Superfast second-order methods for Unconstrained Convex Optimization

Yurii Nesterov, CORE/INMA

(UCLouvain, Belgium)

OPTIMIZATION WITHOUT BORDERS (SIRIUS, RISSIA)

Online presentation, July 12, 2021

Very old story: Proximal-Point Method

Proximal approximation for $f(\cdot)$: Moreau-Yosida regularization

$$\varphi_{\lambda}(x) = \min_{y} \left\{ f(y) + \frac{1}{2\lambda} ||y - x||^2 \right\}, \quad \lambda > 0,$$

where the norm is Euclidean: $||x|| = \langle Bx, x \rangle^{1/2}$, B > 0.

(Moreau (1965), Yosida (1980)).

Transformed into a method by Martinet (1978):

$$x_{k+1} = \arg\min_{y \in \mathbb{E}} \left\{ f(y) + \frac{1}{2\lambda} \|y - x_k\|^2 \right\}, \ k \ge 0.$$

Convergence rate: $O(k^{-1})$.

Remarks

- Not better than the usual Gradient Method.
- Much more difficult iteration.
- ▶ 2nd birth: link to Augmented Lagrangian (Rockafellar 1976).
- ► Accelerated by Guller (1992) using the Fast Gradient Technique. (Sensitive to inaccuracy?)
- Extensions onto the entropy-like distances (Teboulle, Iusem, Svaiter (1992-1994))

High-order Proximal Points

$$f^* = \min_{x \in \mathbb{E}} \ f(x)$$

Problem: $f^* = \min_{x \in \mathbb{R}} f(x)$ where $f(\cdot)$ is a differentiable

closed convex function. Denote by x^* its optimal solution.

For
$$p \ge 1$$
, denote $d_{p+1}(x) = \frac{1}{p+1} ||x||^{p+1}$.

Proximal-point operator of order $p \ge 1$: Choose H > 0 and compute

$$\operatorname{prox}_{f/H}^p(\bar{x}) = \arg\min_{x \in \mathbb{E}} \Big\{ f_{\bar{x},H}^p(x) \equiv f(x) + Hd_{p+1}(x - \bar{x}) \Big\}.$$

Hint. Let $T = \operatorname{prox}_{f/H}^{p}(\bar{x})$. Then

$$f'(T) + H||T - \bar{x}||^{p-1}B(T - \bar{x}) = 0,$$

and
$$f(\bar{x}) - f(T) \ge \langle f'(T), \bar{x} - T \rangle = H \|T - \bar{x}\|^{p+1} = H^{-\frac{1}{p}} \|f'(T)\|_*^{\frac{p+1}{p}}$$
.

Since
$$f(T) - f^* \le R \|f'(T)\|_*$$
, we get $f(\bar{x}) - f(T) \ge c(f(T) - f^*)^{\frac{p+1}{p}}$.

NB: • This is the rate $O(k^{-p})$, with $p \ge 1$.

- The classical proximal-point algorithm is of the 1st order.
- No assumptions on $f(\cdot)$ except convexity!

Implementable versions

Inexact iteration:

$$(*) \quad T \in \mathcal{A}^p_H(\bar{x},\beta) = \Big\{ x \in \mathbb{E} : \ \|\nabla f^p_{\bar{x},H}(x)\|_* \le \beta \|\nabla f(x)\|_* \Big\},$$
 where $\beta \in [0,1)$ is a tolerance parameter.

Basic method: $x_{k+1} \in \mathcal{A}^p_H(x_k, \beta), k \geq 0$. Convergence $O(k^{-p})$

Accelerated method. Choose
$$x_0 \in \mathbb{E}$$
, $\beta \in [0, \frac{1}{p}]$, $H > 0$, and $\psi_0(x) = d_{p+1}(x - x_0)$. Define $A_k = \frac{2(1-\beta)}{H} \left(\frac{k}{2p+2}\right)^{p+1}$.

Iteration $k \ge 0$.

- 1. Compute $v_k = \arg\min_{x \in \mathbb{E}} \psi_k(x)$ and choose $y_k = \frac{A_k}{A_{k+1}} x_k + \frac{a_{k+1}}{A_{k+1}} v_k$.
- **2.** Compute $x_{k+1} \in \mathcal{A}_{H}^{p}(y_{k}, \beta)$, and update

$$\psi_{k+1}(x) = \psi_k(x) + a_{k+1}[f(x_{k+1}) + \langle \nabla f(x_{k+1}), x - x_{k+1} \rangle].$$

Convergence $O(k^{-(p+1)})$ Again, no assumptions on $f(\cdot)$ yet.

