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Background: Collaborative filtering

I Linear models
I user-item collaborative filtering:

I probabilistic matrix factorization
(PMF) [Salakhutdinov and Mnih, 2008]

I weighted matrix factorization (WMF) [Hu et al., 2008]

I item-item collaborative filtering:
I sparse linear methods (SLIM) [Ning and Karypis, 2011]
I embarrassingly shallow autoencoders (EASE) [Steck, 2019]

I Deep learning-based models
I autoencoder-based:

I AutoRec [Sedhain et al., 2015]
I collaborative denoising autoencoder (CDAE) [Wu et al., 2016]
I multinomial VAE (Mult-VAE) [Liang et al., 2018]
I ranking-critical training (RaCT) [Lobel et al., 2019]

I ...
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Background: SLIM

I Sparse Linear Methods (SLIM) [Ning and Karypis, 2011]:

argminW
1

2
‖R − RW ‖2

F +
β

2
‖W ‖2

F + λ‖W ‖1

I subject to diag(W ) = 0



3/16

Background: SLIM

I Sparse Linear Methods (SLIM) [Ning and Karypis, 2011]:

argminW
1

2
‖R − RW ‖2

F +
β

2
‖W ‖2

F + λ‖W ‖1

I subject to diag(W ) = 0



4/16

Background: Autoencoders for Collaborative Filtering

x̃u = noise(xu),

z̃u = encoder(x̃u),

x̃pred
u = decoder(z̃u),

where xu is a user feedback
vector with xui = 1 iff the uth
user has positively interacted
with the ith item
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Background: Variational Autoencoders

I Variational autoencoders (VAE) [Kingma and Welling, 2013]:

log p(x) = log

∫
p(x |z)p(z)dz =

= Eq(z |x) log
p(z , x)

q(z |x)
+ KL (q(z |x)‖p(z |x)) ≥

≥ ELBO = Eq(z |x) log p(x |z)−KL (q(z |x)‖p(z))
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Background: Variational Autoencoders
for Collaborative Filtering

I Multinomial VAE
(Mult-VAE) [Liang et al., 2018]:

I partially regularized VAE with
multinomial likelihood:

L = Eqφ(zu |xu) logMult(xu|π(zu))−
− βKL (qφ(zu|xu)‖p(zu))
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Our model

I Most works that develop further developments of VAE for
collaborative filtering introduce alternative loss functions:
I Wasserstein autoencoders (aWAE) [Zhong and Zhang, 2018]
I ranking-critical training (RaCT) [Lobel et al., 2019]
I negative-binomial VAE (NBVAE) [Zhao et al., 2019]

I Instead, we propose several new regularization techniques for
Mult-VAE
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Background: Variational Autoencoder with
Arbitrary Conditioning

I Variational Autoencoder with Arbitrary Conditioning
(VAEAC) [Ivanov et al., 2018]:

log pθ,b(xb|x1−b, b) ≥
LVAEAC = Eqφ(z |x ,b) log pθ(xb|z , x1−b, b)−

−KL (qφ(z |x , b)‖pθ(z | x1−b, b)) ; (1)
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Composite prior

I Standard normal prior is important for Mult-VAE

I Inspired by TRPO [Schulman et al., 2015] and
PPO [Schulman et al., 2017] from reinforcement learning, we
propose to add a regularizer that brings current variational
parameters closer to variational parameters on the previous
epoch

I We combine them together as a conditional prior:

p̃(z |φold , x) = αN (z |0, I) + (1− α)qφold
(z |x)

I This improves both stability and performance

I Serves as an auxiliary loss function
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Background: Trust Region Policy Optimization

maximize
θ

Es∼ρθold ,a∼q

[
πθ(a|s)

q(a|s)
Qθold(s, a)

]
subject to Es∼ρθoldKL (πθold(·|s)‖πθ(·|s)) ≤ δ.
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Rescaling KL-divergence

I xui = 0 means that the uth user either does not like the ith
item or has not seen the ith item at all

I We denote by Xo
u the set of items that the uth user likes

according to the training set and by Xf
u the set of items that

the uth user actually likes

I Then we can derive that L can be approximated with

Eqφ(zu |xu) logMult(xu|π(zu))− |X
o
u|

|Xf
u|
KL (qφ(zu|xu)‖p(zu)) ,

where |Xf
u| is unknown, so we let it be equal to some constant
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Rescaling KL-divergence

L = Eqφ(zu |x fu) logMult(x f
u|π(zu))−KL

(
qφ(zu|x f

u)
∥∥∥p(zu)

)
=∑

a∈Xf
u

Eqφ(zu |x fu) logCat(1a|π(zu))−KL
(
qφ(zu|x f

u)
∥∥∥p(zu)

)
+ Cu =

∑
a∈Xf

u

[
Eqφ(zu |x fu) logCat(1a|π(zu))−

1

|Xf
u|
KL
(
qφ(zu|x f

u)
∥∥∥p(zu)

)]
+ Cu ≈

|Xf
u|
|Xo

u |
∑
a∈Xo

u

[
Eqφ(zu |x fu) logCat(1a|π(zu))−

1

|Xf
u|
KL
(
qφ(zu|x f

u)
∥∥∥p(zu)

)]
+ C ′

u ≈

|Xf
u|
|Xo

u |
∑
a∈Xo

u

[
Eqφ(zu |xu) logCat(1a|π(zu))−

1

|Xf
u|
KL (qφ(zu|xu)‖p(zu))

]
+ C ′

u =

|Xf
u|
|Xo

u |

Eqφ(zu |xu)

∑
a∈Xo

u

logCat(1a|π(zu))−
|Xo

u |
|Xf

u|
KL (qφ(zu|xu)‖p(zu))

+ C ′
u =

|Xf
u|
|Xo

u |

[
Eqφ(zu |xu) logMult(xu|π(zu))−

|Xo
u |
|Xf

u|
KL (qφ(zu|xu)‖p(zu))

]
+ C ′′

u

(2)
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Complementary improvements

I Updated architecture
I Deep encoder
I Linear decoder (item embeddings matrix + bias vector)

I Alternating Training
I Encoder and decoder are trained alternately
I More iterations are required to train the encoder

I Regularization by denoising
I It appears that the decoder is overregularized
I Therefore, we do not use denoising during decoder training
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Results

ML-20M Netflix MSD
WMF [Hu et al., 2008] 0.386 0.351 0.257
Mult-VAE [Liang et al., 2018] 0.426 0.386 0.316
RaCT [Lobel et al., 2019] 0.434 0.392 0.319
EASE [Steck, 2019] 0.420 0.393 0.389
RecVAE (ours) 0.442 0.394 0.326

I NDCG@100 scores, best results highlighted in bold, second
best ones underlined



15/16

Conclusion

I We have proposed several improvements for Mult-VAE

I Combined together, they significantly improve the
performance, making RecVAE the new state of the art in deep
learning-based autoencoders for collaborative filtering
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