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Structure of the Lecture
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1. Preliminaries from Machine Learning and Convex optimization

2. Monte Carlo approach and sum-type optimization problems

3. Variance reduction (VR) vs Statistical Similarity

4. Gradient descent with relative smoothness and strong convexity and relation with 
Similarity setup

5. Lower bound for Similarity and the problem of acceleration

6. Partial acceleration is possible via second-order methods

7. Sum-type Saddle-point problems (SPP) - no need of acceleration. Optimal method

8. Open problem: Distributed VR for SaSPP 
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Answer (up to a log-factor):

Where: Strong convexity constant of  f
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Decentralized and Parallelized Primal and Dual Accelerated Methods

for Stochastic Convex Programming Problems

Darina Dvinskikh, and Alexander Gasnikov

Abstract

We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for
primal and dual oracles the proposed methods are optimal in terms of the number of communication steps. However, for all
classes of the objective, the optimality in terms of the number of oracle calls per node in the class of methods with optimal
number of communications steps takes place only up to a logarithmic factor and the notion of smoothness (the worst case vs the
average one). We also show that using mini-batching technique all proposed methods with stochastic oracle can be additionally
parallelized on each node.

I. INTRODUCTION

Consider stochastic convex optimization problem

f(x) = E[f(x, ⇠)] ! min
x2Q✓Rn

. (1)

Such kind of problems arise in many applications of data science [56], [59] and mathematical statistics [60]. To solve this
problem with average precision " in function value one can use stochastic gradient (mirror) descent [30] with
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number of calculations of unbiased stochastic subgradients rf(x, ⇠) (E[krf(x, ⇠)k22]  M
2). Here R = kx0 � x

⇤k2 is
the Euclidean distance from the starting point x0 to the solution x

⇤ and µ is the constant of strong convexity of f in (1).
Unfortunately, generally in this case we can parallelize calculations at most of Õ(1) processors [17]. If we additionally
assume that f has L-Lipschitz (continuous) gradient and E[krf(x, ⇠)�rf(x)k22]  �

2, then we can reduce (2) to
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by using batch parallelization [11], [15], [21], [22]. Note that we can parallelize calculations at no more than
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processors (depends on where is a minimum in (3)), that is much better. Since the result cannot be improved [68], it is the
best possible way (in general) to solve (1) by using parallel architecture in online context.

For many reasons, in some situations in practice it can impossible to organize model-based request1 for calculation of
stochastic gradient rf(xk

, ⇠
k) in online regime. Typically, in machine learning applications [25], [56] instead of online access

to
�
rf(xk

, ⇠
k)
 m

k=1
we have offline access. This means that the set of functions

�
f(x, ⇠k)

 m

k=1
are stored somewhere in

the memory and to use them in algorithms we need to request corresponding function and then calculate its gradient. This
may significantly change the complexity of the problem. Indeed, from [24], [57], [59] it is known that with high probability
the exact solution of problem

f̃(x) =
1

m

mX

k=1

f(x, ⇠k) ! min
x2Q✓Rn

(4)

is an "-solution (in function) of problem (1) if2
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1This procedure assume that we have the dependence rf(x, ⇠) and for desired x can easily generate (obtain) independent realization of ⇠ and return
rf(x, ⇠). That is we do not need to keep in the memory the set of functions {f(x, ⇠k)}k for different k.

2If µ = 0 or small enough one may use regularization technique (see e.g. [20], [57]). This allows to reduce the first part of the estimate:
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Sum type target convex function



Too many terms!

Problem: How to store data in memory?

To use distributed approachAnswer:

Problem: Too many communications and oracle calls required

Answer: To store at each node a lot of data. And rewrite optimization problem  

We skip this term 
for simplicity

min
x∈Q

F(x) :=
1
M

M

∑
k=1

1
r

r

∑
i=1

f (x, ξk,i)
This problem has specific structure Fk(x) =

1
r

r

∑
i=1

f (x, ξk,i)
1)  has sum-type structure and variance reduction is possibleFk(x)

2) Statistical Similarity ∥∇2Fk(x) − ∇2F(x)∥ = O
L2

2n
r



Variance reduction
min
x∈Q

F(x) :=
1
M
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k=1

1
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∑
i=1

f (x, ξk,i)
This problem has specific structure Fk(x) =

1
r

r

∑
i=1

f (x, ξk,i)
1)  has sum-type structure and variance reduction is possibleFk(x)



