Minimization of sums of squares of holomorphic functions

Roland Hildebrand

Laboratoire Jean Kuntzmann / CNRS

Optimization without borders: Huawei Day

Sochi, July 15, 2021

Problem statement

consider the optimization problem

$$\min_{z \in X} f(z)$$

where $f(z) = \sum_{k=1}^K |g_k(z)|^2$, g_k holomorphic in the domain $X \subset \mathbb{C}^n$

regard \mathbb{C}^n as a real space \mathbb{R}^{2n}

then we may tackle the problem as minimization of $f(z) = \sum_{k=1}^K \left((Re \, g_k(z))^2 + (Im \, g_k(z))^2 \right)$ with gradient descent, Newton etc.

Can we use the complex structure to facilitate calculations and / or accelerate convergence?

Motivation

Huawei observed that the sequence produced by the "mixed Newton" iteration

$$z_{j+1} = z_j - \left(\frac{\partial^2 f}{\partial \bar{z} \partial z}\right)^{-1} \frac{\partial f}{\partial \bar{z}}$$

converges faster than the real gradient descent method and better avoids saddle points

several examples have been tested

- K = n = 1, and $g_1(z) = g(z)$ is a polynomial of a scalar variable z
- ▶ z = (u, v), $g_k(z) = (a_k^T u) \cdot (b_k^T v)$, where a_k, b_k are complex vectors of appropriate size

calculations of gradients and Hessians in the real variables Re z, Im z are comparatively laborous

but a holomorphic function g is completely determined by its complex derivatives $\frac{\partial^k g}{\partial z^k}$, which are also easier to compute

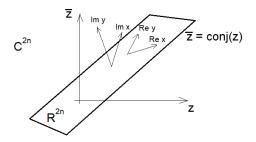
Wirtinger calculus describes how to differentiate functions f depending on holomorphic functions g_k and their conjugates using only complex derivatives

due to the conjugates we need an additional complex variable $ar{z}$

the variables z, \bar{z} depend complex-linearly on the complexified real variables x = Re z, y = Im z:

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} z \\ \bar{z} \end{pmatrix} = \begin{pmatrix} I & iI \\ I & -iI \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

embed $\mathbb{C}^n \sim \mathbb{R}^{2n}$ into \mathbb{C}^{2n} by complexification of x, y use variables z, \bar{z} on \mathbb{C}^{2n}



how to extend f from \mathbb{R}^{2n} to \mathbb{C}^{2n} ?

- ightharpoonup express f as a function of holomorphic functions g_k and their conjugates \bar{g}_k
- g_k are assumed independent of \bar{z}
- $ightharpoonup \bar{g}_k$ are assumed independent of z

the partial derivatives

$$\frac{\partial(z,\bar{z})}{\partial(x,y)} = \begin{pmatrix} I & iI \\ I & -iI \end{pmatrix},$$

$$\frac{\partial(x,y)}{\partial(z,\bar{z})} = \frac{1}{2} \begin{pmatrix} I & I \\ -iI & iI \end{pmatrix}$$

are constant

we get explicit expressions for the differentiation operators

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

Wirtinger calculus consists of a set of rules to compute derivatives with respect to z, \bar{z} without resorting to x, y

some rules

- g holomorphic: $\frac{\partial g}{\partial z} = g'$, $\frac{\partial g}{\partial \bar{z}} = 0$
- g holomorphic: $\frac{\partial \bar{g}}{\partial z} = 0$, $\frac{\partial \bar{g}}{\partial \bar{z}} = \bar{g}'$
- ▶ g holomorphic or anti-holomorphic: mixed (containing entries of z and \bar{z}) derivatives vanish
- $\qquad \qquad \bullet \ \, \frac{\partial}{\partial z}(af+bg) = a\frac{\partial f}{\partial z} + b\frac{\partial g}{\partial z}, \ a,b \in \mathbb{C}$

- $\qquad \qquad \bullet \frac{\overline{\partial g}}{\partial z} = \frac{\partial \bar{g}}{\partial \bar{z}}$

