig ;"’:1(17,7{3”3- — hij(xz™)y%.for ¢ = 1,2,3, where h;;(z*) = cp;;(aj;a:*) (see (5)); (iii) Func-

tion value suboptimality Ay := P(z*) — P(z*)

T constant c is possibly different each time it appears in this tabl CNL: Global convergence via cubic regularization
exact values. (Griewank 1981, Nesterov & Polyak 2006)
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Experimental Setup

- A

11 1 —
a{g%@ E Z:Zl E ]:leOg (1 + exp (—bwa;;ZE)) + §||$H2

Table 3: Data sets used in the experiments, and the number of worker nodes n used in each case.

Data set # workers n | # data points (=nm) | # features d
a2a 15 2 265 123
a7a 100 16 100 123
a9a 80 32 560 123
w8a 142 49 700 300
phishing 100 11 000 68
artificial 100 1 000 200




Table 2: Comparison of distributed Newton-type methods. Our methods combine the best of both worlds,
and are the only methods we know about which do so: we obtain fast rates independent of the condition
number, and allow for O(d) communication per communication round.

Rate Communication

Method Con\;zelrt;ience independent of the cost sl\tI:lt;:’:::?Jr:{e
condition number? per iteration
[Shami?eAtNaEl:., 2014] Linear X O(d) Centralized
[Zhang aIr)lidS().j((izaJo, 2015] Liincar & O(d) Centralized
[ReddiﬁDaIE, 2016] Linear X O(d) Centralized
[WangG eI*;A iT 2018] Linear X O(d) Centralized
[Crane arll)dI l\liicjc?sta, 2019] Linear X O(d) Centralized
[Zhang [c?? :{., 2020] Local quadratic’ v O(nd?) Decentralized
[ZhanIg)A;tN:i‘.l,A}OZO] Superlinear v O(nd) Decentralized
NEQ/I\:;OVI?I,;SI,LAR Local quadratic v O(d) Gzt Hees]
Mﬁl)l(l-é\l EVV\O/II?N Local quadratic V4 O(d) @enial el
NE\LVh'I;SOQ;EEQ RIN Local superlinear v/ O(d) @ NIl
CUBIC-NEWTON-LEARN Superlinear z o) el

this work

T DAN converges globally, but the quadratic rate is introduced only after O(Lg/uz) steps, where Lo is the Lipschitz
constant of the Hessian of P, and u is the strong convexity parameter of P. This is a property it inherits from the recent
method of Polyak [Polyak and Tremba, 2019] this method is based on.
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Figure 1: Performance of NL1 (first row) and NL2 (second row) across a few values of r defining the random-r

compressor, and a few values of p defining the induced Bernoulli compressor C,.
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NL1 & NL2 vs Newton
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Figure 3: Comparison of NL1, NL2 with Newton’s method in terms of communication complexity.
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NL1 & NL2 vs BFGS
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Figure 4: Comparison of NL1, NL2 and BFGS in terms of communication complexity.
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NL1 & NL2
VS
Accelerated DIANA

Acceleration for compressed gradient descent in distributed and federated optimization

1 Zhize Li, Dmitry Kovalev, Xun Qian and Peter Richtarik
Adobe ICML, 2020
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Figure 5: Comparison of NL1, NL2 with ADIANA in terms of communication complexity.
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NL1 & NL2
VS
DINGO

Rixon Crane and Fred Roosta
! DINGO: Distributed Newton-type method for gradient-norm optimization
Adobe NeurlPS, 2019
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Figure 6: Comparison of NL1, NL2 with DINGO in terms of communication complexity.
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8. On DIANA & Friends
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Our Hessian Learning Mechanism
is Inspired by DIANA

Filip Hanzely, Konstantin Mishchenko and Peter Richtarik SEGA ~
SEGA: Variance reduction via gradient sketching e )
NeurIPS, 2018 Single node” DIANA

Konstantin Mishchenko, Eduard Gorbunov, Martin Takac¢ and Peter Richtarik .
Distributed learning with compressed gradient differences O“gmal DIANA paper
arXiv:1901.09269, 2019

Generalized DIANA:
Samuel Horvath, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtarik and Sebastian Stich _ Any unbiased compressor
Stochastic distributed learning with gradient quantization and variance reduction
arXiv:1904.05115, 2019

Variance reduction for finite-
sum on machines (VrR-DIANA)

Eduard Gorbunov, Filip Hanzely and Peter Richtarik G | vsis of SGD
A unified theory of SGD: variance reduction, sampling, quantization and coordinate descent enera ar'a ySI.S o1 many
AISTATS, 2020 methods in a single theorem,

including DIANA

Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Adil Salim, Peter Richtarik and Martin Takac
Distributed fixed point methods with compressed iterates
arXiv:1912.09925, 2019 DIANA for fixed point problems
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Our Hessian Learning Mechanism

is Inspired by DIANA

Zhize Li, Dmitry Kovalev, Xun Qian and Peter Richtarik
Acceleration for compressed gradient descent in distributed and federated optimization
ICML, 2020

