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Shapley-Folkman Theorem

Minkowski sum. Given sets X,Y ⊂ Rd, we have

X + Y = {x+ y : x ∈ X, y ∈ Y }

(CGAL User and Reference Manual)

Convex hull. Given subsets Vi ⊂ Rd, we have

Co

(∑
i

Vi

)
=
∑
i

Co(Vi)
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Shapley-Folkman Theorem

The `1/2 ball, Minkowsi average of two and ten balls, convex hull.

+ + + + =

Minkowsi sum of five first digits (obtained by sampling).
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Shapley-Folkman Theorem

Basic idea. Let C ⊂ Rd be an arbitrary set.∑n
i=1C

n
=
∑ ni

n
xi → Co(C)

where ni ∈ N ,
∑
i ni = n.

Given sets Ci ⊂ Rd, let C = 1
n

∑n
i=1Ci, this also means

∑n
i=1Ci
n

→
∑n
i=1Co(Ci)

n

the Minkowski sum of sets converges to its convex hull.
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Shapley-Folkman Theorem

Shapley-Folkman Theorem [Starr, 1969, Emerson and Greenleaf, 1969]

Suppose Vi ⊂ Rd, i = 1, . . . , n, and

x ∈
n∑
i=1

Co(Vi)

then
x ∈

∑
S

Co(Vi) +
∑

[1,n]\S

Vi

for some |S| ≤ d.
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Shapley-Folkman Theorem

Proof sketch. Write x ∈∑n
i=1Co(Vi), or

(
x
1n

)
=

n∑
i=1

d+1∑
j=1

λij

(
vij
ei

)
, for λ ≥ 0,

Conic Carathéodory then yields representation with at most n+ d nonzero
coefficients. Use a pigeonhole argument

λij

} d

}
n xi ∈ Vixi ∈ Co(Vi)

Number of nonzero λij controls gap with convex hull.
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Shapley-Folkman: geometric consequences

Consequences.

� If the sets Vi ⊂ Rd are uniformly bounded with rad(Vi) ≤ R, then

dH

(∑n
i=1 Vi
n

,Co

(∑n
i=1 Vi
n

))
≤ R

√
min{n, d}

n

where rad(V ) = infx∈V supy∈V ‖x− y‖.

� Holds for many other nonconvexity measures (e.g. volume deficit) [Fradelizi
et al., 2017].
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Outline

� The Shapley-Folkman Theorem

� Duality Gap Bounds

� Feature Selection

� Numerical Performance

Alex d’Aspremont OWB, July 2021. 8/34



Nonconvex Optimization

Separable nonconvex problem. Solve

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b, (P)

in the variables xi ∈ Rdi with d =
∑n
i=1 di, where fi are lower semicontinuous

and A ∈ Rm×d.

Take the dual twice to form a convex relaxation,

minimize
∑n
i=1 f

∗∗
i (xi)

subject to Ax ≤ b (CoP)

in the variables xi ∈ Rdi.
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Nonconvex Optimization

Convex envelope. Biconjugate f∗∗ satisfies epi(f∗∗) = Co(epi(f)), which
means that

f∗∗(x) and f(x) match at extreme points of epi(f∗∗).

Define lack of convexity as ρ(f) , supx∈dom(f){f(x)− f∗∗(x)}.

Example.

0 x

1

e d

i

l

The l1 norm is the convex envelope of Card(x) in [−1, 1].
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Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

Gr ,
{

(r0, r) ∈ R1+m :

n∑
i=1

fi(xi) ≤ r0, Ax− b ≤ r, x ∈ Rd
}
,

we can write the dual function of (P) as

Ψ(λ) , inf
{
r0 + λ>r : (r0, r) ∈ G∗∗r

}
,

in the variable λ ∈ Rm, where G∗∗ = Co(G) is the closed convex hull of the
epigraph G.

If G∗∗ = G, no duality gap in (P).
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Nonconvex Optimization

Epigraph & duality gap. Define

Fi =
{

(fi(xi), Aixi) : xi ∈ Rdi
}

+ Rm+1
+

where Ai ∈ Rm×di is the ith block of A.

� The epigraph Gr can be written as a Minkowski sum of Fi

Gr =

n∑
i=1

Fi + (0,−b) + Rm+1
+

� Shapley-Folkman shows f∗∗(xi) = f(xi) for all but at most m+ 1 terms in
the objective.