Sum of squares of holomorphic functions

let $f(z) = \sum_{k=1}^{K} |g_k(z)|^2$, g_k holomorphic

express $f = \sum_{k=1}^K g_k \cdot \bar{g}_k$, here g_k depends on z only, and \bar{g}_k depends on \bar{z} only

the derivatives are given by

$$\frac{\partial f}{\partial z} = \sum_{k=1}^{K} \bar{g}_{k} \cdot \frac{\partial g_{k}}{\partial z} = \sum_{k=1}^{K} \bar{g}_{k} \cdot g_{k}', \quad \frac{\partial f}{\partial \bar{z}} = \sum_{k=1}^{K} g_{k} \cdot \frac{\partial \bar{g}_{k}}{\partial \bar{z}} = \sum_{k=1}^{K} g_{k} \cdot \bar{g}_{k}'$$

$$\frac{\partial^{2} f}{\partial z^{2}} = \sum_{k=1}^{K} \bar{g}_{k} \cdot g_{k}'', \quad \frac{\partial^{2} f}{\partial z \partial \bar{z}} = \sum_{k=1}^{K} g_{k}' \cdot (\bar{g}_{k}')^{T}$$

$$\frac{\partial^{2} f}{\partial \bar{z} \partial z} = \sum_{k=1}^{K} \bar{g}_{k}' \cdot (g_{k}')^{T}, \quad \frac{\partial^{2} f}{\partial \bar{z}^{2}} = \sum_{k=1}^{K} \sum_{k=1}^{K} g_{k} \cdot \bar{g}_{k}''$$

mixed derivatives positive semi-definite hermitian of rank K in general

Taylor approximation

gradient descent is moving along the descent direction of the linear approximation

Newton method is minimizing the quadratic approximation in the real case the approximations are obtained from the Taylor expansion

Taylor expansion in complex variables

$$f(z+h) = f(z) + \left\langle \frac{\partial f}{\partial z}, h \right\rangle_{\mathbb{R}} + \left\langle \frac{\partial f}{\partial \overline{z}}, \overline{h} \right\rangle_{\mathbb{R}} + \frac{1}{2} \left(\frac{h}{\overline{h}} \right)^{T} \left(\frac{\partial^{2} f}{\partial \overline{z}^{2}} - \frac{\partial^{2} f}{\partial z \partial \overline{z}} \right) \left(\frac{h}{\overline{h}} \right) + o(|h|^{2})$$

here $\langle u, v \rangle_{\mathbb{R}} = \sum_i u_i v_i = \langle u, \bar{v} \rangle$

Differences with real case

linear term

steepest descent: $\left\langle \frac{\partial f}{\partial z}, \bar{h} \right\rangle + \left\langle \frac{\partial f}{\partial \bar{z}}, h \right\rangle$ minimal $\Leftrightarrow h, \frac{\partial f}{\partial \bar{z}}$ anti-parallel

quadratic term

real case: convexity / concavity determined by signature of Hessian $f'' = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{ii}$

complex case: signature makes sense only for *hermitian* matrices symmetric complex matrices may have complex eigenvalues

real case: quadratic form evaluates on vectors by $x \mapsto x^T A x$ complex case: hermitian form evaluates on vectors by $z \mapsto z^* H z$

we have to exchange h, \bar{h} in one of the tangent vectors at the Hessian

Transformed Hessian

applying the transformations we get

$$f(z+h) = f(z) + \left\langle \frac{\partial f}{\partial z}, \overline{h} \right\rangle + \left\langle \frac{\partial f}{\partial \overline{z}}, h \right\rangle +$$

$$+ \frac{1}{2} \left(\frac{h}{\overline{h}} \right)^* \left(\frac{\partial^2 f}{\partial \overline{z} \partial z} - \frac{\partial^2 f}{\partial \overline{z}^2} \right) \left(\frac{h}{\overline{h}} \right) + o(|h|^2)$$

the matrix in the second-order term is now hermitian

for $f = \sum_{k=1}^K |g_k|^2$ with g_k holomorphic the diagonal blocks are always positive semi-definite

if $K \geq n$, then in general the diagonal blocks are positive definite but this holds only on $\mathbb{R}^{2n} \subset \mathbb{C}^{2n}$

