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Markov Decision Process (MDP)

I X - state space. By (Xk)k≥0 we denote a sequence of random states.

I A - action space. Let (Ak)k≥0 be a sequence of random actions.

I Agent’s policy π is the distribution on A

π(a|x) = P(Ak = a|Xk = x)

I Family of Markov transition kernels (Pa(x ′|x))a∈A:

Pa(x ′|x) := P(Xk = x ′|Xk−1 = x ,Ak−1 = a) .

I (Deterministic) reward r a(x) : A× X 7→ R
I At step k in the state Xk = x the agent performs an action

Ak ∼ π(·|x) (suppose Ak = a), obtains a reward r a(Xk) and transits to
Xk+1 ∼ Pa(·|x)

Markov Decision Process

Let γ ∈ (0, 1] be the discount factor. Tuple (X,A,P, r, γ) is called
Markov Decision Process.
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How to measure policy’s quality?

Given policies π1 and π2, how to compare their quality?

Value function, associated with the policy π, is defined as

V π(x) := E
[ ∞∑
k=0

γk rAk (Xk)|X0 = x

]
How can we estimate this quantity?

1. Monte-Carlo. Run a series of independent simulations to compute
V π(x) = E

[∑∞
k=0 γ

k rAk (Xk)|X0 = x
]
.

2. Stochastic Approximation. Use Robbins-Monro procedure to obtain
Temporal difference-based method (e.g. TD(0), Sutton [1988],
Tsitsiklis and Van Roy [1997]). Preliminary estimates are available
even at the early stage.
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Optimal policy and optimal value function

We call policy π? an optimal policy, if V π?(x) ≥ V π(x) for any x ∈ X.

The following result holds (see, e.g., Puterman [2014]):

Theorem
When the reward function is bounded, one can always find a
deterministic Markov policy that is optimal. Moreover, the optimal value
function V ? satisfies the Bellman optimality equation:

V ?(x) = max
a∈A

[r a(x) + γ Pa V ?(x) ] .

In the formula above Pa V ?(x) =
∫

X
V ?(x ′) Pa(dx ′|x) .
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Policy quality metrics

How far is the given policy π from the optimal one π??

I Popular performance metrics is the total regret (Azar et al. [2017], Jin
et al. [2018]) of the learning algorithm with respect to an optimal
policy.

I Given a sequence of policies (πk)k∈N and a sequence of episodes
starting from the states (xk0 )k∈N, we define the regret after K
iterations as

K∑
k=1

[
V ?(xk0 )− V πk (xk0 )

]
.

I Regret bounds are available for many tabular MDP learning
algorithms. Yet the regret analysis does not provide much information
for the policy approximation methods.
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Policy quality metrics

How far is the given policy π from the optimal one π??

I Consider, for example, the family of policy approximation methods;

I We approximate π(a|x) by the parametric family of policies
πθ(a|x), θ ∈ Θ ⊆ Rd′

;

I It is hard to quantify the approximation error

V ?(x)− sup
θ∈Θ

V πθ (x) ,

moreover, the bounds on approximation error are typically pessimistic
and relies upon unknown regularity properties of given MDP;

I Is it a generic way to estimate the policy error

∆π(x)
.

= V ?(x)− V π(x) ,

if π? (and V ?) are unknown?
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Value iteration algorithm

I First idea: construct an upper biased estimate of V ?(x);

I Assume that the transition kernel (Pa)a∈A is known;

I The value iteration algorithm (Bertsekas and Shreve [1978]): starting
from some V0(x), iterate

Vk+1 = max
a∈A

[r a(x) + γ Pa Vk(x) ] .

I An important property: Vk(x) ≥ V ?(x) for any x ∈ X and k ∈ N,
provided that V0(x) ≥ V ?(x).

