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Hidden manifold time series model \kztxx;;,é‘ J

A learner observes Y71, ..., Yr generated from a model
Y;:Xt_‘_sta 1<t<T7

where
B {X,:1<t< T} CRPisahidden Markov chain on a
low-dimensional manifold M*, dim(M*) =d < D

B ¢4,...,e7 are independent zero-mean innovations,
E(e|X;) = Oforalltfrom1to T
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Hidden manifold time series model

A learner observes Y71, ..., Yr generated from a model
Y;:Xt_‘_sta 1<t<T7

where

B {X,:1<t< T} CRPisahidden Markov chain on a
low-dimensional manifold M*, dim(M*) =d < D

B ¢4,...,e7 are independent zero-mean innovations,
E(e|X;) = Oforalltfrom1to T

Goal: predict Y|
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Example 1: central subspace model \kztxx;;,é‘ é

Let g : R? — IR” be a smooth function and let ® be a (p x d)-matrix.
Central subspace model:

Zi=9(®"Zi 1)+ &, 1<t<T

Take

Xt = (thlag(i)TZt71>> € RQP) }/t = (thla Zt) , &= (Oagt)

Then Y; = X, + ¢; and X, lies on the graph of g o &7 which is a
d-dimensional submanifold in RY with D = 2p
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Example 2: Encoder-decoder model \kztxx;;,é‘ é

A natural extension of the central subspace model is
Zy=g(f(Zi1)) + &, 1<t<T,

where g : R? — RP and f : R? — R” are smooth functions

Consider X; = (Z,_1,9(f(Z;-1))) € R*?, Y, = (Z,_1, Z4),
Et = (0,&5)

Then X lies on the graph of g o f, which is a d-dimensional
submanifold in R? with D = 2p.
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Example 3: autoregressive model

A standard univariate autoregressive model of order 7 is given by
T
Zy = Z&iZt—i +&, 1<t<T.

Fix D > 7 and apply a sliding window technique:
Y, = (Z,...,Z—p11) € RP.

Then the autoregressive model can be rewritten in the form
Y, = AY, 1 + &, whererank(A) < D, g, = (&,0,...,0) € R”.

In this case, X; = AY;_; liesonIm(A).

Asrank(A) < D, Im(A) is a linear subspace in R” of dimension
rank(A).
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Example of hidden manifold time series model

Y; = —1—cos (0.21(Yie1 — 2Y;0)) + 0.2e;, & ~N(0,1)

08

Observation at time t-1

N O R R R R—— ]
Observation at time t

Figure: Example of hidden manifold time series model. The vectors
(Y, Y;—1) lie around 1-dimensional manifold
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Time series forecasting. General reduction scheme @
Fix an integer b, construct patches

Y, =(Z 1,29y, Zi ) ERPP b+ 1K<t T}
and consider a set of pairs

Sp={(Ys,Z) : b+1<t<T}

Assumption: high-dimensional vectors Y, 1, ..., Yy, € RP,

D = bp, lie around a low-dimensional manifold
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General reduction scheme for time series forecasting 'Z’iié j

Project the points Yj11, . . ., Y71 onto a manifold and denote the
projections by X1, ..., X7, respectively

Assumption: close vectors .X; and X; correspond to similar Z; — Z;_4
and Z; — Z;_1, i. e. similar historical behaviours induce similar
increments
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General reduction scheme for time series forecasting 'Z’iié j

Prediction at the moment 1" + 1 is determined by the weighted

k-nearest neighbors rule:

T

Z wt(Zt - Zpl)

t=b+1

Zp = Zr + -
> w
1=b+1

where the weights are defined by the formula

[ X741 — Xi

_ —(T+1—t)/T’C
Wt € hk

Here h,, is the distance to k-th nearest neighbor, 7 > O is a

discounting parameter and KC(+) is a localizing kernel
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Low-dimensional manifold model (LDMM) /é é

In [Osher et al., 2017], the authors suggested recovering a manifold

solving the following optimization problem (approximately):

T
Z (Y2, M) + Adim(M) — min
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Numerical approximation for LDMM

