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Problem statement

consider the optimization problem

min f(z)

where f(z) = Z,’le lgx(2)|?, gk holomorphic in the domain
Xccr
regard C" as a real space R?"

then we may tackle the problem as minimization of

f(z) = Zszl ((Re gk(2))? + (Im gk(z))?) with gradient descent,
Newton etc.

Can we use the complex structure to facilitate calculations and / or
accelerate convergence?



Motivation

Huawei observed that the sequence produced by the "mixed
Newton" iteration
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converges faster than the real gradient descent method and better
avoids saddle points

several examples have been tested
» K=n=1, and g1(z) = g(z) is a polynomial of a scalar
variable z
» z=(u,v), g(z) = (aJ u) - (b] v), where a, by are complex
vectors of appropriate size



Wirtinger calculus

calculations of gradients and Hessians in the real variables Re z,
Im z are comparatively laborous
but a holomorphic function g is completely determined by its

kg

ok which are also easier to compute

complex derivatives

Wirtinger calculus describes how to differentiate functions f
depending on holomorphic functions gx and their conjugates using
only complex derivatives

due to the conjugates we need an additional complex variable z

the variables z, z depend complex-linearly on the complexified real
variables x = Rez, y = Im z:
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Wirtinger calculus

embed C" ~ R2" into C?" by complexification of x, y
use variables z, z on C2"

NI

Z = conj(z)

how to extend f from R?" to C?"7?
» express f as a function of holomorphic functions g, and their
conjugates gx
> g are assumed independent of Z

> g are assumed independent of z



Wirtinger calculus

the partial derivatives
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we get explicit expressions for the differentiation operators
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Wirtinger calculus consists of a set of rules to compute derivatives
with respect to z, Z without resorting to x, y

are constant



Wirtinger calculus

some rules
» g holomorphic: gf J 8g =0
» g holomorphic: % =0, % =g
| 2

g holomorphic or anti-holomorphic: mixed (containing entries
of z and Z) derivatives vanish
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Sum of squares of holomorphic functions
let f(z) = S5, lex(2)[?, gk holomorphic

express f = Z,’le gk - Bk, here gx depends on z only, and gi
depends on Z only

the derivatives are given by
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mixed derivatives positive semi-definite hermitian of rank K in

general



Taylor approximation

gradient descent is moving along the descent direction of the linear

approximation

Newton method is minimizing the quadratic approximation

in the real case the approximations are obtained from the Taylor

expansion

Taylor expansion in complex variables

F(z+ h) =f(z) + <g£, h>R +
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Differences with real case

linear term

steepest descent: (4L, h) + (2L, h) minimal < h, 9% anti-parallel

quadratic term
real case: convexity / concavity determined by signature of Hessian
11— 9% f
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complex case: signature makes sense only for hermitian matrices
symmetric complex matrices may have complex eigenvalues

real case: quadratic form evaluates on vectors by x — x T Ax

complex case: hermitian form evaluates on vectors by z — z*Hz

we have to exchange h, h in one of the tangent vectors at the
Hessian



Transformed Hessian

applying the transformations we get
of - of
f(z+h)=1f(z2)+ <8z’ h> + <82’ h> +
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the matrix in the second-order term is now hermitian

for f = Zle |gk|? with g holomorphic the diagonal blocks are
always positive semi-definite

if K > n, then in general the diagonal blocks are positive definite
but this holds only on R?>" c C?"



Convexity and signature
the quadratic part of f on the subspace R?" defined by x,y € R" is

given by the real symmetric matrix
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signature of these matrices determines convexity / concavity on R?"
at least n positive eigenvalues: no maxima, "maximal" saddle-point

has neutral signature



Real quadratic approximation

this Taylor approximation is valid only on R?" ~ C”, where h is the
conjugate of h

ssth=(h", A1), z=(z",z")7

here z, Z are conjugate, but h, h are treated as independent
variables

then z + h parameterizes C2”

define the real quadratic approximation
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differs from complex second order Taylor polynomial outside of R?"
convex on R?" if and only if convex on C2"



