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Structure of the Lecture

1. Preliminaries from Machine Learning and Convex optimization

2. Monte Carlo approach and sum-type optimization problems

3. Variance reduction (VR) vs Statistical Similarity

4. Gradient descent with relative smoothness and strong convexity and relation with
Similarity setup

5. Lower bound for Similarity and the problem of acceleration

6. Partial acceleration is possible via second-order methods
7. Sum-type Saddle-point problems (SPP) - no need of acceleration. Optimal method

8. Open problem: Distributed VR for SaSPP
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Variance reduction

1) Fi(x) has sum-type structure and variance reduction is possible

Variance Reduced EXTRA and DIGing and Their Optimal Acceleration for
Strongly Convex Decentralized Optimization

Huan Li! Zhouchen Lin? Yongchun Fang'

Abstract

We study stochastic decentralized optimization for the problem of training machine learning models with large-
scale distributed data. We extend the widely used EXTRA and DIGing methods with variance reduction (VR),
and propose two methods: VR-EXTRA and VR-DIGing. The proposed VR-EXTRA requires the time of
O((ks 4+ n)log 1) stochastic gradient evaluations and O((ks + k.)log L) communication rounds to reach
precision €, which are the best complexities among the non-accelerated gradient-type methods, where x4 and
Ky are the stochastic condition number and batch condition number for strongly convex and smooth problems,
respectively, k.. is the condition number of the communication network, and 7 is the sample size on each distributed
node. The proposed VR-DIGing has a little higher communication cost of O((xy, + k2) log %) Our stochastic
gradient computation complexities are the same as the ones of single-machine VR methods, such as SAG, SAGA,
and SVRG, and our communication complexities keep the same as those of EXTRA and DIGing, respectively. To
further speed up the convergence, we also propose the accelerated VR-EXTRA and VR-DIGing with both the
optimal O((y/nks + n) log £) stochastic gradient computation complexity and O(4/kpk. log £) communication
complexity. Our stochastic gradient computation complexity is also the same as the ones of single-machine
accelerated VR methods, such as Katyusha, and our communication complexity keeps the same as those of
accelerated full batch decentralized methods, such as MSDA. To the best of our knowledge, our accelerated
methods are the first to achieve both the optimal stochastic gradient computation complexity and communication
complexity in the class of gradient-type methods.
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Variance reduction

1) Fi(x) has sum-type structure and variance reduction is possible
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Statistical Similarity
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Statistical Similarity

1) Fi(x) has sum-type structure and variance reduction is possible

f(x, &) 1s L-smooth tn x for all & = ||V F(x)|| <L

f(x, &) s A-strongly convex tn x for all £
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Gradient method with relative smoothness and
strong convexity

d(x)
V(y,x) = d(y) — d(x) — (Vd(x),y — x)

SIAM J. OPTIM. (© 2018 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 333—-354

RELATIVELY SMOOTH CONVEX OPTIMIZATION BY
FIRST-ORDER METHODS, AND APPLICATIONS*

HAIHAO LU, ROBERT M. FREUND!, AND YURII NESTEROV?

Abstract. The usual approach to developing and analyzing first-order methods for smooth
convex optimization assumes that the gradient of the objective function is uniformly smooth with
some Lipschitz constant L. However, in many settings the differentiable convex function f(-) is not
uniformly smooth—for example, in D-optimal design where f(z) := —Indet(HXH7T) and X :=
Diag(x), or even the univariate setting with f(z) := —In(z) + 2. In this paper we develop a notion
of “relative smoothness” and relative strong convexity that is determined relative to a user-specified
“reference function” h(-) (that should be computationally tractable for algorithms), and we show that
many differentiable convex functions are relatively smooth with respect to a correspondingly fairly
simple reference function h(-). We extend two standard algorithms—the primal gradient scheme
and the dual averaging scheme—to our new setting, with associated computational guarantees. We
apply our new approach to develop a new first-order method for the D-optimal design problem, with
associated computational complexity analysis. Some of our results have a certain overlap with the
recent work [H. H. Bauschke, J. Bolte, and M. Teboulle, Math. Oper. Res., 42 (2017), pp. 330-348].



Gradient method with relative smoothness and
strong convexity
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Gradient method with relative smoothness and
strong convexity and Similarity
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Gradient method with relative smoothness and
strong convexity and Similarity
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Warning: Unfortunately, this rate is not optimal (accelerated)!
But! Accelerated method with relative smoothuness and stromg convexity

(s th principle tmpossible tn general sef up.

