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Guiding principles I have learnt from Yurii at CORE

Everything in the world is convex, but we need to find a
right perspective to see this.

A good economic model should be simple enough to be
mathematically tractable, but involved enough to remain
interesting (not only to mathematicians).

⇓

ALGORITHMIC APPROACH TO MICROECONOMICS:

How to explain the behavior of economic agents
by algorithms from convex optimization?
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PROX-FUNCTIONS

d is a prox-function on a closed convex set Q ⊂ Rn if

(1) d is continuous with the domain containing Q.

(2) d is β-strongly convex on Q with respect to a norm ‖ · ‖,
i. e. there exists a constant β > 0 such that for all x , y ∈ Q
and α ∈ [0, 1] it holds:

d(αx +(1−α)y) ≤ αd(x)+(1−α)d(y)− β
2
α(1−α)‖x−y‖2.

(3) The computation of the convex conjugate

d∗(s) = max
x∈Q
〈s, x〉 − d(x)

is simple, i. e. the unique maximizer x(s) can be easily
obtained for any s ∈ Rn.
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DUAL AVERAGING
Nesterov 2013

min
x∈Q

f (x)

xk+1 = argmin
x∈Q

{〈
1

k + 1

k∑
`=0

∇f (x`) , x

〉
+

d(x)√
k + 1

}
,

where
d(x) ≥ d (x0) = 0.

Convergence result:

f

(
1

k + 1

k∑
`=0

x`

)
− f (x∗) ≤ d (x∗)√

k + 1
+

1

2β(k + 1)

k∑
`=0

‖∇f (x`)‖2
∗√

`+ 1

Upper and lower bounds, and convexity parameter
for d(x) on Q are crucial
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ADVANTAGES of PROX-FUNCTIONS

(1) The complexity bounds for optimization methods heavily
depend on the size of the feasible set Q. This value has been
traditionally defined with respect to Euclidean norm.
However, the size of Q, measured with respect to another
norm, can be smaller. By introducing prox-functions, which
are strongly convex with respect to an appropriate norm ‖ · ‖,
it is possible to take into account a particular geometry of the
feasible set Q.

(2) Prox-functions often allow natural interpretations of the
iteration steps within the convex optimization framework.
This feature is important in order to explain agents’ behavioral
dynamics as being driven by unintentional optimization.

HERE: Q = ∆ simplex, ‖ · ‖1 norm, probabilistic interpretation

5 / 34



ADDITIVE RANDOM UTILITY MODELS
McFadden 1978

ARUM aims to model the discrete choice from a finite number of
alternatives {1, . . . , n} by a rational decision-maker prone to some
random errors. Accordingly, the i-th alternative is endowed with
the utility

u(i) + ε(i),

where

• u(i) is its deterministic part,

• ε(i) is the corresponding random error.

A rational decision-maker chooses alternatives with the maximal
utility, so that the corresponding surplus is given by the expectation

E (u) = Eε
(

max
1≤i≤n

u(i) + ε(i)

)
.
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CHOICE PROBABILITIES

Assumption

The random vector ε follows a joint distribution with finite mean
that is absolutely continuous with respect to the Lebesgue measure
and fully supported on Rn.

⇓

Surplus function E is convex and differentiable, in particular, its
partial derivatives can be expressed as choice probabilities:

∂E (u)

∂u(i)
= P

(
u(i) + ε(i) = max

1≤i≤n
u(i) + ε(i)

)
, i = 1, . . . , n.
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CONVEX CONJUGATE of SURPLUS FUNCTION

E ∗(p) = sup
u∈Rn
〈p, u〉 − E (u)

Theorem (Continuity of E ∗)

The convex conjugate E ∗ is continuous on its domain domE ∗

which coincides with the simplex ∆.

Corollary (Upper bound for E ∗)

The convex conjugate E ∗ is bounded from above on its domain ∆,
namely it holds:

E ∗(p) ≤ − min
1≤i≤n

Eε
(
ε(i)
)

for all p ∈ ∆.
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STRONG CONVEXITY: GENERAL CASE

Theorem (Strong convexity of E ∗)

Let the differences ε(j) − ε(i) of random utility shocks have modes
z̄i ,j ∈ R, i 6= j , i.e. there density functions are bounded:

gij (z) ≤ gij (z̄ij ) .

Then, the corresponding convex conjugate E ∗ is β-strongly convex
with respect to the ‖ · ‖1 norm, where the convexity parameter is
given by

β =
1

2
n∑

i=1

∑
j 6=i

gi ,j (z̄i ,j )

.
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STRONG CONVEXITY: IID CASE

Corollary (Strong convexity of E ∗ for IID utility shocks)

Let the random utility shocks ε(i), i = 1, . . . , n, be independent
and identically distributed with the common probability density
function f having a mode z̄ ∈ R. Then, the corresponding convex
conjugate E ∗ is β-strongly convex with respect to the ‖ · ‖1 norm,
where the convexity parameter is given by

β =
1

2n(n − 1)f (z̄)
.