Main question: How we can ensure (*)?

Bi-Level Unconstrained Minimization (BLUM)

Upper level: Choose the order of the method $p \ge 1$ and the proximal-point scheme.

NB: Its rate of convergence does not depend on the properties of the objective.

Lower level: Choose the lower level method for computing inexact proximal-point iteration.

- ▶ The order of the lower-level scheme is not necessarily equal to p.
- ► The complexity of the auxiliary problem depends on the properties of the objective function.

Recent developments: Tensor Methods

Problem:

$$\min_{x \in \mathbb{E}} f(x)$$

 $\min_{x \in \mathbb{E}} f(x)$ where $f(\cdot)$ is a differentiable function on \mathbb{E} .

Taylor approximation:

$$\Omega_{x,p}(y) = f(x) + \sum_{k=1}^{p} \frac{1}{k!} D^k f(x) [y-x]^k, \quad y \in \mathbb{E},$$

where $D^k f(x)[h]^k$ is the kth derivative of $f(\cdot)$ at $x \in \mathbb{E}$ along $h \in \mathbb{E}$.

Lipschitz continuity $||D^p f(x) - D^p f(y)|| \le L_p ||x - y||$ $||x, y| \in \mathbb{E}$,

where the norm $\|\cdot\|$ is Euclidean and $p \ge 1$.

Augmented Taylor approximation:

$$\hat{\Omega}_{x,p,H}(y) = \Omega_{x,p}(y) + \frac{H}{(p+1)!} ||y - x||^{p+1}, \ y \in \mathbb{E}.$$

Main property:

$$f(y) \leq \hat{\Omega}_{x,p,L_p}(y)$$
 for all $y \in \mathbb{E}$.

NB: The minimum of $\hat{\Omega}_{x,p,H}(\cdot)$ belongs to $\mathcal{A}_{H}^{p}(x,\beta)$ for H big enough.

Implementability ($p \ge 1$)

Th. (N.2019) If $f(\cdot)$ is convex and $H \ge pL_p$, then $\hat{\Omega}_{x,p,H}(\cdot)$ is <u>convex</u>.

NB: For p = 3, function $\tau^3 + H\tau^4$, $\tau \in \mathbb{R}$, is *never* convex.

Corollary. The point $T_{p,H}(x) = \arg\min_{y \in \mathbb{E}} \hat{\Omega}_{x,p,H}(y)$ is computable.

Basic Tensor Method: $x_{k+1} = T_{p,H}(x_k)$ Convergence: $O(k^{-p})$.

Accelerated Tensor Methods. Convergence: $O(k^{-(p+1)})$.

(Baes 2009, N.2019. Tool: Estimating sequences.)

Extensions (Monteiro, Svaiter (2014) for p = 2) $O(k^{-(3p+1)/2})$.

NB: Very expensive line search (Bubeck, Jiang, Lee, Li, Sidford (2019), Gasnikov, Gorbunov, Kovalev, Mohhamed, Chernousova (2019)).

Maximal rate (Agarwal, Hazan (2017), Arjevani, Shamir, Shiff (2017))

$$O(k^{-(3p+1)/2}): p=2 \Rightarrow O(k^{-7/2}), p=3 \Rightarrow O(k^{-5}).$$

Main difficulty: Implementation of Tensor Step.

Implementable 3rd-order method (N.2019)

Assumption: $||D^3 f(x) - D^3 f(y)|| \le L_3 ||x - y||, x, y \in \mathbb{E}.$

Augmented Taylor Polynomial:

$$\hat{\Omega}_{x,p,H}(h) = f(x) + \langle f'(x), h \rangle + \frac{1}{2} \langle f''(x)h, h \rangle + \frac{1}{6} D^3 f(x) [h]^3 + \frac{H}{24} ||h||^4.$$

Main Theorem: $D^3 f(x)[h] \leq f''(x) + \frac{L_3}{2} ||h||^2 I$ for all $x, h \in \mathbb{E}$,

where I is the identity matrix.