Full Length Paper | Published: 21 April 2021

Optimal complexity and certification of Bregman first-
order methods

Radu-Alexandru Dragomir &, Adrien B. Taylor, Alexandre d’Aspremont & Jéréme Bolte
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Statistical Similarity

min F(x) := —
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This problem has specific structure
1) Fi(x) has sum-type structure and variance reduction is possible
Assumptions:

f(x, &) is L-smooth tn x for all & = ||V F(x)|| <L

fx, &) s A-strongly convex
[s this bound tight? That 15, can we propose

Cormmunication rounds such algorithm that works according to this
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Lower bound for distributed convex
optimization under similarity

Communication Complexity of Distributed
Convex Learning and Optimization

Yossi Arjevani Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
Rehovot 7610001, Israel Rehovot 7610001, Israel
yossi.arjevani@weizmann.ac.1il ohad.shamir@weizmann.ac.1il
Abstract

We study the fundamental limits to communication-efficient distributed methods for convex learning
and optimization, under different assumptions on the information available to individual machines, and
the types of functions considered. We identify cases where existing algorithms are already worst-case
optimal, as well as cases where room for further improvement is still possible. Among other things, our
results indicate that without similarity between the local objective functions (due to statistical data simi-
larity or otherwise) many communication rounds may be required, even if the machines have unbounded
computational power.
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Lower communication rounds bound for
distributed convex optimization under similarity

We consider the problem of distributed convex learning and optimization, where a set of /m machines, each
with access to a different local convex function F; : R% — R and a convex domain WW C R?, attempt to
solve the optimization problem

: 1
min F(w) where F(W)ZEZFZ(W). (1)

A prominent application i1s empirical risk minimization, where the goal i1s to minimize the average loss
over some dataset, where each machine has access to a different subset of the data. Letting {z,...,2zn}
be the dataset composed of N examples, and assuming the loss function /(w, z) is convex in w, then the
empirical risk minimization problem minweyy + ZZ]\L , {(w,z;) can be written as in Eq. (1), where F;(w)
is the average loss over machine 7’s examples.

15



Lower communication rounds bound for
distributed convex optimization under similarity

Definition 1. We say that a set of quadratic functions
Fi(w):=w' Ajw +b;w+¢;, A eR¥ b, eR? ¢ eR
are o-related, if for any i,j € {1...k}, it holds that
1Ai = Ajll <0, [[bi =bjl| <9, |e; —¢j| <9

Assumption 1. For each machine j, define a set W; C RY, initially W, = {0}. Between communication
rounds, each machine j iteratively computes and adds to W; some finite number of points w, each satisfying

yw + vV Fj(w) € span {W’ , VE;(W), (V*Fj(w') + D)w” | (V°F;(w') + D)"'w”

w',w” € W, , Ddiagonal , V°F;(w') exists , (V°F;(w')+ D)™* exists}. (2)

for some y,v > 0 such that v + v > 0. After every communication round, let W; := U, W, for all j. The

1=

algorithm’s final output (provided by the designated machine j) is a point in the span of W.
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Lower communication rounds bound for
distributed convex optimization under similarity
Definition 1. We say that a set of quadratic functions
Fi(w) :=w'A;w+b;w +¢;, A, e R b, e R ¢; €R
are §-related, if for any i,j € {1...k}, it holds that
[Ai — Ajl] <9, [[bi —byl| <0, [e; —¢j| <0
We begin by presenting a lower bound when the local functions F} are strongly-convex and smooth:

Theorem 1. For any even number m of machines, any distributed algorithm which satisfies Assumption I,
and for any X\ € [0,1),6 € (0, 1), there exist m local quadratic functions over R® (where d is sufficiently
large) which are 1-smooth, \-strongly convex, and 0-related, such that if w* = arg ming,pa F'(W), then
the number of communication rounds required to obtain W satisfying F(w) — F(w*) < € (for any ¢ > 0)

is at least
1 1 A |lw*||? 1 5 A |lw* ||

if A\ > 0, and at least ??—256 |w*|| —2if A= 0.