I Unfortunately, this property is lost if (Pa)a∈A is not known and could
be only approximated.
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Model assumptions

1. Our aim is to construct an (upper biased) estimate of ∆π(x);

2. We consider infinite-horizon MDPs with discount factor γ < 1;

3. We can sample from the conditional distribution Pa(·|x) for any x ∈ X
and a ∈ A;

4. Value function V π(x) is known .
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Upper solutions concept

Upper solution

We call a function V up an upper solution to the Bellman optimality
equation, if

V up(x) ≥ max
a∈A
{r a(x) + γ Pa V up(x)} ,∀x ∈ X . (1)

If V up(x) satisfies (1), then using the Bellman optimality equation we
can show that V up(x) ≥ V ?(x) for any x ∈ X.
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The upper solution concept

I The concept is related to the martingale duality approach in optimal
control;

I Rogers [2007];

I Belomestny and Schoenmakers [2018];

I Shar and Jiang [2020] used information relaxation approach to learn
(approximate) upper and lower bounds for the optimal action-value
function.
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How to construct an upper solution?

I In practice we can construct an upper solution as follows. Consider
arbitrary martingale function Φ : X 7→ R, such that Pa Φ(x) = 0 for
any a ∈ A, x ∈ X;

I Define V up as a solution to the following fixed point equation:

V up(x) = E[max
a
{r a(x) + γ(V up(Y x,a)− Φ(Y x,a))}] ,

where Y x,a ∼ Pa(·|x) .
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Checking upper solution properties

Indeed, we easily check that V up is an upper solution:

V up(x) = E[max
a
{r a(x) + γ(V up(Y x,a)− Φ(Y x,a))}]

≥ max
a

E[r a(x) + γ(V up(Y x,a)− Φ(Y x,a))]

= max
a
{r a(x) + γ Pa V up(x)}
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Solving the fixed point problem

I Recall that V up as a solution to the following fixed point equation:

V up(x) = E[max
a
{r a(x) + γ(V up(Y x,a)− Φ(Y x,a))}] ;

I Consider the iteration process

V up
k+1(x) = E

[
max
a
{r a(x) + γ(V up

k (Y x,a)− Φ(Y x,a))}
]

I The upper biasedness property is preserved: if V up
0 (x) ≥ V ?(x) for

any x ∈ X, then V up
k (x) ≥ V ?(x) for any k and x .
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UVIP

I Given a policy π to be evaluated and the corresponding value function
V π, we set

Φx,a
π (y)

.
= V π(y)− (Pa V π)(x) .

I Then we write the update of the Upper value iterative procedure
(UVIP) as follows:

V up
k+1(x) = E

[
max
a
{r a(x) + γ(V up

k (Y x,a)− Φx,a
π (Y x,a))}

]
I We enjoy the same upper biasedness property: V up

k (x) ≥ V ?(x) for
any k and x provided that V up

0 (x) ≥ V ?(x);

I Then we can evaluate the policy π by computing the difference

∆up
π,k(x)

.
= V up

k (x)− V π(x) ≥ ∆π(x) .
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Self-normalizing property

I Consider the case π = π?, then the corresponding martingale function
is given by

Φx,a(y)
.

= V ?(y)− (Pa V ?)(x) .

I The corresponding fixed point equation writes as

V up(x) = E[max
a
{r a(x) + γ(V up(Y x,a)− Φx,a(Y x,a))}] (2)

I It is easy to check that V ?(x) in this scenario is a solution to (2),
indeed,

V ?(x) = E[max
a
{r a(x) + γ(V ?(Y x,a)− V ?(Y x,a) + (Pa V ?)(x))}]

= max
a
{r a(x) + γ Pa V ?(x)} ,

which coincides with Bellman optimality equation.

I Thus ∆up
π,k(x)→ 0 as k →∞.
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Approximate UVIP

I Consider the (k + 1)-th UVIP iteration:

V up
k+1(x) = E

[
max
a
{r a(x) + γ(V up

k (Y x,a)− Φx,a
π (Y x,a))}

]
I We need to approximate an outer expectation and the one-step

transition operator Pa.
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Tabular UVIP: Monte-Carlo version

Algorithm 1: UVIP

Require: V π,V̂ up
0 , γ, ε,M1,M2

Ensure: V up

for x ∈ X, a ∈ A do
V (x , a) = M−1

1

∑M1

i=1 V
π(Y x,a

i ), Y x,a
i ∼ Pa(·|x)

for y ∈ X do
Φx,a
π (y) = V π(y)− V (x , a)

end for
end for
k = 1
while ‖V̂ up

k − V̂ up
k−1‖X > ε do

for x ∈ X do
V̂ up
k+1(x) = M−1

2

∑M2

i=1[maxa{r a(x) +γ(V̂ up
k (Y x,a

i )−Φx,a
π (Y x,a

i ))}],
Y x,a
i ∼ Pa(·|x)

end for
k = k + 1

end while
V up = V̂ up

k
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UVIP in general state space

Assumption A1

We suppose that (X, ρX) and (A, ρA) are compact metric spaces.
Moreover, X× A is equipped with some metric ρ, such that
ρ
(
(x , a), (x ′, a)

)
= ρX(x , x ′) for any x , x ′ ∈ X and a ∈ A.