Variance reduction
min
x∈Q

F(x) :=
1
M

M

∑
k=1

1
r

r

∑
i=1

f (x, ξk,i)
This problem has specific structure

1)  has sum-type structure and variance reduction is possibleFk(x)

  is -smooth in  for all f(x, ξ) L x ξ

Assumptions:

  is -strongly convex in  for all f(x, ξ) λ x ξ

O
L
λ

log ( LR2

ε ) Communication rounds

O (r + r
L
λ ) log ( LR2

ε ) Oracle calls per node Fk(x) =
1
r

r

∑
i=1

f (x, ξk,i)

k

Optimal bounds for general :fk,i(x) ≠ f(x, ξk,i)



Statistical Similarity
min
x∈Q

F(x) :=
1
M
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∑
k=1

1
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r

∑
i=1

f (x, ξk,i)
This problem has specific structure

1)  has sum-type structure and variance reduction is possibleFk(x)

  is -smooth in  for all f(x, ξ) L x ξ

Assumptions:

  is -strongly convexf(x, ξ) λ
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ε ) Communication rounds

Fk(x) =
1
r

r

∑
i=1

f (x, ξk,i)

k

Optimal bound ?:

Is this bound optimal?

Answer: No, if we use similarity: ,  i.i.d.fk,i(x) = f(x, ξk,i) ξk,i

in  for all x ξ



Statistical Similarity
min
x∈Q

F(x) :=
1
M

M

∑
k=1

1
r

r

∑
i=1

f (x, ξk,i)
This problem has specific structure

1)  has sum-type structure and variance reduction is possibleFk(x)

  is -smooth in  for all   f(x, ξ) L x ξ ⇒ ∥∇2Fk(x)∥ ≤ L

Assumptions:

 is -strongly convexf(x, ξ) λ
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Communication rounds

Fk(x) =
1
r

r

∑
i=1

f (x, ξk,i)

k

O
δ
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log ( LR2

ε )
∥∇2Fk(x) − ∇2F(x)∥ ≤ δ

Variance reduction

-Similarityδ

Fk(x) =
1
r

r

∑
i=1

f (x, ξk,i)

in  for all x ξ



Gradient method with relative smoothness and 
strong convexity

min
x∈Q

F(x) :=
1
M

M

∑
k=1

Fk(x)

- Smooth convex functiond(x)
- Bregman divergenceV(y, x) = d(y) − d(x) − ⟨∇d(x), y − x⟩



Gradient method with relative smoothness and 
strong convexity

V(y, x) = d(y) − d(x) − ⟨∇d(x), y − x⟩

λ∇2d(x) ≺ ∇2F(x) ≺ L∇2d(x)

xk+1 = arg min
x∈Q

{F(xk) + ⟨∇F(xk), x − xk⟩ + LV(x, xk)}
F(xN) − min

x∈Q
F(x) ≤ ε

N = O ( L
λ

log ( ΔF
ε ))

min
x∈Q

F(x) :=
1
M

M

∑
k=1

Fk(x)



Gradient method with relative smoothness and 
strong convexity and Similarity

d(x) = F1(x) +
δ
2

∥x∥2

λ
λ + 2δ

∇2d(x) ≺ ∇2F(x) ≺ ∇2d(x)

xk+1 = arg min
x∈Q

{F(xk) + ⟨∇F(xk), x − xk⟩ + V(x, xk)}

F(xN) − min
x∈Q

F(x) ≤ ε

N = O ( max{δ, λ}
λ

log ( ΔF
ε ))

Available at master 
node (1) via 

communications

Available at master 
node (1)

min
x∈Q

F(x) :=
1
M

M

∑
k=1

Fk(x)



Gradient method with relative smoothness and 
strong convexity and Similarity

N = O ( max{δ, λ}
λ

log ( ΔF
ε )) = O ( δ

λ
log ( ΔF

ε ))
Warning: Unfortunately, this rate is not optimal (accelerated)!

But! Accelerated method with relative smoothness and strong convexity 
is in principle impossible in general set up.