17
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Lower communication rounds bound for distributed
convex optimization under similarity (two machines)

(1 — )\ (1 — )\ A
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Upper communication rounds bound for
distributed convex optimization under similarity
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Lower bound (Arjevani-Shamir, 2015): Q 7 log| —
/

\

E

Upper bound (for DISCO, 2019):

http://proceedings.mir.press/v37/zhangb15.pdf

Upper bound (For SONATA, 2019):

arXiv:1905.02637v2

Upper bound (for SPAG, 2020):

http://proceedings.mir.press/v119/hendrikx20a/hendrikx20a.pdf

Upper bound (Agafonov of al., 2021):

arXiv:2103.14392
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Upper communication rounds bound for
distributed convex optimization under similarity

( 1/6 )
2 2
Upper bound (Agafonov ot al., 2021): ) é log AR + LyAF
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An Accelerated Second-Order Method for Distributed Stochastic
Optimization

Artem Agafonov, Pavel Dvurechensky, Gesualdo Scutari, Alexander Gasnikov,
Dmitry Kamzolov, Aleksandr Lukashevich, and Amir Daneshmand

Abstract— We consider distributed stochastic optimization  optimization problem:
problems that are solved with master/workers computation )
architecture. Statistical arguments allow to exploit statisti- 111 F(z) := E¢ f(2,9), (1)
cal similarity and approximate this problem by a finite-sum reRr
problem, for which we propose an inexact accelerated cubic- Where § is a random variable, e.g. random data, f is convex
regularized Newton’s method that achieves lower communica- and sufficiently smooth, which implies that F' is convex.

tion complexity bound for this setting and improves upon ex-  We assume that we have access to m workers, 7' rounds of
isting upper bound. We further exploit this algorithm to obtain . s
communications (all to all or to the master node), and a total

convergence rate bounds for the original stochastic optimization .. ) .
problem and compare our bounds with the existing bounds fixed budget of N realizations of £. Under this assumption

in several regimes when the goal is to minimize the number the main question is how small we can make the error
of communication rounds and increase the parallelization by EF (x7)— F(2*) by different algorithms returning a random

increasing the number of workers. point 7. Here 2* denotes a solution to (1).
Index Terms— tochastic optimization, statistical similarity, To solve (1) on master/workers architectures, two main
distributed optimizationtochastic optimization, statistical sim- ’ )
approaches are used [11], [12], [13], namely Stochastic

ilarity, distributed optimizations e A
Approximation (SA) and Sample Average Approximation
I. INTRODUCTION (SAA), ak.a. Monte-Carlo. The division between SA and

20
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Upper communication rounds bound for
~ distributed convex optimization under similarity

( 1/6 )
Upper bound (A. Agafonov et al,, 2021): O \/Elog /I_R2 N L:AF
arXiv:2103.14392 J) o PE

\ y
Main idea: To use (Accelerated) Cubic Regularized Newton method (Nesterov-Polyak, 2006; Nesterov 2008)

Z Fi) IV2Fi(x) = VIl < 6

mlnF(x)
IV2Fi(y) = V)| < Lylly — x]|.

Available at master
1 L . hode (1) via
+5<x — x (V2F () 4 281 (x — x%)) + ZZIIX — X' IP}  communications

\ [n Cubic Regularized Newton

method we have VZF(x")
stead of V2F,(x*) + 261

X1 = arg min{ F(x*) + (VF(xY), x — x*)+
X <+

2



A. Bezunosikov

Saddle-point problems

We study smooth (strongly-)convex-(strongly-)concave SPPs over a network of M agents:

" p
min max f (. y) = Zf z, ), (P)

Let us stack the x- and y-variables in the tuple z = (z, y); accordingly, define Z = X x ) and the
operators F,,, F : Z — R?*%:

M
F(2) := (_VVQ{?WEZ’C%), and  F(z) = — ZFm (1)

=1

The following conditions are standard for strongly convex-strongly concave SPPs.

22



Saddle-point problems

Assumption 1 Given (P), the following hold.:

(i) 0 # Z is a convex and compact set;

(ii) Each f,, : R** — R is twice differentiable on (an open set containing) Z, with L-smooth
gradient: ||F,,(z1) — Fp,(22)|| < L||z1 — 23|, forall z1, 25 € Z;

(iii) f(z) is p-strongly convex-strongly concave on Z, i.e., (F(z1) — F(22),21 — 22) > pul||z1 —
2|2, forall z1,20 € Z;

(iv) Each f,,(z) is convex-concave on Z, i.e. 0-strongly convex-strongly concave.
We are interested 1n studying Problem (P) under function similarity.

Assumption 2 (d-related f,,’s) The local functions are d-related: for all (x,y) € Z,

Vz:yfm(xa y) o v:?:yf(xa y) < 57

The interesting case is when 1 + §/u < L/ pu.