Dependent on dimension n
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MULTINOMIAL LOGIT

IID random utility shocks ε(i), i = 1, . . . , n, each of them following
the Gumbel distribution with zero mode and variance µπ/

√
6.

E (u) = µ ln
n∑

i=1

e
u(i)/µ + µγ.

P
(
u(i) + ε(i) = max

1≤i≤n
u(i) + ε(i)

)
=

eu(i)/µ

n∑
i=1

e
u(i)/µ

, i = 1, . . . , n.

E ∗(p) = µ

n∑
i=1

p(i) ln p(i) − µγ = µH(p)− µγ,

where H is the (negative) entropy. Due to Pinsker inequality, H is
1-strongly convex with respect to ‖ · ‖1. Hence, E ∗ is µ-strongly
convex with respect to ‖ · ‖1.
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GENERALIZED EXTREME VALUE MODELS

Random utility shocks of GEV follow the joint distribution given by
the probability density function

fε
(
y (1), . . . , y (n)

)
=
∂n exp

(
−G

(
e−y (1)

, . . . , e−y (n)
))

∂y (1) · · · ∂y (n)
,

where the generating function G : Rn
+ → R+ fulfills:

(G1) G is homogeneous of degree 1/µ > 0.

(G1) G
(
x (1), . . . , x (i), . . . , x (n)

)
→∞ as x (i) →∞, i = 1, . . . , n.

(G3) For the partial derivatives of G with respect to k distinct
variables it holds:

∂kG
(
x (1), . . . , x (n)

)
∂x (i1) · · · ∂x (ik )

≥ 0 if k is odd
≤ 0 if k is even.
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STRONG CONVEXITY: GEV

Theorem (Strong convexity of E ∗ for GEV)

Let a generating function G for GEV satisfy the following

inequality for all x =
(
x (1), . . . , x (n)

)T ∈ Rn
+:

n∑
i=1

∂2G (x)

∂x (i)2
· x (i)2 ≤ M · G (x)

with some constant M ∈ R. Then, the corresponding convex
conjugate E ∗ is β-strongly convex with respect to the ‖ · ‖1 norm,
where the convexity parameter is given by

β =
1

2(µM + 1)− 1/µ
.
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GENERALIZED NESTED LOGIT MODELS

GNL is a particular class of GEV models with

G (x) =
∑
`∈L

(
n∑

i=1

(
σi` · x (i)

)1/µ`

)µ`/µ

,

where

L is a generic set of nests.

σi` is the share of the i-th alternative within the `-th nest.

µ` describes the variance of the random errors while choosing
alternatives within the `-th nest.

µ describes the variance of the random errors while choosing
among the nests.

For the function G to fulfill (G1)-(G3) we require:

µ` ≤ µ for all ` ∈ L.
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TWO-STAGES of CHOICE PROCESS

(1) the probability of choosing the `-th nest is

q` =
ev`/µ∑

`∈L

e
v`/µ

, where v` = µ` ln

(
n∑

i=1

(
σi` · eu(i)

)1/µ`

)

stands for the utility attached to the `-th nest;
(2) the probability of choosing the i-th alternative within the `-th

nest is

pi` =

(
σi` · eu(i)

)1/µ`

n∑
i=1

(
σi` · eu(i)

)1/µ`
.

Overall, the choice probability of the i-th alternative is

P
(
u(i) + ε(i) = max

1≤i≤n
u(i) + ε(i)

)
=
∑
`∈L

q` · pi`.
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STRONG CONVEXITY: GNL

Corollary (Strong convexity of E ∗ for GNL)

For GNL the corresponding convex conjugate E ∗ is β-strongly
convex with respect to the ‖ · ‖1 norm, where the convexity
parameter is given by

β =
1

2
min
`∈L

µ`
− 1/µ

.

Independent of dimension n
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NESTED LOGIT

Let in GNL for every alternative i there be a unique nest `i ∈ L
with σi`i

= 1, and µ = 1. Then, the nests N` = {i | `i = `} are
mutually exclusive, and the generating function is

G (x) =
∑
`∈L

∑
i∈N`

x (i)1/µ`

µ`

Fosgerau, Melo, de Palma, Shum, 2017:

E ∗(p) =
∑
`∈L

µ`
∑
i∈N`

p(i) ln p(i)+
∑
`∈L

(1− µ`)

∑
i∈N`

p(i)

 ln

∑
i∈N`

p(i)

 .