Convexity and signature

the quadratic part of f on the subspace \mathbb{R}^{2n} defined by $x,y\in\mathbb{R}^n$ is given by the real symmetric matrix

$$\begin{pmatrix} I & I \\ -iI & iI \end{pmatrix} \begin{pmatrix} \frac{\partial^2 f}{\partial \overline{z} \partial z} & \frac{\partial^2 f}{\partial \overline{z}^2} \\ \frac{\partial^2 f}{\partial z^2} & \frac{\partial^2 f}{\partial z \partial \overline{z}} \end{pmatrix} \begin{pmatrix} I & iI \\ I & -iI \end{pmatrix} =$$

$$\begin{pmatrix} \frac{\partial^2 f}{\partial \overline{z} \partial z} + \frac{\partial^2 f}{\partial z \partial \overline{z}} + \frac{\partial^2 f}{\partial \overline{z}^2} + \frac{\partial^2 f}{\partial z^2} & i \left(\frac{\partial^2 f}{\partial \overline{z} \partial z} - \frac{\partial^2 f}{\partial z \partial \overline{z}} + \frac{\partial^2 f}{\partial z^2} - \frac{\partial^2 f}{\partial \overline{z}^2} \right) \\ i \left(-\frac{\partial^2 f}{\partial \overline{z} \partial z} + \frac{\partial^2 f}{\partial z \partial \overline{z}} + \frac{\partial^2 f}{\partial z^2} - \frac{\partial^2 f}{\partial \overline{z}^2} \right) & \frac{\partial^2 f}{\partial \overline{z} \partial z} + \frac{\partial^2 f}{\partial z \partial \overline{z}} - \frac{\partial^2 f}{\partial \overline{z}^2} - \frac{\partial^2 f}{\partial z^2} \end{pmatrix}$$

in coordinates
$$\begin{pmatrix} Re \ h \\ Im \ h \end{pmatrix} = \begin{pmatrix} I & iI \\ I & -iI \end{pmatrix}^{-1} \begin{pmatrix} h \\ \overline{h} \end{pmatrix}$$

signature of these matrices determines convexity / concavity on \mathbb{R}^{2n} at least n positive eigenvalues: no maxima, "maximal" saddle-point has neutral signature

Real quadratic approximation

this Taylor approximation is valid only on $\mathbb{R}^{2n}\sim\mathbb{C}^n$, where $ar{h}$ is the conjugate of h

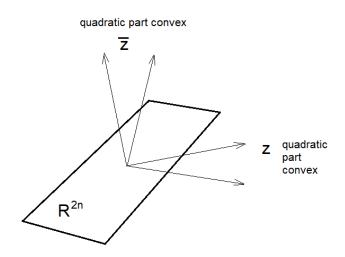
set
$$\mathbf{h}=(h^T,\bar{h}^T)^T$$
, $\mathbf{z}=(z^T,\bar{z}^T)^T$
here z,\bar{z} are conjugate, but h,\bar{h} are treated as independent variables
then $\mathbf{z}+\mathbf{h}$ parameterizes \mathbb{C}^{2n}

define the real quadratic approximation

$$q_{z}(z+h) = f(z) + Re\left\langle \begin{pmatrix} \frac{\partial f}{\partial \overline{z}} \\ \frac{\partial f}{\partial z} \end{pmatrix}, h \right\rangle + \frac{1}{2}h^{*}\begin{pmatrix} \frac{\partial^{2} f}{\partial \overline{z}\partial z} & \frac{\partial^{2} f}{\partial \overline{z}^{2}} \\ \frac{\partial^{2} f}{\partial z^{2}} & \frac{\partial^{2} f}{\partial z\partial \overline{z}} \end{pmatrix} h$$

differs from complex second order Taylor polynomial outside of \mathbb{R}^{2n} convex on \mathbb{R}^{2n} if and only if convex on \mathbb{C}^{2n}

Definiteness of diagonal blocks



 q_z convex on the real 2n-planes spanned by the variables z, \bar{z} in \mathbb{C}^{2n}

First interpretation of "mixed Newton"

consider the real quadratic function

$$q(z + h) = f(z) + Re\langle v, h \rangle + \frac{1}{2}h^*Ah$$

with $v\in\mathbb{C}^n$, A complex hermitian invertible of size 2n the unique stationary point of q is given by $\mathbf{z}-A^{-1}v$

the "mixed Newton" method yields the stationary point of the diagonalised-convexified quadratic approximation

$$\tilde{q}_z(z+h) = f(z) + Re\left\langle \begin{pmatrix} \frac{\partial f}{\partial \overline{z}} \\ \frac{\partial f}{\partial z} \end{pmatrix}, h \right\rangle + \frac{1}{2}h^*\begin{pmatrix} \frac{\partial^2 f}{\partial \overline{z}\partial z} & \mathbf{0} \\ \mathbf{0} & \frac{\partial^2 f}{\partial z\partial \overline{z}} \end{pmatrix} h$$

$$\mathbf{z} \mapsto \mathbf{z} - \begin{pmatrix} \left(\frac{\partial^2 f}{\partial \overline{z} \partial z}\right)^{-1} \frac{\partial f}{\partial \overline{z}} \\ \left(\frac{\partial^2 f}{\partial z \partial \overline{z}}\right)^{-1} \frac{\partial f}{\partial z} \end{pmatrix}, \quad z \mapsto z - \left(\frac{\partial^2 f}{\partial \overline{z} \partial z}\right)^{-1} \frac{\partial f}{\partial \overline{z}}$$

the iteration stays in \mathbb{R}^{2n}

First interpretation of "mixed Newton"