Definiteness of diagonal blocks

guadratic part convex

z guadratic
part
convex

g, convex on the real 2n-planes spanned by the variables z, Z in C2"



First interpretation of "mixed Newton"
consider the real quadratic function

4(z+h) = £(2) + Re(v, h) + %h*Ah

with v € C", A complex hermitian invertible of size 2n

the unique stationary point of q is given by z — A~lv

the "mixed Newton" method yields the stationary point of the
diagonalised-convexified quadratic approximation
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the iteration stays in R2"



First interpretation of "mixed Newton"

» extend function f from R?" to C?", complex-valued
» build quadratic Taylor approximation, complex-valued
» extend quadratic approximation from R?" to C2”, real-valued

» drop off-diagonal blocks, diagonalised-convexified quadratic
approximation real-valued and convex

» go to stationary point of diagonalised-convexified quadratic
approximation

gradient descent with block-diagonal preconditioning by inverse of
modified Hessian

block-diagonal in complex space — no partition of real coordinates
in subsets



Special case: scalar z

let n =dim®z=1
then the entries of the "Hermitian Hessian" are scalars

in the "mixed Newton" iteration
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the inverse of % is just a positive step length

the 2-real-dimensional direction of the step is still given by the
complex number %

this is just the steepest descent direction

"mixed Newton" is gradient descent with an adjusted step size



Very special case: one holomorphic function

suppose n=K =1

we look just for the zeros of g(z)
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this is the ordinary Newton method when interpreting g as a vector

field on C ~ R?

g”(z*) . (Zj _ Z*)2
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» quadratic convergence if g’(z*) # 0

> linear convergence if zero of g is multiple:
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Special case: linear gy

92 _ oPF _
2=z —0

» modified quadratic approximation coincides with real quadratic
approximation g,

then

» approximation g, convex on C2", in particular, on R?"

» "mixed Newton" step coincides with ordinary real Newton step
in R27

» quadratic Taylor approximation coincides with original cost
function f

» global minimum of f achieved at first step



Second interpretation of "mixed Newton"

» approximate holomorphic functions g, by complex-affine
functions I (z) = ajz + bx

> go to global minimum of 32K |/(2)[?

explicit formula

K -1
Zj1 =2 — (Z ak«ﬁ) > I(2)ax
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Convergence analysis
let z* € C" be a local minimum of f, z=2z*+§

denote vk = gk(z*), Vi = g,(z*), Mk = g{/(z*), then
81(2) = Vi + Mis + O(|6), gx(2) = v+ Vi 5+ O(|5])
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Z,’le 7V = 0 by first order optimality condition



Convergence analysis

the "mixed Newton" step operates by
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where H = % < > determines the quadratic term of g«

linearly convergent if and only if spec(Hl_l1 H12I:I1_11 I:I12) in the open
unit disc D°



Convergence analysis

Lemma o
Let Hy1 = 0. Then spec(Hﬂ1 H12H1*11 Hip) € D° if and only if
H > 0.
proof:
> SpeC(Hl_llleFll_llf:/lz) = spec(H 1/2 H12H111H12H111/2)
Ryt
> )\max(H_l/2H12f:/1_11 f:/12H1_11/2) = Umax(H1_11/2H12FI1_11/2)2
> omax(Hy 2 Hip %) < 1 if and only if
/ H 2 Hyp A
-1/25 ,—-1/2 -0
Hy{ " “HioHy /
» ifand only if H >0

each negative eigenvalue of H yields a repulsive direction for the
dynamics



Behaviour at critical points

if K > n then generically the "mixed Newton" iteration is
» linearly convergent in the neighbourhood of local minima

» follows the trajectories of a hyperbolic system at
"non-maximal" saddle points

» repulsive at "maximal" saddle-points (neutral signature of
"Hermitian Hessian")

Huawei problem with bi-linear gy:
» all g, share a common orthogonal direction corresponding to
the symmetry (u,v) — (au,atv), a € C\ {0}
» diagonal blocks % have a kernel vector

» matrix of dynamic system has an eigenvalue 1



Thank you!