Proof:
$$\forall x, h \in \mathbb{E} \Rightarrow 0 \leq f''(x-h) \leq f''(x) - D^3 f(x)[h] + \frac{L_3}{2} ||h||^2 I$$
.

Corollary: for function $\rho_x(h) = \frac{1}{2} \langle f''(x)h, h \rangle + \frac{L_3}{4} ||h||^4$, we have

$$\left(1 - \frac{1}{\sqrt{2}}\right) \rho_{\mathsf{x}}^{\prime\prime}(h) \leq \hat{\Omega}_{\mathsf{x},\mathsf{p},\mathsf{6}L_3}^{\prime\prime}(h) \leq \left(1 + \frac{1}{\sqrt{2}}\right) \rho_{\mathsf{x}}^{\prime\prime}(h).$$

Thus, we can use relative non-degeneracy condition!

Bauschke-Bolte-Teboulle(RHS, 2016), Lu-Freund,-Nesterov(LHS, 2018)

Relative non-degeneracy

Convex problem: $f^* = \min_{x \in \mathbb{R}} f(x)$.

Scaling function: $\rho(\cdot)$ is strictly convex.

Relative non-degeneracy: $\mu \rho''(x) \leq f''(x) \leq L \rho''(x) \quad \forall x \in \mathbb{E}.$

Bregman distance: $\beta_{\rho}(x,y) = \rho(y) - \rho(x) - \langle \rho'(x), y - x \rangle$.

Main property: $\mu \beta_{\rho}(x,y) \leq \beta_{f}(x,y) \leq L \beta_{\rho}(x,y) \quad \forall x,y \in \mathbb{E}.$

Bregman-Distance Gradient Method (BDGM):

$$x_{k+1} = \arg\min_{x \in \mathbb{F}} [f(x_k) + \langle f'(x_k), x - x_k \rangle + L\beta_{\rho}(x_k, x)], \ k \ge 0.$$

(Nonsmooth Beck-Teboulle ORLetters(2003). Smooth N. MP(2005))

Convergence: for $\gamma = \frac{\mu}{I}$ and $k \ge 0$ we have

$$\beta_{\rho}(x_{k+1}, x^*) \leq (1 - \gamma)\beta_{\rho}(x_{k+1}, x^*) - \frac{1}{2L}(f(x_k) - f^*).$$

Our case: $\mu = 1 - \frac{1}{\sqrt{2}}, \ L = 1 + \frac{1}{\sqrt{2}}, \ \gamma = 3 - 2\sqrt{2} > \frac{1}{6}.$

Accelerated 3rd-order method

Let
$$x_0 \in \mathbb{E}$$
, $\psi_0(x) = \frac{1}{4} \|x - x_0\|^4$, $A_k = \frac{10}{7L_3} \left(\frac{2}{3}\right)^3 \left(\frac{k}{4}\right)^4$, $a_{k+1} = A_{k+1} - A_k$.

Iteration $k \geq 0$: **1.** Define $v_k = \arg\min_{x \in \mathbb{R}} \psi_k(x)$ and $y_k = \frac{A_k}{A_{k+1}} x_k + \frac{a_k}{A_{k+1}} v_k$.

2. Set
$$\varphi_k(h) = \langle f'(y_k), h \rangle + \frac{1}{2} \langle f''(y_k)h, h \rangle + \frac{1}{6} D^3 f(y_k)[h]^3 + \frac{6L_3}{24} ||h||^4$$
,

$$\rho_k(h) = \frac{1}{2} \langle f''(y_k)h, h \rangle + \frac{L_3}{4} ||h||^4$$
. Set $h_{k,0} = 0$ and iterate BDGM:

$$h_{k,i+1} = \arg\min_{h \in \mathbb{E}} \left\{ \langle \varphi_k'(h_{k,i}), h - h_{k,i} \rangle + L\beta_{\rho_k}(h_{k,i}, h) \right\}, \quad i \geq 0.$$
 When stop at i_k , define $x_{k+1} = y_k + h_{k,i_k}$.

3. Update
$$\psi_{k+1}(x) = \psi_k(x) + a_{k+1}[f(x_{k+1}) + \langle f'(x_{k+1}), x - x_{k+1} \rangle].$$

Convergence: $O(k^{-4})$. **Question:** What is the order of this method?