� As n→∞, with m/n→ 0, Gr gets closer to its convex hull G∗∗r , and the
duality gap becomes negligible.
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Bound on duality gap

General result. Consider the separable nonconvex problem

hP (u) := min.
∑n
i=1 fi(xi)

s.t.
∑n
i=1 gi(xi) ≤ b+ u

(P)

in the variables xi ∈ Rdi, with perturbation parameter u ∈ Rm.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions fi, gji in problem (P)
satisfy assumption (...) for i = 1, . . . , n, j = 1, . . . ,m. Let

p̄j = (m+ 1) max
i
ρ(gji), for j = 1, . . . ,m

then
hP (p̄)∗∗ ≤ hP (p̄) ≤ hP (0)∗∗ + (m+ 1) max

i
ρ(fi).

where hP (u)∗∗ is the optimal value of the dual to (P).
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Outline

� The Shapley-Folkman Theorem

� Duality Gap Bounds

� Feature Selection

� Numerical Performance
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Feature Selection

� Reduce number of variables while preserving classification performance.

� Often improves test performance, especially when samples are scarce.

� Helps interpretation.

Classical examples: LASSO, `1-logistic regression, RFE-SVM, . . .
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Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs
control). 35238 genes, 2695 examples. [Lachmann et al., 2018]
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Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217O12.1, LYZ,
EEF1A1, MT-CO1, HBA2, HBB, HBA1.
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Introduction: feature selection

Applications. Mapping brain activity by fMRI.

From PARIETAL team at INRIA.
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Introduction: feature selection

fMRI. Many voxels, very few samples leads to false discoveries.

Wired article on Bennett et al. “Neural Correlates of Interspecies Perspective
Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple
Comparisons Correction” Journal of Serendipitous and Unexpected Results, 2010.
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Multinomial Naive Bayse

Multinomial Naive Bayse. In the multinomial model

logProb(x | C±) = x> log θ± + log

(
(
∑m
j=1 xj)!∏m
j=1 xj!

)
.

Training by maximum likelihood

(θ+∗ , θ
−
∗ ) = argmax

1>θ+=1>θ−=1
θ+,θ−∈[0,1]m

f+> log θ+ + f−> log θ−

where f± are sum of positive (resp. negative) feature vectors. Linear
classification rule: for a given test point x ∈ Rm, set

ŷ(x) = sign(v + w>x),

where

w , log θ+∗ − log θ−∗ and v , logProb(C+)− logProb(C−),
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Sparse Naive Bayse

Naive Feature Selection. Make w , log θ+∗ − log θ−∗ sparse.

Solve
(θ+∗ , θ

−
∗ ) = argmax f+> log θ+ + f−> log θ−

subject to ‖θ+ − θ−‖0 ≤ k
1>θ+ = 1>θ− = 1
θ+, θ+ ≥ 0

(SMNB)

where k ≥ 0 is a target number of features. Features for which θ+i = θ−i can be
discarded.

Nonconvex problem.

� Convex relaxation?

� Approximation bounds?
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Sparse Naive Bayse

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let φ(k) be the optimal value of (SMNB). Then φ(k) ≤ ψ(k), where ψ(k) is the
optimal value of the following one-dimensional convex optimization problem

ψ(k) := C + min
α∈[0,1]

sk(h(α)), (USMNB)

where C is a constant, sk(·) is the sum of the top k entries of its vector argument,
and for α ∈ (0, 1),

h(α) := f+◦log f++f−◦log f−−(f++f−)◦log(f++f−)−f+ logα−f− log(1−α).

Solved by bisection, linear complexity O(n+ k log k).
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Naive Feature Selection

Duality gap bound. Sparse naive Bayes reads

hP (u) = minq,r −f+> log q − f−> log r

subject to 1>q = 1 + u1,

1>r = 1 + u2,∑m
i=1 1qi 6=ri ≤ k + u3

in the variables q, r ∈ [0, 1]m, where u ∈ R3. There are three constraints, two of
them convex, which means p̄ = (0, 0, 4).

Theorem [Askari et al., 2019]

NFS duality gap bounds. Let φ(k) be the optimal value of (SMNB) and ψ(k)
that of the convex relaxation (USMNB). We have

ψ(k − 4) ≤ φ(k) ≤ ψ(k),

for k ≥ 4.

Primalization is tricky, cf. paper. . .
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Sparse Programs

Sparse Programs. Low rank data and sparsity constraints

pcon(k) , min
‖w‖0≤k

f(Xw) +
γ

2
‖w‖22, (P-CON)

in the variable w ∈ Rm, where X ∈ Rn×m is low rank, y ∈ Rn, γ > 0 and k ≥ 0.