In this scenario we fix a set of points XN = (x1, . . . , xN) and aim to
evaluate ∆π(x) for x ∈ XN.
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UVIP in general state space

I Recall that (k + 1)-th UVIP iteration writes as

V up
k+1(x) = E

[
max
a
{r a(x) + γ(V up

k (Y x,a)− Φx,a
π (Y x,a))}

]
.

In order to update V̂ up
k+1(xi ) the algorithm requires to calculate

V̂ up
k (Y xi ,a) with Y xi ,a ∼ Pa(·|x);

I This means that we need an additional interpolation step to calculate
V̂k(y) at points y 6∈ (x1, . . . , xN);

I For example, for a Lipshitz function f ∈ Lip(L) we can use optimal
central interpolant

I [f ](x) = (H low
f (x) + Hup

f (x))/2, where

H low
f (x) = max

`∈{1,...,N}
(f (x`)− LρX(x , x`)),

Hup
f (x) = min

`∈{1,...,N}
(f (x`) + LρX(x , x`)).
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Approximate UVIP

Input: Sample (x1, . . . , xN); V π, Ṽ up
0 , M1, M2, γ, ε

while ‖Ṽ up
k − Ṽ up

k−1‖∞ > ε do
for a ∈ A do

for i ∈ [N] do
for j ∈ [M1 + M2] do

V̂ up
k (Y xi ,a

j ) = I [Ṽ up
k ](Y xi ,a

j ), Y xi ,a
j ∼ Pa(·|xi )

end

V
(i,a)

= M−1
1

M1∑
j=1

V π(Y xi ,a
j );

end

end
for i ∈ [N] do

Ṽ up
k+1(xi ) =

M−1
2

M1+M2∑
j=M1+1

max
a∈A

{
r a(xi )+γ

(
V̂ up
k (Y xi ,a

j )−V π(Y xi ,a
j )+V

(i,a))}
;

end

end
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Theoretical assumptions

Assumption A2

There exists a measurable mapping ψ : X× A× Rm → X such that
Y x,a = ψ(x , a, ξ), where ξ is a random variable with values in Ξ ⊆ Rm

and distribution Pξ on Ξ, that is, ψ(x , a, ξ) ∼ Pa(·|x).

Assumption A3

For some positive constant Rmax and all a ∈ A, ‖r a‖X ≤ Rmax .

Assumption A4

For some positive constants Lψ ≤ 1, Lmax, Lπ and all a ∈ A, ξ ∈ Ξ,

LipρX
(r a(·)) ≤ Lmax, Lipρ(ψ(·, ·, ξ)) ≤ Lψ, Lipρ((V π◦ψ)(·, ·, ξ)) ≤ Lπ .
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Tabular MDP’s case

Checking A4

Let |X| <∞ and |A| <∞. Consider

ρX(x , x ′) = 1{x 6=x′}

ρ((x , a), (x ′, a′)) = 1{(x,a)6=(x′,a′)} .

Then the assumption A4 holds with constants Lψ = 1, Lmax = Rmax, and
Lπ = Rmax/(1− γ).
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Measuring the distance between V̂ up
k and V ∗

Theorem 1a.

Let |X|, |A| <∞ and assume A2, A3. Then for any k ∈ N and δ ∈ (0, 1)
it holds with probability at least 1− δ that

‖V̂ up
k − V ∗‖X . γk

∥∥V̂ up
0 − V ∗

∥∥
X

+ ‖V π − V ∗‖X +

√
log(|X||A|/δ)

M1
.