23



Saddle-point problems.
Lower complexity bounds

Definition 1 Each agent m has its own local memories M7, and MY, for the x- and y-variables,
respectively—with initialization M¥, = MY = {0}. ML and M., are updated as follows.

e Local computation: Between communication rounds, each agent m computes and adds to its M7,
and MY a finite number of points x, vy, each satisfying

ax + Vg fn(x,y) € span{z’ , Vg frm(z',y),
(Viefm(@"y") + D)z, (Vi fm(z",y") + D)V fm(2',y)
(VaeSm(x ”,y”)JrD)‘1 " (Vaafm(@" y") + D)V fn (@', ),

(V2 F @Y NY (Vo f (@ ")V fr (@ y)
Oy — oVy fm(z,y) € span{y’, Vyfm( '),
(Vo fm (2", y") + D)y ( 2 fm (@ ") + D)V fr (2, y)

y')+
(V2 ( ”) ) ( 2 fm( llay//)+D)_1vyfm(x,7y,)7
(Vayfm(z" y") o’ ( fm( "N Vafm(@y) ]
(4)
for given z’ ;2" € MZ andy',y" € MY ; some o, 3,0, > 0 such that « + 5 > 0 and 6 + ¢ > 0;
and D is some diagonal matrix (such that all the inverse matrices exist).

24



Saddle-point problems.
Lower complexity bounds

e Communication: Based upon communication rounds among neighbouring nodes, M3, and MY,
are updated according to

M = span < U MT >, M;‘fnzzspan< U M5 (5)

L (1,m)€E (i,m)€e€

e Output: The final global output is calculated as:

M M
xKESpan{U an}, yKESpan{U M?,Jn}

m=1 m=1

25



Saddle-point problems.
Lower complexity bounds

Theorem 1 Forany i € [0;1), 6 € (0;1) and connected graph G with diameter A > 0, there exist
a SPP in the form (P) (satisfying Assumption 1) with Z = R>? (where d is sufficiently large), and
local functions f,, being 1-smooth, u-strongly-convex-strongly-concave, o-related (Assumption 2)
such that any centralized algorithm satisfying Definition 1 produces the following estimate on the
global output 2% = (¥, y®) after K communication rounds:

(
K %12 _ (_K ) 1 \ * 2\
|27 = 27T = pexp | == [l

\ \ 8+\/1652(%—1)2+1) )

Corollary 1 In the setting of Theorem I, the number of communication rounds required to obtain a

e-solution is lower bounded by
5 * |2
Q(A(l—l——)-log(“y | )) (6)
[ €

26




Saddle-point problems.
Optimal algorithm

min max f(z,y) := —

_ ( Vafm(z,y) 1w
r€X yeyY M fm(ﬁlj,y), Fm(z) L= (—Vyfm(flf;yy)) , and F(Z) = M Z Fm(z)

i1

Algorithm 1 (Star Min-Max Data Similarity Algorithm)

Parameters: stepsize vy, accuracy e;

Initialization: Choose (2°,1°) = 2" € Z, 29 = 20, forall m € [M];
1: fork=0,1,2,...do
2: Each worker m computes F},,(2*) and sends it to the master;
3: The master node:

(i) computes v = 2F — - (F(zk) — F1(Zk));

(ii) finds u®, s.t. ||[u® — @*||?> < e, where 4" is the solution of:

. 1 k2 L k2

; (8)

(iii) updates z*t! = proj [u* + v - (F(2*) — F1(2%) — F(u*) 4+ F;(u*))| and broadcasts
zF*1 to the workers
4: end for

27



Saddle-point problems.
Optimal algorithm

Theorem 3 Consider Problem (P) under Assumptions 1-2 over a connected graph G with a master
node. Let {z*} be the sequence generated by Algorithm 1 with tuning as described in Appendix B.1
(cf. the supplementary material). Then, given € > 0, the number of communication rounds for

|28 —2*||? <eis O((1+ 6/u) log(1/¢)).

Theorem 7 Let problem (8) be solved by extragradient with precision é:

1
€= 2752 2 (16)
g 252
2(2—|— p -I-w—|-4fy (5)
and number of iterations I" from (15). Additionally, let us choose stepsize vy as follows
1 1
y = min { i e (1)
Then Algorithm I converges linearly to the solution z* and it holds that HZK — 27 < € after
It A
K=0|—log iterations. (18)
TH €
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Saddle-point problems.
Variance reduction

How to obtan optimal bound For distributed saddle-potnt problems with variance reduction?

Hypothesis: to combine ideas of arX1v:2009.04333, http://proceedings.mlr.press/v130/
gorbunov21a/gorbunovZia.pdf and arXiv:2102.08352, arXiv:2106.017361

Variance Reduced EXTRA and DIGing and Their Optimal Acceleration for
Strongly Convex Decentralized Optimization

Huan Li' Zhouchen Lin? Yongchun Fang !

Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
Convex-Concave Minimax Optimization

Luo Luo * Guangzeng Xie ** Tong Zhang ° Zhihua Zhang 1
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