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Hidden manifold time series model

A learner observes 𝑌1, . . . , 𝑌𝑇 generated from a model

𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡, 1 6 𝑡 6 𝑇,

where

� {𝑋𝑡 : 1 6 𝑡 6 𝑇} ⊂ R𝐷 is a hidden Markov chain on a

low-dimensional manifold ℳ*, dim(ℳ*) = 𝑑 ≪ 𝐷

� 𝜀1, . . . , 𝜀𝑇 are independent zero-mean innovations,

E(𝜀𝑡|𝑋𝑡) = 0 for all 𝑡 from 1 to 𝑇

Goal: predict 𝑌𝑇+1
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Example 1: central subspace model

Let 𝑔 : R𝑑 → R𝑝 be a smooth function and let Φ be a (𝑝× 𝑑)-matrix.

Central subspace model:

𝑍𝑡 = 𝑔(Φ𝑇𝑍𝑡−1) + 𝜉𝑡, 1 6 𝑡 6 𝑇

Take

𝑋𝑡 = (𝑍𝑡−1, 𝑔(Φ
𝑇𝑍𝑡−1)) ∈ R2𝑝, 𝑌𝑡 = (𝑍𝑡−1, 𝑍𝑡) , 𝜀𝑡 = (0, 𝜉𝑡).

Then 𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡 and 𝑋𝑡 lies on the graph of 𝑔 ∘Φ𝑇 which is a

𝑑-dimensional submanifold in R𝐷 with 𝐷 = 2𝑝
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Example 2: Encoder-decoder model

A natural extension of the central subspace model is

𝑍𝑡 = 𝑔(𝑓(𝑍𝑡−1)) + 𝜉𝑡, 1 6 𝑡 6 𝑇,

where 𝑔 : R𝑑 → R𝐷 and 𝑓 : R𝑑 → R𝐷 are smooth functions

Consider 𝑋𝑡 = (𝑍𝑡−1, 𝑔(𝑓(𝑍𝑡−1))) ∈ R2𝑝, 𝑌𝑡 = (𝑍𝑡−1, 𝑍𝑡),

𝜀𝑡 = (0, 𝜉𝑡).

Then 𝑋𝑡 lies on the graph of 𝑔 ∘ 𝑓 , which is a 𝑑-dimensional

submanifold in R𝐷 with 𝐷 = 2𝑝.
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Example 3: autoregressive model

A standard univariate autoregressive model of order 𝜏 is given by

𝑍𝑡 =
𝜏∑︁

𝑖=1

𝑎𝑖𝑍𝑡−𝑖 + 𝜉𝑡, 1 6 𝑡 6 𝑇.

Fix 𝐷 > 𝜏 and apply a sliding window technique:

𝑌𝑡 = (𝑍𝑡, . . . , 𝑍𝑡−𝐷+1) ∈ R𝐷.

Then the autoregressive model can be rewritten in the form

𝑌𝑡 = 𝐴𝑌𝑡−1 + 𝜀𝑡, where rank(𝐴) < 𝐷, 𝜀𝑡 = (𝜉𝑡, 0, . . . , 0) ∈ R𝐷.

In this case, 𝑋𝑡 = 𝐴𝑌𝑡−1 lies on Im(𝐴).

As rank(𝐴) < 𝐷, 𝐼𝑚(𝐴) is a linear subspace in R𝐷 of dimension

rank(𝐴).
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Example of hidden manifold time series model

𝑌𝑡 = −1− cos
(︀
0.2𝜋(𝑌𝑡−1 − 2𝑌𝑡−2)

)︀
+ 0.2𝜀𝑡, 𝜀𝑡 ∼ 𝒩 (0, 1)

Figure: Example of hidden manifold time series model. The vectors

(𝑌𝑡, 𝑌𝑡−1) lie around 1-dimensional manifold
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Time series forecasting. General reduction scheme