The same order of magnitude:

β =
1

2
min
`∈L

µ`
− 1/µ

=
1

2
min
`∈L

µ`
− 1

>
1

2
min
`∈L

µ`.
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ORDERED GEV
Small 1987

is a GNL model with

L = {1, . . . , n + m}, µ = 1,

σi` > 0 for all ` ∈ {i , . . . , i + m},

σi` = 0 for all ` ∈ L\{i , . . . , i + m}.

There are n + m overlapping nests N` = {i | `−m ≤ i ≤ `}, and
every alternative lies exactly in m + 1 of them, namely i ∈ N` for
` = i , . . . , i + m. Then, the generating function is

G (x) =
n+m∑
`=1

∑
i∈N`

(
σi`x

(i)
)1/µ`

µ`

.
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PAIRED COMBINATORIAL LOGIT
Koppelman, Wen 2000

is a GNL model with

L = {(i , j) ∈ {1, . . . , n} | i 6= j}, µ = 1,

σi` =


1

2(n − 1)
if ` = (i , j), (j , i) with j 6= i ,

0 else.

There are n2 − n nests corresponding to the pairs of alternatives,
and every alternative lies in 2(n − 1) of them.

G (x) =
∑

`=(i ,j),i 6=j

((
σi`x

(i)
)1/µ`

+
(
σj`x

(j)
)1/µ`

)µ`
.
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PRINCIPLES OF DEFFERENTIATION GEV
Bresnahan, Stern, Trajtenberg 1997

is a GNL model with

L =
⋃̇

d∈D

Ld , µ = 1, µ` = µd for all ` ∈ Ld ,

σi` =

{
σd if i ∈ N`d and ` ∈ Ld ,
0 else,

where

{1, . . . , n} =
⋃̇
`∈Ld

N`d .

The set D represents the dimensions of alternatives. For d-th
dimension alternatives are clustered into disjoint nests N`d , ` ∈ Ld .

G (x) =
∑
d∈D

σd

∑
`∈Ld

∑
i∈N`d

(
x (i)
)1/µd

µd

.
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CROSS MOMENT MODEL
Mishra, Natarajan, Tao, Teo 2012

In CMM the surplus function is maximized w.r.t. random error
with zero mean and a given covariance Σ:

Z (u) = max
ε∼(0,Σ)

Eε
(

max
1≤i≤n

u(i) + ε(i)

)
.

With random error ε(u) ∼ (0,Σ) that maximizes the surplus
function, the corresponding choice probabilities are

p(i) = P
(
u(i) + ε(i)(u) = max

1≤i≤n
u(i) + ε(i)(u)

)
, i = 1, . . . , n.
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DUAL REPRESENTATION in CMM
Ahipasaoglu, Li, Natarajan 2019

Z (u) = max
p∈∆
〈p, u〉+ tr

((
Σ

1/2

(
diag(p)− ppT

)
Σ

1/2

)1/2
)
.

The solution p ∈ ∆ of the latter optimization problem provides the
choice probabilities. Hence, the convex conjugate of Z is

Z ∗(p) = −tr

((
Σ

1/2

(
diag(p)− ppT

)
Σ

1/2

)1/2
)
.

Z ∗ is shown to be strongly convex on the simplex w.r.t. Euclidean
norm. Z ∗ can be therefore used as a discrete choice prox-function
on the simplex as well.
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SIMPLICITY

Theorem (Simplicity)

The unique maximizer of the optimization problem

E (u) = sup
p∈∆
〈p, u〉 − E ∗(p)

is given by the choice probabilities

p(i) = P
(
u(i) + ε(i) = max

1≤i≤n
u(i) + ε(i)

)
, i = 1, . . . , n.
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LOWER BOUND

Corollary (Lower bound for E ∗)

The unique minimizer p0 of the convex conjugate E ∗ consists of
the choice probabilities with respect to the zero-utility, i. e.

p
(i)
0 = P

(
ε(i) = max

1≤i≤n
ε(i)

)
, i = 1, . . . , n.

Moreover, it holds:

E ∗ (p) ≥ E ∗ (p0) = −Eε
(

max
1≤i≤n

ε(i)

)
for all p ∈ ∆.
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UTILITY MAXIMIZATION

max
x ≥ 0
〈π, x〉 = 1

min
1≤i≤n

(Qx)(i)

σ(i)︸ ︷︷ ︸
Leontieff utility U(x)

consumption goods j = 1, . . . ,m
prices of goods π ∈ Rm

+

demand for goods x ∈ Rm
+

qualities of goods i = 1, . . . , n
quality standards σ ∈ Rn

+

quality matrix Q = (qij ) ∈ Rn×m with qij denoting the
amount of quality i while consuming one unit of good j

spend 1 e for demand x in order to maximize
the worst ratio of consumption/standard qualities
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DUAL PROBLEM

max
x ≥ 0
〈π, x〉 = 1

min
1≤i≤n

(Qx)(i)