Statistical Similarity
min
x∈Q

F(x) :=
1
M
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∑
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∑
i=1

f (x, ξk,i)
This problem has specific structure

1)  has sum-type structure and variance reduction is possibleFk(x)

  is -smooth in  for all   f(x, ξ) L x ξ ⇒ ∥∇2Fk(x)∥ ≤ L

Assumptions:

 is -strongly convexf(x, ξ) λ

O
L
λ

log ( LR2

ε )
Communication rounds

O
δ
λ

log ( LR2

ε )
∥∇2Fk(x) − ∇2F(x)∥ ≤ δ

Variance reduction

-Similarityδ

Fk(x) =
1
r

r

∑
i=1

f (x, ξk,i)

Is this bound tight? That is, can we propose 
such algorithm that works according to this 

bound? What is a lower bound?

The answer is - this is the lower bound (up 
to a log-factors), but is this bound tight or 
not? - is still an open question in general.



Lower bound for distributed convex 
optimization under similarity
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Lower communication rounds bound for 
distributed convex optimization under similarity
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Lower communication rounds bound for 
distributed convex optimization under similarity
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Lower communication rounds bound for 
distributed convex optimization under similarity
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Lower communication rounds bound for distributed 
convex optimization under similarity (two machines)
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Upper communication rounds bound for 
distributed convex optimization under similarity
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Ω
δ
λ

log ( λR2

ε )Lower bound (Arjevani-Shamir, 2015):

Õ
δ
λ

log ( λR2

ε )Upper bound (for SONATA, 2019):

Upper bound (for SPAG, 2020):

Õ
δ
λ

log ( λR2

ε ) + ( L2
2ΔF
λ3 )

1/6

arXiv:1905.02637v2

http://proceedings.mlr.press/v119/hendrikx20a/hendrikx20a.pdf 
Õ

δ
λ

log ( λR2

ε )

Upper bound (Agafonov et al., 2021):
arXiv:2103.14392

Õ
δ
λ

log ( λR2

ε ) +
L2

2ΔF
λ3

Upper bound (for DISCO, 2019):
http://proceedings.mlr.press/v37/zhangb15.pdf 

http://proceedings.mlr.press/v119/hendrikx20a/hendrikx20a.pdf
http://proceedings.mlr.press/v37/zhangb15.pdf


Upper communication rounds bound for 
distributed convex optimization under similarity
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Upper bound (Agafonov et al., 2021):
arXiv:2103.14392
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2ΔF
λ3 )

1/6



Upper communication rounds bound for 
distributed convex optimization under similarity
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Upper bound (A. Agafonov et al., 2021):
arXiv:2103.14392

Main idea: To use (Accelerated) Cubic Regularized Newton method (Nesterov-Polyak, 2006; Nesterov 2008)

min
x

F(x) :=
1
m

m

∑
i=1

Fi(x),
∥∇2Fi(y) − ∇2Fi(x)∥ ≤ L2∥y − x∥.

xk+1 = arg min
x

{F(xk) + ⟨∇F(xk), x − xk⟩+

+
1
2

⟨x − xk, (∇2F1(xk) + 2δI)(x − xk)⟩ +
L2

6
∥x − xk∥3}

Õ
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log ( λR2

ε ) + ( L2
2ΔF
λ3 )

1/6

Available at master 
node (1) via 

communications

In Cubic Regularized Newton 
method we have  
instead of 

∇2F(xk)
∇2F1(xk) + 2δI

∥∇2Fi(x) − ∇2F(x)∥ ≤ δ



Saddle-point problems
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A. Beznosikov



Saddle-point problems
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Saddle-point problems. 

Lower complexity bounds
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Saddle-point problems. 

Lower complexity bounds
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Saddle-point problems. 

Lower complexity bounds
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Saddle-point problems. 

Optimal algorithm
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Saddle-point problems. 

Optimal algorithm
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Saddle-point problems. 

Variance reduction

How to obtain optimal bound for distributed saddle-point problems with variance reduction? 

Hypothesis: to combine ideas of arXiv:2009.04373, http://proceedings.mlr.press/v130/
gorbunov21a/gorbunov21a.pdf  and arXiv:2102.08352, arXiv:2106.01761 

http://proceedings.mlr.press/v130/gorbunov21a/gorbunov21a.pdf
http://proceedings.mlr.press/v130/gorbunov21a/gorbunov21a.pdf