NB: We use
$$D^3 f(y_k)[h]^2 = \lim_{\tau \to 0} \frac{1}{\tau^2} [f'(y_k + \tau h) + f'(y_k - \tau h) - 2f'(y_k)].$$

It is two! What about the "lower bound" $O(k^{-7/2})$?

What is the next? Line search

Augmented prox-iteration: for $p \ge 1$ define

$$\operatorname{prox}_{f/H}^{p}(\bar{x},\bar{u}) = \arg\min_{x \in \mathbb{E}, \tau \in \mathbb{R}} \left\{ f(x) + Hd_{p+1}(x - \bar{x} - \tau\bar{u}) \right\} \; \in \; \mathbb{E} \times \mathbb{R}, \quad \ \ (**)$$

where $\bar{x}, \bar{u} \in \mathbb{E}$, and H > 0. This is a convex problem!

Main idea: ensure $\langle f'(T), u \rangle = 0$. (Very difficult for Tensor Methods!)

Proximal-Point hoth-order Method with Segment Search ($au \in [0,1]$)

Initialization. Choose $x_0 \in \mathbb{E}$, H > 0, and $\psi_0(x) = \frac{1}{2} ||x - x_0||^2$.

Iteration $k \geq 0$. **1.** Compute $v_k = \arg\min_{x \in \mathbb{R}} \psi_k(x)$.

- **2.** Compute $(x_{k+1}, \tau_k) = \text{prox}_{f/H}^p(x_k, v_k x_k)$ with $\tau_k \in (0, 1)$.
- **3.** Define $y_k = x_k + \tau_k(v_k x_k)$ and $g_k = ||f'(x_{k+1})||_*$.
- **4.** Define a_{k+1} by equation $\frac{a_{k+1}^2}{A_k + a_{k+1}} = \frac{g_k^{(1-p)/p}}{H^{1/p}}$. Set $A_{k+1} = A_k + a_{k+1}$.
- **5.** Set $\psi_{k+1}(x) = \psi_k(x) + a_{k+1}[f(x_{k+1}) + \langle f'(x_{k+1}), x x_{k+1} \rangle].$

Rate: $O(k^{-(3p+1)/2})$ **Challenge:** Implementation of (**) for p = 3.

Positive Answer

1. For p=3, we can compute and approximate solution to (**) in polynomial time: Nesterov (January 2020) by relative smooothness.

Main features

- a) We use bisection for computing an appropriate τ_k .
- **b)** At each internal step, we compute approximately the 3rd-order proximal-point operator, using BDGM with the prox-function defined by the Hessian at starting point.
- **c)** The update of estimating functions is done by combination of two gradients.
- **2.** This 2^{nd} -order scheme converges as k^{-5} . (Compare with $k^{-3.5}$)
- 3. Our results are valid for functions with bounded 4th derivative.

Gasnikov, Kamzolov for Moneiro-Swaiter (March 2020).

Conclusion

- ▶ Within the framework BLUM, we have two parameters:
 - the order of the upper-level scheme;
 - problem class containing the auxiliary problem.

They are independent. We need to fill a table of complexity results.

- ► For two-level schemes, the expected practical efficiency is very high. (Small chances to meet worst-worst functions.)
- ▶ High sublinear rate: $\epsilon = 10^{-6} \approx 2^{-20}$, $\epsilon^{-1/5} = 16$, $\log_2 \frac{1}{\epsilon} = 20$.
- Many open questions:
 - Lower complexity bounds for high-order proximal-point methods.
 - Constrained/composite minimization (inexact versions).
 - Finer problem classes (strong convexity, uniform convexity).
 - Universal methods.
 - etc.

INTERESTING PROGRAM FOR THE FUTURE RESEARCH!

References

1. Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. *CORE Discussion Paper* 2020/07 (submitted JOTA).

Implementation of 3^{rd} -order method with 2^{nd} -order oracle. Convergence $O(k^{-4})$.

2. Yurii Nesterov. Inexact accelerated high-order proximal-point methods. *CORE Discussion Paper* 2020/08 (Submitted MathProg)

General framework with high-order proximal point methods.

3. Yurii Nesterov. Inexact accelerated high-order proximal-point methods with auxiliary search procedure. *CORE Discussion Paper* 2020/10 (accepted by SIOPT).

2nd-order implementation of 3rd-order scheme with the rate $\tilde{O}(k^{-5})$.

THANK YOU FOR YOUR ATTENTION!