- extend function f from \mathbb{R}^{2n} to \mathbb{C}^{2n} , complex-valued
- build quadratic Taylor approximation, complex-valued
- ightharpoonup extend quadratic approximation from \mathbb{R}^{2n} to \mathbb{C}^{2n} , real-valued
- drop off-diagonal blocks, diagonalised-convexified quadratic approximation real-valued and convex
- go to stationary point of diagonalised-convexified quadratic approximation

gradient descent with block-diagonal preconditioning by inverse of modified Hessian

block-diagonal in complex space — no partition of real coordinates in subsets

Special case: scalar z

let $n=\dim^{\mathbb{C}}z=1$ then the entries of the "Hermitian Hessian" are scalars

in the "mixed Newton" iteration

$$z_{j+1} = z_j - \left(\frac{\partial^2 f}{\partial \bar{z} \partial z}\right)^{-1} \frac{\partial f}{\partial \bar{z}}$$

the inverse of $\frac{\partial^2 f}{\partial \bar{z} \partial z}$ is just a positive step length

the 2-real-dimensional *direction* of the step is still given by the complex number $\frac{\partial f}{\partial \bar{z}}$

this is just the steepest descent direction

"mixed Newton" is gradient descent with an adjusted step size

Very special case: one holomorphic function

suppose n = K = 1

we look just for the zeros of g(z)

$$\frac{\partial^2 f}{\partial \bar{z} \partial z} = |g'|^2, \ \frac{\partial f}{\partial \bar{z}} = g \bar{g}': \quad z_{j+1} = z_j - \frac{g(z_j)}{g'(z_j)}$$

this is the ordinary Newton method when interpreting g as a vector field on $\mathbb{C} \sim \mathbb{R}^2$

$$z_{j+1} - z^* \approx \frac{g''(z^*) \cdot (z_j - z^*)^2}{2g'(z_j)}$$

- quadratic convergence if $g'(z^*) \neq 0$
- ▶ linear convergence if zero of g is multiple: $z_{i+1} - z^* \approx \frac{m-1}{m}(z_i - z^*)$

Special case: linear g_k

then
$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial^2 f}{\partial \bar{z}^2} = \mathbf{0}$$

- ightharpoonup modified quadratic approximation coincides with real quadratic approximation q_z
- ightharpoonup approximation q_z convex on \mathbb{C}^{2n} , in particular, on \mathbb{R}^{2n}
- ▶ "mixed Newton" step coincides with ordinary real Newton step in \mathbb{R}^{2n}
- quadratic Taylor approximation coincides with original cost function f
- global minimum of f achieved at first step

Second interpretation of "mixed Newton"

- ▶ approximate holomorphic functions g_k by complex-affine functions $I_k(z) = a_k^* z + b_k$
- go to global minimum of $\sum_{k=1}^{K} |I_k(z)|^2$

explicit formula

$$z_{j+1} = z_j - \left(\sum_{k=1}^K a_k a_k^*\right)^{-1} \sum_{k=1}^K I_k(z) a_k$$

Convergence analysis

let $z^* \in \mathbb{C}^n$ be a local minimum of f, $z = z^* + \delta$ denote $\gamma_k = g_k(z^*)$, $\nabla_k = g_k'(z^*)$, $M_k = g_k''(z^*)$, then $g_k'(z) = \nabla_k + M_k \delta + O(|\delta|^2), \ g_k(z) = \gamma_k + \nabla_k^T \delta + O(|\delta|^2)$ $\frac{\partial^2 f}{\partial \bar{z} \partial z} = \sum_{k=1}^K \bar{\nabla}_k \nabla_k^T + O(|\delta|)$

$$\frac{\partial f}{\partial \bar{z}} = \sum_{k=1}^{K} (\gamma_k + \nabla_k^T \delta + O(|\delta|^2)) (\bar{\nabla}_k + \bar{M}_k \bar{\delta} + O(|\delta|^2))$$

$$= \sum_{k=1}^{K} (\gamma_k \bar{\nabla}_k + \gamma_k \bar{M}_k \bar{\delta} + \bar{\nabla}_k \nabla_k^T \delta) + O(|\delta|^2)$$

$$= \sum_{k=1}^{K} (\gamma_k \bar{M}_k \bar{\delta} + \bar{\nabla}_k \nabla_k^T \delta) + O(|\delta|^2)$$