Penalized formulation

ppen(λ) , min
w

f(Xw) +
γ

2
‖w‖22 + λ‖w‖0 (P-PEN)

in the variable w ∈ Rm, where λ > 0.

Key examples: LASSO, `0-constrained logistic regression.
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Convex Relaxation

The bidual of (P-CON) is written

p∗∗con(k) = min
v,u∈[0,1]m

f(XD(u)v) +
γ

2
v>D(u)v : 1>u ≤ k (BD-CON)

Non-convex, but setting ṽ = D(u)v equivalent to

p∗∗con(k) = min
ṽ,u∈[0,1]m

f(Xṽ) +
γ

2
ṽD(u)†ṽ : 1>u ≤ k (D)

in the variables ṽ, u ∈ Rm, where ṽ>D(u)†ṽ is jointly convex in (ṽ, u).

This is the interval relaxation of the `0 sparsity constraint.
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Duality Gap Bounds

Proposition [Askari et al., 2021]

Gap Bounds. Suppose X = UrΣrV
>
r is a compact, rank-r SVD decomposition of

X. From a solution (v∗, u∗) of (BD-CON) with objective value t∗, with probability
one, we can construct a point with at most k + r + 2 nonzero coefficients and
objective value OPT satisfying

pcon(k + r + 2) ≤ OPT ≤ p∗∗con(k) ≤ pcon(k) (Gap-Bound)

by solving a linear program written

minimize c>u

subject to f(Urz
∗) +

∑m
i=1 ui

γ
2v
∗2
i = t∗∑m

i=1 ui ≤ k∑m
i=1 ui`iv

∗
i = z∗

u ∈ [0, 1]m

(1)

in the variable u ∈ Rm where c ∼ N (0, Im), z∗ = ΣrV
>
r D(u∗)v∗.
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Duality Gap Bounds

LASSO vs. interval.

Optimality

� Interval: only need low rank

� LASSO: need RIP, incoherence

Support Recovery

� Interval: need low rank + RIP

� LASSO: need RIP, incoherence

Both have similar computational cost.
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Outline

� Sparse Naive Bayes

� The Shapley-Folkman Theorem

� Duality Gap Bounds

� Other Applications

� Numerical Performance
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Naive Feature Selection

Data.

Feature Vectors Amazon IMDB Twitter MPQA SST2

Count Vector 31,666 103,124 273,779 6,208 16,599

tf-idf 31,666 103,124 273,779 6,208 16,599

tf-idf wrd bigram 870,536 8,950,169 12,082,555 27,603 227,012

tf-idf char bigram 25,019 48,420 17,812 4838 7762

Number of features in text data sets used below.

Amazon IMDB Twitter MPQA SST2

Count Vector 0.043 0.22 1.15 0.0082 0.037

tf-idf 0.033 0.16 0.89 0.0080 0.027

tf-idf wrd bigram 0.68 9.38 13.25 0.024 0.21

tf-idf char bigram 0.076 0.47 4.07 0.0084 0.082

Average run time (seconds, plain Python on CPU).
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Naive Feature Selection.
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Accuracy versus run time on IMDB/Count Vector, MNB in stage two.
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Naive Feature Selection.
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Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000
(right panel), showing that the duality gap quickly closes as m or k increase.
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LASSO and `0-Logistic Regression

Synthetic example with X ∈ R1000×100 and rank 10.
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Left: Duality gap for linear regression with a `0 penalty.

Right: Duality gap for `0 constrained logistic regression.
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Naive Feature Selection.
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Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with
fixed ratio k/m, empirically showing (sub-) linear complexity.

Alex d’Aspremont OWB, July 2021. 32/34



Naive Feature Selection.

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

� Preprocessing (NaN, encoding categorical features) takes 50 minutes.

� Computing f+ and f− takes 20 minutes.

� Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.
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Standard workstation, plain Python on CPU.
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Conclusion

Shapley Folkman.

� Duality gap bounds for separable problems.

� Require no RIP assumption (only the naive one behind NB).

� Extend to LASSO, `0-logistic regression.

For naive Bayes, we get sparsity almost for free.

Papers: ArXiv:1905.09884. AISTATS 2020 and ArXiv:2102.06742.

Python code: https://github.com/aspremon/NaiveFeatureSelection
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