Vladimir Yu. Protasov

Sirius, 13.07.2021

by Tatyana Zaitseva

From childhood to school

S.V. Konyagin

V.M. Tikhomirov

Princeton

Ingrid Daubechies

Jean Bourgain

Jeffrey Lagarias

Amsterdam, 2001

with MSU colleagues

Joint spectral characteristics of linear operators

Joint spectral radius Lyapunov exponent p-radius

Optimization and numerical analysis

Optimizing the
spectral radius $\lambda_{\max}(A) \to \min / \max$ $A \in \mathcal{M}$ $0 \circ 0 \circ 0$

The problem of max acyclic subgraph

PDE (liquid flows)

Exact Computation of Joint Spectral
Characteristics of Linear Operatorswith Nicola Guglielmi,
2013

$$\mathcal{M} = \{A_1, \dots, A_m\}, \quad \mathcal{M}^k = \{A_{d_k} \dots A_{d_1} \mid d_j \in \{1, \dots, m\}\}$$
$$\hat{\rho}(\mathcal{M}) = \lim_{k \to \infty} \max_{B \in \mathcal{M}^k} \|B\|^{1/k}$$

The algorithm for the JSR finds the exact value for the vast majority of matrix families in dimensions ≤20.

It was applied to give answers to several conjectures in combinatorics, number theory, and formal language theory.

be generalized joint spectral radius. A geometric approach

$$\mathcal{M} = \{A_1, \dots, A_m\}, \quad \mathcal{M}^k = \{A_{d_k} \dots A_{d_1} \mid d_j \in \{1, \dots, m\}\} \quad 1997$$

$$\hat{\rho}(\mathcal{M}) = \lim_{k \to \infty} \max_{B \in \mathcal{M}^k} \|B\|^{1/k}$$

$$\hat{\rho}_p(\mathcal{M}) = \lim_{k \to \infty} \left(\frac{1}{m_{B}^k} \sum_{B \in \mathcal{M}^k} \|B\|^p\right)^{\frac{1}{pk}}, \quad p < \infty$$

The Dranishnikov-Konyagin theorem on existence of invariant convex bodies is extended in terms of the operation of generalized addition of convex sets.

The problem of calculating p-radius for even integers p is reduced to determining the usual spectral radius.

stable matrix.

A new method for approximating the maximal eigenvalue of a nonnegative matrix: the local quadratic rate of convergence + polynomial-time global performance guarantees.

Refinement Equations with Nonnegative Coefficients 2000

$$\Phi(x) = \sum_{k \in \mathbb{Z}} p_k \Phi(nx - k) \qquad p_k \ge 0 \qquad \sum_k p_k = 1$$

The equation has a unique* solution with bounded variation
that is either absolutely continuous or purely singular. The

criteria for separation of these two cases is proposed.

$$\varphi(x) = \sum_{k \in \mathbb{Z}} c_k \varphi(nx - k)$$
$$c_k \ge 0$$
$$\sum_k c_k = n \qquad \sum_k |k| c_k < \infty$$

A criteria for existence of L1-solutions

Design of curves and surfaces

Geodesics on convex surfaces and on polyhedra

Poncelet-type theorems, invariant measures of conics

Sets of nonnegative matrices without positive products The matrix A is primitive if for some N holds $A^N > 0$. with A.S. Voynov, 2013 Primitivity conditions for one matrix are well-known. Primitive matrices are irreducible. The imprimitivity index r of an irreducible matrix is equal (Perron-Frobenius theory) to the total number of largest by modulo eigenvalues. Generalization to a family of nonnegative matrices without strictly positive product $\left(\begin{array}{cccc} \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & B_{r-1} & 0 \end{array}\right)$ of matrices of this family is obtained.

A polynomial algorithm to check this property and find imprimitivity index is suggested.

Nicola Guglielmi

numerical methods, dynamical systems

Maria Skopina wavelets

Some coauthors

Vincent

Blondel

combinatorics

jsr,

Lyapunov exponent, automata theory, nonnegative matrices

Yurii **Nesterov**

convex optimization, linear algebra

with M. Skopina, I. Novikov

Wavelet theory

Multivariate Wavelet Frames

2 Springer

with A. Krivoshein, M. Skopina

Multivariate Wavelet Frames

UITTHINATION INDEST

with E. Galeev., M. Zelikin, etc.

0

Books-1,2,3

Optimal control

Геометрические олимпиады им. и. Ф. ШАРЫГИНА

With A. A. Zaslavskiy, D. I. Sharygin

Sharygin's geometric olympiads Books-4,5,6

Sinusoid and fractal

в. ю. п	ротасов
МАКСИ И МИНИ	
B FEOM	АЕТРИИ
k	and the
-1-	-

Maxima and minima in geometry

Dubna, Summer school "Contemporary Mathematics"

Papers in Kvant-1

How to get out of the forest? With A.A. Zaslavskiy, no. 9 (2020), 10-17, <u>link</u>

The Lp space and the remarkable points of the triangle With V.M. Tikhomirov, no. 2 (2012), 2-11, link

ВАН И With А.А. по. 9 (202

2021 · Nº 1

Shortest paths and the Poincaré conjecture

+ no. 1 (2021), 12-22, <u>link</u>

With S.V. Dvoryaninov, Z. Krauter, no. 11 (2017), 2-9, <u>link</u>

no. 2 (2010), 14-22, link

An example from Kvant's paper "How long does it take to dock"

An example from Kvant's paper "How long does it take to dock"

1) How long does it take to dock if the velocity is f(x), where x is the distance between boat and shore?

This is an optimal control problem! If f(x) is differentiable at x = 0,

it takes an infinite time.

2) A bug sits at the base of a bamboo of length 1 m. The bamboo is constantly growing by 1m per day. The bug crawls up by 1 mm per day (relative to bamboo). Will he ever reach the top?

Yes! However, the approximate time is 5×10^{431} years.

Papers in Kvant-2

Two centuries of Poncelet's theorem no. 5-6 (2014), 2-12, <u>link</u>

Tangent circles: from Tebo to Feuerbach no. 4 (2008), 10-16, <u>link</u>

Around Feuerbach's theorem

no. 9 (1992), 51-58, <u>link</u>

Sharygin's geometric masterpieces With V.M. Tikhomirov, no. 1 (2006), 35-39, link

Visiting Professor and Research positions

Institute for Advanced Studies (Princeton, USA)

- Erasmus University Rotterdam, University of Eindhoven (The Netherlands)
- Paris-6 (Université Pierre et Marie Curie), France
- CORE (Center of Operation Research and Economics), UCL (Universite Catholique de Louvain) (Belgium)

University of Vienna, The Ervin Schrodinger Institute (Austria)

University of L'Aquila, University of Triest, GSSI (Italy)

Shanghai Jiao Tong University, (Shanghai, China)

Sabanci University (Istanbul, Turkey)

Hong Kong University of Science and Technology (Hong Kong)

Technion (Haifa, Israel)

Thanks!

Do you have any questions?

zaitsevatanja@gmail.com v-protassov@yandex.ru

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

including Telegram stickers Mu Bear, Massinha, Sasbalas, MRYlno; Kvant illustrations