Fix an integer 𝑏, construct patches

{𝑌𝑡 = (𝑍𝑡−1, 𝑍𝑡−2, . . . , 𝑍𝑡−𝑏) ∈ R𝑝𝑏 : 𝑏+ 1 6 𝑡 6 𝑇}

and consider a set of pairs

𝑆𝑇 = {(𝑌𝑡, 𝑍𝑡) : 𝑏+ 1 6 𝑡 6 𝑇}

Assumption: high-dimensional vectors 𝑌𝑏+1, . . . , 𝑌𝑇+1 ∈ R𝐷,

𝐷 = 𝑏𝑝, lie around a low-dimensional manifold
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General reduction scheme for time series forecasting

Project the points 𝑌𝑏+1, . . . , 𝑌𝑇+1 onto a manifold and denote the

projections by ̂︀𝑋𝑏+1, . . . , ̂︀𝑋𝑇 , respectively

Assumption: close vectors ̂︀𝑋𝑖 and ̂︀𝑋𝑗 correspond to similar 𝑍𝑖 − 𝑍𝑖−1

and 𝑍𝑗 − 𝑍𝑗−1, i. e. similar historical behaviours induce similar

increments
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General reduction scheme for time series forecasting

Prediction at the moment 𝑇 + 1 is determined by the weighted

𝑘-nearest neighbors rule:

̂︀𝑍𝑇+1 = 𝑍𝑇 +

𝑇∑︀
𝑡=𝑏+1

𝑤𝑡(𝑍𝑡 − 𝑍𝑡−1)

𝑇∑︀
𝑡=𝑏+1

𝑤𝑡

,

where the weights are defined by the formula

𝑤𝑡 = 𝑒−(𝑇+1−𝑡)/𝜏𝒦

(︃
‖ ̂︀𝑋𝑇+1 − ̂︀𝑋𝑡‖

ℎ𝑘

)︃
Here ℎ𝑘 is the distance to 𝑘-th nearest neighbor, 𝜏 > 0 is a

discounting parameter and 𝒦(·) is a localizing kernel
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Low-dimensional manifold model (LDMM)

In [Osher et al., 2017], the authors suggested recovering a manifold

solving the following optimization problem (approximately):

1

𝑇

𝑇∑︁
𝑡=1

𝑑2(𝑌𝑡,ℳ) + 𝜆dim(ℳ) → min
ℳ
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Numerical approximation for LDMM

Numerical approximation is based on the identity

dim(ℳ) =
1

𝑇

𝑇∑︁
𝑡=1

𝐷∑︁
𝑗=1

‖∇ℳ𝑋
(𝑗)
𝑡 ‖2,

where 𝑋
(𝑗)
𝑡 is the 𝑗-th component of 𝑋𝑡, ∇ℳ stands for differentiation

with respect to intrinsic coordinates on ℳ.
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Numerical approximation for LDMM

Approximation of the target functional:

1

𝑇

𝑇∑︁
𝑡=1

𝑑2(𝑌𝑡,ℳ) + 𝜆dim(ℳ)

=
1

𝑇 2ℎ𝑑

𝑇∑︁
𝑖=1

𝑇∑︁
𝑗=1

‖𝑌𝑖 −𝑋𝑗‖2𝑤𝑖𝑗

+
𝜆

2𝑇 2ℎ𝑑

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

‖𝑋𝑖 −𝑋𝑗‖2𝑤𝑖𝑗 + 𝑜(ℎ),

where 𝑤𝑖𝑗 = 𝑒−‖𝑋𝑖−𝑋𝑗‖2/(4ℎ2). One can use the proximal gradient

descent method to find an approximate solution [Osher et al., 2017]
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Structure-adaptive manifold estimator (SAME)

Another structure adaptive procedure is offered in

[Puchkin and Spokoiny, 2019]. The idea originates from

[Hristache et al., 2001b]:

� The method iteratively estimates projections of 𝑌1, . . . , 𝑌𝑇 onto a

manifold and projectors onto the tangent spaces

� Estimates of projections of 𝑌1, . . . , 𝑌𝑇 onto the manifold are

weighted averages

� On early stage, the points 𝑌1, . . . , 𝑌𝑇 may lie quite far from ℳ*,

so the method averages over large isotropic neighborhoods to

capture the global structure

� On final steps, the method averages over cylindric neighborhoods

stretched along normal directions
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Structure-adaptive manifold estimator (SAME)

Initialization: for each 𝑖, compute the weighted sample covariance

̃︀Σ𝑖 =
𝑇∑︁

𝑗=1

̃︀𝑤𝑖𝑗(𝑌𝑗 − 𝑌𝑖)(𝑌𝑗 − 𝑌𝑖)
𝑇 , 1 6 𝑖, 𝑗 6 𝑇,

with the weights

̃︀𝑤𝑖𝑗 = exp
(︀
−ℎ−2

0 ‖(𝑌𝑖 − 𝑌𝑗)‖2
)︀
, 1 6 𝑖, 𝑗 6 𝑇,

where 𝜎 ≪ ℎ0 ≪ κ.