Zhize Li and Peter Richtarik
A unified analysis of stochastic gradient methods for nonconvex federated optimization
SpicyFL 2020: NeurlPS Workshop on Scalability, Privacy, and Security in Federated Learning

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtarik
Linearly converging error compensated SGD
NeurlPS, 2020

Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtarik, and Sebastian U. Stich
A linearly convergent algorithm for decentralized optimization: sending less bits for free!
AISTATS, 2021

Mher Safaryan, Filip Hanzely and Peter Richtarik

Smoothness matrices beat smoothness constants: better communication compression
techniques for distributed optimization

arXiv:2102.07245, 2021

Accelerated DIANA
(ADIANA)

Unified analysis of distributed
compressed gradient methods
for nonconvex functions,
including DIANA

DIANA for Error

Compensation
(EC-SGD-DIANA, EC-LSVRG-DIANA)

Decentralized DIANA

DIANA and ADIANA benefit

from matrix smoothness
(DIANA+, ADIANA+)



Our Hessian Learning Mechanism
is Inspired by DIANA

MARINA: faster non-convex distributed learning with compression

l@ Eduard Gorbunov, Konstantin Burlachenko, Zhize Li and Peter Richtarik
Adobe arXiv:2102.07845, 2021




Mher Safaryan, Rustem Islamov, Xun Qian and Peter Richtarik

FedNL: Making Newton-type Methods Applicable to Federated Learning
arXiv:2106.02969, 2021




Improvements Over the First Paper

Table 1: Comparison of the main features of our family of FedNL algorithms and results with those
of Islamov et al. [2021], which we used as an inspiration. We have made numerous and significant
modifications and improvements in order to obtain methods applicable to federated learning.

slamov et al. is Wor
” Feature Isl t al This Work
[2/°21] [5/°21]
supports heterogeneous data settin
[hd] ts heterog data setting v v
S applies to general finite-sum problems
[fs] lies to g 1 finit bl X v
[as] uses adaptive stepsizes v v
pe privacy is enhanced (training data is not sent to the server
[pe] ivacy is enh d (training data i t sent to th ) X v
uc supports unbiased Hessian compression (e.g., Rand-
[uc] 5 biased Hessi ion (e.g., Rand-K) v v
cc supports contractive Hessian compression (e.g., Top-K X v
[cc] g
[fr] fast local rate: independent of the condition number v v
ir fast local rate: independent of the # of training data points X v
[ g
fr fast local rate: independent of the compressor variance X v
[
[pp/ supports partial participation X v/ (Alg2)
[9g/ has global convergence guarantees via line search X v (Alg|3)
99 as global convergence guarantees via cubic regularization g
has global t i bi larizati v v (Algl4
gc supports smart uplink gradient compression at the devices g
t t uplink gradient i t the devi X v (Alg 5
mc supports smart downlink model compression by the master g' |
downlink model ion by th X v (Al
[lc] performs useful local computation v

1st paper 2nd paper



Summary of Complexity Results

Table 2: Summary of algorithms proposed and convergence results proved in this paper.

Convergence Rate independent of
the condition # (left)
Method result type rate # training data (middle) Theorem
compressor (right)

Newton Zero 1 :
NO (Equation @)) Tk < 5570 local linear v/ 3.6
T < 2%7'0 local linear v v/ 3.6
FedNL (Algorithm 1) ok < k@0 local linear /X 3.6
Tht1 < cOkry, local  superlinear v v X 3.6
Partial Participation Wk < kw0 local linear v v C.1
FedNL-PP (Al ofithm@) ok < 6+ 09 local linear v/ X C.1
g ‘ Th+1 < e Wy, local linear v v X C.1

Line Search k '
FedNL-LS (Algorithm 3) A <0%Ap global linear X v v D.1
- A< gk global  sublinear X v v E.1
Cubic Regularization A <08 A global linear X v v E.1
FedNL-CR (Algorithm 4) F < 989 local linear /X E.1
Tr+1 < cOkry, local superlinear v/ X E.1

Bidirectional Compression k k0 .
FedNL-BC (Algorithm 5) @5 <073 local linear v X F.4.

Newton Star 5 -

NS (Equation (55% Te41 S Ty local quadratic v /7 G.1
Quantities for which we prove convergence: (i) distance to solution 7, := ||z* — z*||2; WF := % P lwk — 2|2 (i)
Lyapunov functions q)’f = c||lz* — |2 + %2?:1 ||Hic — szi(a:*)H%; <I>’2C = cWk 4+ %Z?:l ||Hic - Vin(x*)||%;
Ok :=||2F — 2*||2 + c||w* — z*||2. (iii) Function value suboptimality Ay := f(z*) — f(z*)

t constants ¢ > 0 and 0 € (0, 1) are possibly different each time they appear in this table. Refer to the precise statements

of the theorems for the exact values.