 $\sum_{k=1}^{K} \gamma_k \overline{\nabla}_k = 0$ by first order optimality condition

Convergence analysis

the "mixed Newton" step operates by

$$\delta \mapsto \delta - \left(\sum_{k=1}^{K} \bar{\nabla}_{k} \nabla_{k}^{T}\right)^{-1} \left(\sum_{k=1}^{K} \left(\gamma_{k} \bar{M}_{k} \bar{\delta} + \bar{\nabla}_{k} \nabla_{k}^{T} \delta\right)\right) + O(|\delta|^{2})$$

$$= -\left(\sum_{k=1}^{K} \bar{\nabla}_{k} \nabla_{k}^{T}\right)^{-1} \left(\sum_{k=1}^{K} \gamma_{k} \bar{M}_{k}\right) \bar{\delta} + O(|\delta|^{2})$$

$$= -H_{11}^{-1} H_{12} \bar{\delta} + O(|\delta|^{2})$$

where $H=rac{1}{2}egin{pmatrix} H_{11} & H_{12} \ ar{H}_{12} & ar{H}_{11} \end{pmatrix}$ determines the quadratic term of q_{z^*}

two iterations give

$$\delta \mapsto -H_{11}^{-1}H_{12}\bar{\delta} + O(|\delta|^2) \mapsto H_{11}^{-1}H_{12}\bar{H}_{11}^{-1}\bar{H}_{12}\delta + O(|\delta|^2)$$

linearly convergent if and only if $\operatorname{spec}(H_{11}^{-1}H_{12}\bar{H}_{11}^{-1}\bar{H}_{12})$ in the open unit disc D^o

Convergence analysis

Lemma

Let $H_{11} \succ 0$. Then spec $(H_{11}^{-1}H_{12}\bar{H}_{11}^{-1}\bar{H}_{12}) \subset D^o$ if and only if $H \succ 0$.

proof:

- ▶ $\operatorname{spec}(H_{11}^{-1}H_{12}\bar{H}_{11}^{-1}\bar{H}_{12}) = \operatorname{spec}(H_{11}^{-1/2}H_{12}\bar{H}_{11}^{-1}\bar{H}_{12}H_{11}^{-1/2}) \subset \mathbb{R}_{++}$
- $\lambda_{\max}(H_{11}^{-1/2}H_{12}\bar{H}_{11}^{-1}\bar{H}_{12}H_{11}^{-1/2}) = \sigma_{\max}(H_{11}^{-1/2}H_{12}\bar{H}_{11}^{-1/2})^2$
- $\begin{array}{c|c} & \sigma_{\max}(H_{11}^{-1/2}H_{12}\bar{H}_{11}^{-1/2}) < 1 \text{ if and only if} \\ & \begin{pmatrix} I & H_{11}^{-1/2}H_{12}\bar{H}_{11}^{-1/2} \\ \bar{H}_{11}^{-1/2}\bar{H}_{12}H_{11}^{-1/2} & I \end{pmatrix} \succ 0 \end{array}$
- ▶ if and only if H > 0

each negative eigenvalue of \boldsymbol{H} yields a repulsive direction for the dynamics

Behaviour at critical points

if $K \geq n$ then generically the "mixed Newton" iteration is

- ▶ linearly convergent in the neighbourhood of local minima
- follows the trajectories of a hyperbolic system at "non-maximal" saddle points
- repulsive at "maximal" saddle-points (neutral signature of "Hermitian Hessian")

Huawei problem with bi-linear g_k :

- ▶ all g'_k share a common orthogonal direction corresponding to the symmetry $(u, v) \mapsto (\alpha u, \alpha^{-1} v)$, $\alpha \in \mathbb{C} \setminus \{0\}$
- ▶ diagonal blocks $\frac{\partial^2 f}{\partial \bar{z} \partial z}$ have a kernel vector
- matrix of dynamic system has an eigenvalue 1

Thank you!