Define ̂︀Π(0)
𝑖 as a projector onto a linear span of eigenvectors,

corresponding to the 𝑑 largest eigenvalues of ̃︀Σ𝑖.
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Structure-adaptive manifold estimator (SAME)

� The initial guesses ̂︀Π(0)
1 , . . . , ̂︀Π(0)

𝑇 of Π(𝑋1), . . . ,Π(𝑋𝑇 ), the

number of iterations 𝐾 + 1, an initial bandwidth ℎ0, the threshold

𝜏 and constants 𝑎 > 1 and 𝛾 > 0 are given.

� 𝑘 from 0 to 𝐾 do

� Compute the weights 𝑤(𝑘)
𝑖𝑗 according to the formula

𝑤
(𝑘)
𝑖𝑗 = exp

(︁
−ℎ−2

𝑘 ‖̂︀Π(𝑘)
𝑖 (𝑌𝑖 − 𝑌𝑗)‖2

)︁
1 (‖𝑌𝑖 − 𝑌𝑗‖ 6 𝜏) , 1 6 𝑖, 𝑗 6 𝑇

� Update ̂︀𝑋(𝑘)
𝑖 for each 𝑖.

� If 𝑘 < 𝐾 , update ̂︀Π(𝑘+1)
𝑖 for each 𝑖 and set ℎ𝑘+1 = 𝑎−1ℎ𝑘.

� Return the estimates ̂︀𝑋1 = ̂︀𝑋(𝐾)
1 , . . . , ̂︀𝑋𝑇 = ̂︀𝑋(𝐾)

𝑇
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Structure-adaptive manifold estimator (SAME)

Estimates update:

̂︀𝑋(𝑘)
𝑖 =

(︃
𝑇∑︁

𝑗=1

𝑤
(𝑘)
𝑖𝑗 𝑌𝑗

)︃⧸︁(︃ 𝑇∑︁
𝑗=1

𝑤
(𝑘)
𝑖𝑗

)︃
, 1 6 𝑖 6 𝑇

Projectors update:

� For each 𝑖 from 1 to T, define a set

𝒥 (𝑘)
𝑖 = {𝑗 : ‖ ̂︀𝑋(𝑘)

𝑗 − ̂︀𝑋(𝑘)
𝑖 ‖ 6 𝛾ℎ𝑘} and compute the matriceŝ︀Σ(𝑘)

𝑖 =
∑︁

𝑗∈𝒥 (𝑘)
𝑖

( ̂︀𝑋(𝑘)
𝑗 − ̂︀𝑋(𝑘)

𝑖 )( ̂︀𝑋(𝑘)
𝑗 − ̂︀𝑋(𝑘)

𝑖 )𝑇 , 1 6 𝑖 6 𝑇

� If 𝑘 < 𝐾 , for each 𝑖 from 1 to T, define ̂︀Π(𝑘+1)
𝑖 as a projector onto

a linear span of eigenvectors of ̂︀Σ(𝑘)
𝑖 , corresponding to the largest

𝑑 eigenvalues
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Application to the time series forecasting 1: stock price forecasting

Figure: An example of prediction of stock prices for two companies. The blue

line corresponds to the historical data. The red line and the green line

correspond to the prediction and the actual value, respectively
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Application to the time series forecasting 2: econometric data

(a) One month ahead (b) Two months ahead
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Application to the time series forecasting 2: econometric data

(c) One month ahead (d) Two months ahead
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Application to the time series forecasting 2: econometric data

(e) One month ahead (f) Two months ahead
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Application to the time series forecasting 2: econometric data

(g) One month ahead (h) Two months ahead
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