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Background: Collaborative filtering

» Linear models
» user-item collaborative filtering:
P probabilistic matrix factorization
(PMF) [Salakhutdinov and Mnih, 2008]
> weighted matrix factorization (WMF) [Hu et al., 2008]
> item-item collaborative filtering:

» sparse linear methods (SLIM) [Ning and Karypis, 2011]
» embarrassingly shallow autoencoders (EASE) [Steck, 2019]
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» Linear models
» user-item collaborative filtering:
» probabilistic matrix factorization
(PMF) [Salakhutdinov and Mnih, 2008]
> weighted matrix factorization (WMF) [Hu et al., 2008]
> item-item collaborative filtering:
» sparse linear methods (SLIM) [Ning and Karypis, 2011]
» embarrassingly shallow autoencoders (EASE) [Steck, 2019]
» Deep learning-based models
» autoencoder-based:
> AutoRec [Sedhain et al., 2015]
collaborative denoising autoencoder (CDAE) [Wu et al., 2016]
multinomial VAE (Mult-VAE) [Liang et al., 2018]
ranking-critical training (RaCT) [Lobel et al., 2019]
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Background: SLIM

» Sparse Linear Methods (SLIM) [Ning and Karypis, 2011]:
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» subject to diag(W) =10



Background: Autoencoders for Collaborative Filtering

| User feedback |
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X, = noise(x,),
Decoder .
%, = encoder(%,),

%Pred — decoder(2,),

User embedding

where x, is a user feedback
vector with x,; = 1 iff the uth
user has positively interacted
Encoder with the ith item

Corrupted user feedback




Background: Variational Autoencoders

» Variational autoencoders (VAE) [Kingma and Welling, 2013]:
0g p(x) = log | plxl2)p(z)dz =

p(z, x)
q(z|x)
> ELBO = Eq(4|x) log p(x|2) — KL (q(z|x)|p(2))
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Background: Variational Autoencoders
for Collaborative Filtering

Cross-entropy
loss

| User feedback I

» Multinomial VAE
(Mult-VAE) [Liang et al., 2018]:

Decoder

> partially regularized VAE with
multinomial likelihood:

L =Eg,(z,/x,) 108 Mult(x,|7(z,))—
— BKL (g¢(zulxu)llp(24))

Corrupted user feedback



Our model

» Most works that develop further developments of VAE for
collaborative filtering introduce alternative loss functions:
> Wasserstein autoencoders (aWAE) [Zhong and Zhang, 2018]
> ranking-critical training (RaCT) [Lobel et al., 2019]
> negative-binomial VAE (NBVAE) [Zhao et al., 2019]

» Instead, we propose several new regularization techniques for
Mult-VAE



Background: Variational Autoencoder with
Arbitrary Conditioning

> Variational Autoencoder with Arbitrary Conditioning
(VAEAC) [lvanov et al., 2018]:

log pe,b(Xb|X1-p, b) >
Lvaeac = Eqy(z|x,b) 108 po(xb| 2, x1-5, b) —
— KL (q¢(2[x, b)|lpe(z | x1-b,b)); (1)
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Composite prior

>
>

Standard normal prior is important for Mult-VAE

Inspired by TRPO [Schulman et al., 2015] and

PPO [Schulman et al., 2017] from reinforcement learning, we
propose to add a regularizer that brings current variational
parameters closer to variational parameters on the previous
epoch

We combine them together as a conditional prior:

p(2|Poia, x) = aN(2[0,1) + (1 — a)gq,,(2]x)

This improves both stability and performance

Serves as an auxiliary loss function



Background: Trust Region Policy Optimization

mo(als)
"L q(als)
subject to Esp, KL (m,,(:|s)l[mo(:|s)) < 6.

Qb1 (s,a)

maX|9m|ze ]ESNP%W"N



Rescaling KL-divergence

» x,; = 0 means that the uth user either does not like the ith
item or has not seen the jth item at all
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Rescaling KL-divergence

» x,; = 0 means that the uth user either does not like the ith
item or has not seen the jth item at all

» We denote by X the set of items that the uth user likes
according to the training set and by X/ the set of items that
the uth user actually likes

» Then we can derive that £ can be approximated with

X2l
Xl

Eq¢(zu|xu) log MUIt(XU’W(ZU)) - KL (q¢(zu‘xu)Hp(zU)) )

where |Xf| is unknown, so we let it be equal to some constant



Rescaling KL-divergence
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» Linear decoder (item embeddings matrix + bias vector)
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Complementary improvements

» Updated architecture

» Deep encoder

» Linear decoder (item embeddings matrix + bias vector)
» Alternating Training

» Encoder and decoder are trained alternately
» More iterations are required to train the encoder

» Regularization by denoising

P |t appears that the decoder is overregularized
» Therefore, we do not use denoising during decoder training



Results

ML-20M | Netflix | MSD
WMF [Hu et al., 2008] 0.386 0.351 0.257
Mult-VAE [Liang et al., 2018] | 0.426 0.386 | 0.316
RaCT [Lobel et al., 2019] 0.434 0.392 0.319
EASE [Steck, 2019] 0.420 0.393 | 0.389
RecVAE (ours) 0.442 0.394 | 0.326

> NDCG@100 scores, best results highlighted in bold, second
best ones underlined



Conclusion

» \We have proposed several improvements for Mult-VAE

» Combined together, they significantly improve the
performance, making RecVAE the new state of the art in deep
learning-based autoencoders for collaborative filtering
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