Theorem 1a can be generalized under A1 – A4. In this case there is an
additional term in the r.h.s, depending on the covering radius of the set
XN w.r.t. X, that is,

ρ(XN,X) = max
x∈X

min
k∈[N]

|x− Xk| .
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Notations

In case of more general X and A we introduce some additional notations:

I Define N (X× A, ρ, ε) the covering number of the set X× A w.r.t.
metric ρ, that is, the smallest cardinality of an ε-net of X× A w.r.t. ρ;

I Define D the diameter of X× A, that is,

D = diam(X× A) = max
(x,a),(x′,a′)∈X×A

ρ((x, a), (x′, a′)) ;

I Then logN (X× A, ρ, ε) is the metric entropy of X× A and

ID =

∫ D

0

√
logN

(
X× A, ρ, u

)
du

is the Dudley’s integral.

25 / 45



Some examples

I Assume |X| <∞, |A| <∞.

I We bypass the approximation step. Consider
ρ((x , a), (x ′, a′)) = 1{(x,a) 6=(x′,a′)}. Then

D = 1

ID =
√

log(|X||A|) .
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Some examples

I Assume X ⊆ [0, 1]dX , |A| <∞
I Let ρX(x , x ′) = ‖x − x ′‖, ρ

(
(x , a), (x ′, a′)

)
= ‖x − x ′‖+1{a 6=a′}. Then

D ≤
√

dX + 1,

ID .
√
dX log |A|+

√
dX log dX.
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Measuring the distance between V̂ up
k and V ∗

Theorem 1b.

Assume A1− A4 and suppose that LipρX
(V̂ up

0 ) ≤ L0 with some constant
L0 > 0. Then for any k ∈ N and δ ∈ (0, 1) it holds with probability at
least 1− δ that

‖V̂ up
k − V ∗‖X . γk

∥∥V̂ up
0 − V ∗

∥∥
X

+ ‖V π − V ∗‖X +
ID + D

√
log(1/δ)√
M1

+ ρ(XN,X) .

In case X = [0, 1]d and XN = {X1, . . . ,XN} being a set of N points,
uniformly distributed over X, the following bound is available: for any
δ ∈ (0, 1),

ρ(XN,X) .
√

dX

(
log(1/δ) log N

N

)1/dX

with probability at least 1− δ.

28 / 45



Variance of the estimator

We need to assume in addition that X× A is a parametric class with the
metric entropy satisfying the following assumption:

Assumption A5

There exist a constant CX,A > 1 such that for any ε ∈ (0,D),

logN (X× A, ρ, ε) ≤ CX,A log(1 + 1/ε).
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Variance of the estimator

Theorem 2.

Let us introduce σk as an upper bound for E1/2[‖V̂ up
k − V ∗‖2

X], that is,

σk
.

= γk
∥∥V̂ up

0 − V ∗
∥∥

X
+ ‖V π − V ∗‖X +

ID + D√
M1

+ ρ(XN,X) .

Let A1 – A5 hold and assume additionally LipρX
(V̂ up

0 ) ≤ L0 for some
L0 > 0. Then

max
x∈X

Var
[
V̂ up
k (x)

]
≤ Cσ2

k log(e ∨ σ−1
k )M−1

2 ,

where the constant C depends on CX,A, γ, Lmax, Lψ, Lπ, L0 and Rmax.
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Confidence intervals for V ?

Theorem 3.

For any x ∈ XN and any δ ∈ (0, 1), with probability at least 1− δ,

V π(x) ≤ V ?(x) ≤ V̂ up
k (x) + σk

√
C log(e ∨ σ−1

k )δ−1M−1
2 .

Moreover, for k and M1 large enough,

σk . ‖V π − V ?‖X .
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Numerical results: Chain problem

I Chain is a finite MDP, where agent can move only (right and left);

I Chain has two terminal states at the ends. For transition to the
terminal states agent receives 10 points and episode ends, otherwise
the reward is equal to +1;

I p ∈ (0, 1) - noise in the system, i.e. the agent’s action Ak at state x is
drawn from distribution

Ak ∼

{
π(·|x) , with probability p;

uniform distribution over A, with probability 1− p .
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Numerical results: Chain problem

I Consider the sequence of policies (πk)15
k=0, obtained via the value

iteration procedure. We evaluate policies πk by computing ∆up
π,k(x) for

some time steps k .