Numerical approximation is based on the identity
1 D ‘
dm(M) = = > > IVuX|,
t=1 j=1

where Xt(j) is the j-th component of X, V 1 stands for differentiation
with respect to intrinsic coordinates on M.
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Numerical approximation for LDMM

Approximation of the target functional:

T
Z (Y;, M) + Adim(M)

T T
T2hd SO Y = XlPwy

=1 j=1
n

A n
T 5Tahd Z Z 1X; = X;[*wi; + o(h),
=1

Jj=1

— Y .|2 2 . .
where w;; = e~ IXi=X3I/(4h") "One can use the proximal gradient

descent method to find an approximate solution [Osher et al., 2017]
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Structure-adaptive manifold estimator (SAME) \Zyx Eé“ j

Another structure adaptive procedure is offered in
[Puchkin and Spokoiny, 2019]. The idea originates from
[Hristache et al., 2001b]:
B The method iteratively estimates projections of Y7, ..., Yy onto a
manifold and projectors onto the tangent spaces
B Estimates of projections of Y7, ..., Y onto the manifold are
weighted averages
B On early stage, the points Y7, . ... Y may lie quite far from M*,
so the method averages over large isotropic neighborhoods to
capture the global structure
B On final steps, the method averages over cylindric neighborhoods
stretched along normal directions

Manifold-based time series forecasting - 15.07.2021 - Page 13 (22)



Structure-adaptive manifold estimator (SAME) 'Z’iié j"

Initialization: for each ¢, compute the weighted sample covariance
T
3= Z@w(y} - Y;)(Y} B Y;l)Ta 1<1,5<T,
j=1
with the weights
Wi = exp (=ha?[|(Vi = Y)IP), 1<4,j<T,

where 0 < hg < .

Define HEO) as a projector onto a linear span of eigenvectors,
corresponding to the d largest eigenvalues of X;.

Manifold-based time series forecasting - 15.07.2021 - Page 14 (22)



Structure-adaptive manifold estimator (SAME) 'Z’iié j"

B The initial guesses ﬁg‘”, . ,ﬁg)) of IT(X4), ..., II(X7), the
number of iterations X + 1, an initial bandwidth kg, the threshold
7 and constants a > 1 and v > 0 are given.

B kfromOto K do

(k)

B Compute the weights w;;” according to the formula

k —2n5(k
wl) = exp (~h? TP - V)P) LY - Y < 7)1

B Update )/(\'Z-(k) for each 1.
B If £ < K, update 1% for each i and set hit1 = a thy.

)

B Return the estimates )?1 = )?fK), e ,)/(\'T = )?}K)
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Structure-adaptive manifold estimator (SAME)

Estimates update:

T T
50 (L) /(). reier
j=1

7j=1
Projectors update:
B For each ¢ from 1 to T, define a set
jz.(k) ={j: H)?J(k) - )A(Z(k)H < 7vhy } and compute the matrices

Sk k) N k) Pk ‘
P = 3 (X -XEP XY 1<igT

7 J
jeg®
(k+1)

)

B If k < K, foreach i from 1 to T, define ﬁ
(k)

i

as a projector onto
a linear span of eigenvectors of > , corresponding to the largest

d eigenvalues
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Application to the time series forecasting 1: stock price forecasting

Figure: An example of prediction of stock prices for two companies. The blue
line corresponds to the historical data. The red line and the green line
correspond to the prediction and the actual value, respectively
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Application to the time series forecasting 2: econometric data

Real disposable cash income in %
to the corresponding period of the previous year

Real disposable cash income in %
to the corresponding period of the previous year
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(a) One month ahead (b) Two months ahead
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Application to the time series forecasting 2: econometric data

Real disposable cash income Real disposable cash income
base January 1998 = 100 base January 1989 = 100
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Application to the time series forecasting 2: econometric data

Real accrued wages Real accrued wages
of one employes in% of the previous month of one employee in% of the previous month
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Application to the time series forecasting 2: econometric data

Real accrued wages

Real accrued wages
one worker base January 1938 = 100

one worker base January 1998 = 100
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