σ(i)︸ ︷︷ ︸
Leontieff utility U(x)

= max
x ≥ 0
〈π, x〉 = 1

min
λ∈∆︸︷︷︸

simplex

〈
Qx

σ
, λ

〉

max
x ≥ 0
〈π, x〉 = 1

min
λ ≥ 0
〈σ, λ〉 = 1

〈Qx , λ〉 duality
= min

λ ≥ 0
〈σ, λ〉 = 1

max
x ≥ 0
〈π, x〉 = 1

〈Qx , λ〉

min
λ ≥ 0
〈σ, λ〉 = 1

max
x ≥ 0
〈π, x〉 = 1

〈
x ,QTλ

〉
= min

λ ≥ 0
〈σ, λ〉 = 1

max
1≤j≤m

(
QTλ

)(j)

π(j)︸ ︷︷ ︸
Overvaluation Φ(λ)

adjust internal prices of qualities λ in order to
minimize the best quality/price ratio of goods
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BUYING & CONSUMING

max
x ≥ 0
〈π, x〉 = 1

min
1≤i≤n

(Qx)(i)

σ(i)
= min

λ ≥ 0
〈σ, λ〉 = 1

max
1≤j≤m

(
QTλ

)(j)

π(j)

Internal prices

of qualities λ
−→

Buy goods with

best quality/price

ratio
(QTλ)(j)

π(j)

λ+
x choice

probabilities

y x

Choose qualities with

worst consumption/standard

ratio (Qx)(i)

σ(i)

←− Experience qualities Qx

by consuming goods
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SCALING of INTERNAL PRICES

min
λ ≥ 0
〈σ, λ〉 = 1

max
1≤j≤m

(
QTλ

)(j)

π(j)︸ ︷︷ ︸
Φ(λ)

Using new variables

p(i) = σ(i)λ(i), i = 1, . . . , n,

the dual problem reads:

min
p ∈ ∆

Ψ (p) ,

where the objective function is

Ψ(p) = Φ
(p
σ

)
.
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DUAL AVERAGING
Nesterov 2013

1. Compute ∇Ψ (pk ).

2. Set sk+1 =
1

k + 1

k∑
`=0

∇Ψ (p`).

3. Update pk+1 = arg min
p∈∆

{
〈sk+1, p〉+

d(p)√
k + 1

}
.

d(p) := E ∗(p)− E ∗ (p0)︸ ︷︷ ︸
discrete-choice prox-function
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STEP 1

∇Ψ (pk ) =
∇Φ (λk )

σ
=

Qyk/π

σ
,

where the sharing vector yk ∈ ∆ fulfills

y
(j)
k = 0 for j 6∈ J (λk )

and the active index set J (λk ) contains goods with the best
quality/price ratio estimated by means of internal prices λk .
We set the demand at the k-th iteration as

xk =
yk

π
.

Overall, we obtain:

∇Ψ (pk ) =
Qxk

σ
.
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STEP 2

We set

sk+1 =
1

k + 1

k∑
`=0

∇Ψ (p`) =
1

k + 1

k∑
`=0

Qx`
σ

=
Qx̄k

σ

with the average demand

x̄k =
1

k + 1

k∑
`=0

x`.

Thus, sk+1 relates the average consumption Qx̄k to standards σ.
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STEP 3

pk+1 = arg min
p∈∆

{
〈sk+1, p〉+

E ∗(p)− E ∗ (p0)√
k + 1

}
.

Due to simplicity, we equivalently obtain for i = 1, . . . , n:

p
(i)
k+1 = P

(
s

(i)
k+1 −

ε(i)

√
k + 1

= min
1≤i≤n

s
(i)
k+1 −

ε(i)

√
k + 1

)
.

For the internal prices we have:

λ
(i)
k+1 =

1

σ(i)
P

(
s

(i)
k+1 −

ε(i)

√
k + 1

= min
1≤i≤n

s
(i)
k+1 −

ε(i)

√
k + 1

)
.

Thus, the internal price λ
(i)
k+1 of the i-th quality is proportional to

the probability of detecting its average consumption (Qx̄k )(i) as
the lowest one as compared to the standard σ(i).
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CONVERGENCE RESULT

Theorem

The duality gap between (P) and (D) evaluated at the average
demand and the average internal prices is closing at the optimal

rate O
(

1√
k+1

)
. Namely, it holds for k ≥ 0:

0 ≤ Φ
(
λ̄k

)
− U (x̄k ) ≤

(
D +

M2

β

)
1√
k + 1

,

where

M = max
1 ≤ i ≤ n
1 ≤ j ≤ m

|qi ,j |
σ(i) · π(j)

, D = Eε
(

max
1≤i≤n

ε(i)

)
− min

1≤i≤n
Eε
(
ε(i)
)
.
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