Figure: Chain environment: evaluating π0, π5 and π15
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Numerical results: Garnet problem

I A Garnet model is specified by a triplet (NS ,NA,NB), where NS and
NA are the number of states and actions, respectively.

I The parameter NB denotes the branching factor, that is, the number
of states reachable from any state-action pair.

I We choose NS = 20, NA = 10, NB = 2.
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Numerical results: Garnet problem

I Consider the sequence of policies (πk)15
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iteration procedure. We evaluate policies πk by computing ∆up
π,k(x) for

some time steps k .

Figure: Garnet environment: evaluating π0, π5 and π15
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Numerical results: Cartpole

I CartPole is an example of the environment with a finite action space
and infinitely large state space. In this environment agent can push
cart with pole on it to the left or right direction and the target is to
hold the pole up as long as possible.

I Reward equals to 1 is gain every time until failing or the end of
episode.

I We apply normally distributed random variable (additional
randomness) to the angle.
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Numerical results: Cartpole

I LD(Linear Deterministic) policy can be expressed as I{3 · θ + θ̇ > 0},
where θ is an angle between pole and normal to cart.

Figure: CartPole environment: evaluating A2C, deterministic policy and
random policy.
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UVIP: reminder

Require: V π,V̂ up
0 , γ, ε,M1,M2

Ensure: V up

for x ∈ X, a ∈ A do
V (x , a) = M−1

1

∑M1

i=1 V
π(Y x,a

i ), Y x,a
i ∼ Pa(·|x)

for y ∈ X do
Φx,a
π (y) = V π(y)− V (x , a)

end for
end for
k = 1
while ‖V̂ up

k − V̂ up
k−1‖X > ε do

for x ∈ X do
V̂ up
k+1(x) = M−1

2

∑M2

i=1[maxa{r a(x) +γ(V̂ up
k (Y x,a

i )−Φx,a
π (Y x,a

i ))}],
Y x,a
i ∼ Pa(·|x)

end for
k = k + 1

end while
V up = V̂ up

k
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Further research directions: online method

I Instead of estimating Pa V (x) with Monte-Carlo method, consider
estimating Pa online;

I Use P̂aV (x) instead of V (x , a) where

P̂a(x ′|x) =
N(x ′, a, x)

N(a, x)
, x , x ′ ∈ X, a ∈ A ;

I N(a, x) - number of visits of pair (a, x),

I N(x ′, a, x) - number of visits to x ′ by taking action a at state x .
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UVIP: reminder

Algorithm 2: UVIP: online modification

Require: V π,V̂ up
0 , γ, ε,M1,M2

Ensure: V up

k = 1
while ‖V̂ up

k − V̂ up
k−1‖X > ε do

for x ∈ X do
V̂ up
k+1(x) =

M−1
2

∑M2

i=1

[
maxa

{
r a(x)+γ

(
V̂ up
k (Y x,a

i )−V π(Y x,a
i )+P̂aV π(x)

)}]
,

Y x,a
i ∼ Pa(·|x)

end for
k = k + 1

end while
V up = V̂ up

k
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Online method: Garnet

I Consider the sequence of policies (πk)15
k=0, obtained via the value

iteration procedure. We evaluate policies πk by computing ∆up
π,k(x) for

some time steps k .

Figure: Garnet environment: evaluating π0, π5 and π15 with an online method
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Extensions: real-time UVIP
Consider now the extensions to finite-horizon case with episodes of length
H.

Algorithm 3: Real-Time UVIP

Initialize: V 0,up
t .

for k = 1, 2, . . . do
Initialize X k

1

for t = 0, . . . ,H − 1 do
Ak
t ∈ arg maxa∈A

{
r a(X k

t ) + Pa V up,k−1
t+1 (X k

t )
}

Act with Ak
t and observe X k

t+1

V up,k
t (X k

t ) =

E
[
maxa∈A{r a(X k

t ) +V up,k−1
t+1 (Y a,k

t+1)−V π(Y a,k
t+1) + (Pa V π)(X k

t )}
]
,

Y a,k
t+1 ∼ Pa(·|X k

t ).
end for

end for

In the algorithm above Pa V π(x) can be replaced by P̂aV π(x) and the
outer expectation can be replaced by its Monte-Carlo estimate.
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Paper available at https://arxiv.org/abs/2105.02135
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Thank you!
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