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Static vs Contextualized Word Vectors

Vocabulary W := {1, . . . , n}.

I Static embedding of a word i ∈ W:

wi = f (i), wi ∈ Rd .

I word2vec [Mikolov et al., 2013a,b], GloVe [Pennington
et al., 2014].

I Problems with polysemous words: f (bank).

I Contextualized embedding of a word i ∈ W in a sentence
j1, . . . , jl−1, i , jl+1, . . . , jk :

wi = g(j1, . . . , jl−1, jl+1, . . . , jk), wi ∈ Rd .

I ELMo [Peters et al., 2018], BERT [Devlin et al., 2019].
I g(financial, crisis) 6= g(river).
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Advantages of Static Embeddings

I Trained much faster

: few hours vs few days

I Require less computing resources

: 1 GPU vs 8–16 GPUs

I Plenty of theoretical research: Levy and Goldberg [2014],
Arora et al. [2016], Hashimoto et al. [2016], Gittens et al.
[2017], Tian et al. [2017], Ethayarajh et al. [2019], Allen et al.
[2019], Allen and Hospedales [2019], Assylbekov and
Takhanov [2019], Zobnin and Elistratova [2019]

I Integral part of contextualized models
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Research Question

I Arora et al. [2016], Assylbekov and Takhanov [2019] assume
that

wi
i.i.d.∼ Isotropic distribution, e.g. N (0, I).

I BUT! Word vectors are NOT independent:

wking −wman + wwoman ≈ wqueen

I Can we impose a more realistic mathematical structure on the
set of word vectors?
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Notation

x vector
x scalar
〈x, y〉 Euclidean inner product

A = (aij) matrix with ij-th entry aij
i.i.d. independent and identically distributed
∝ proportional to
∼ distributed as
wi vector for a center word i ∈ W
cj vector for a context word j ∈ W

{(i , j)} dataset of co-occurence pairs (i , j)
#(i , j) number of times i and j co-occur
N dataset size: N =

∑
(i ,j)∈W2 #(i , j)

the cat sat on the mat →
(the, cat), (cat, the), (cat, sat), (sat, cat), (sat, on), (on, sat),
(on, the), (the, on), (the, mat), (mat, the)
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SGNS as Matrix Factorization

word2vec SGNS [Mikolov et al., 2013a,b] solves∑
i∈W

∑
j∈W

#(i , j) (log σ(〈wi , cj〉) + k · Ej′∼p[log σ(−〈wi , cj′〉)])→ max
{wi},{cj}

(1)

Levy and Goldberg [2014]:

(1) ⇔ log p(i ,j)
p(i)p(j)︸ ︷︷ ︸
PMIij

− log k ≈ 〈wi , cj〉



SGNS as Matrix Factorization

word2vec SGNS [Mikolov et al., 2013a,b] solves∑
i∈W

∑
j∈W

#(i , j) (log σ(〈wi , cj〉) + k · Ej′∼p[log σ(−〈wi , cj′〉)])→ max
{wi},{cj}

(1)

Levy and Goldberg [2014]:

(1) ⇔ log p(i ,j)
p(i)p(j)︸ ︷︷ ︸
PMIij

− log k ≈ 〈wi , cj〉



Modified SGNS and BPMI factorization

Assylbekov and Jangeldin [2020]: Solving∑
i∈W

∑
j∈W

#(i , j)
(
log〈wi , cj〉+ Ej ′∼p[log(1− 〈wi , cj ′〉)]

)
→ max
{wi},{cj}

(2)
gives word embeddings comparable to SGNS.1

Also,

(1) ⇔ 〈wi , cj〉 ≈ H
(

log p(i ,j)
p(i)p(j)

)
,

where H(x) =

{
1 for x > 0

0 for x ≤ 0

1.649 vs .678 on WordSim353 task
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BPMI & Hyperbolic Geometry

I BPMI is an adjacency matrix of some graph

I Such graph is a complex network (explained later)

I Krioukov et al. [2010]: Complex network possesses an
effective hyperbolic geometry underneath.

Word Embeddings −→ BPMI

−→ Complex Network −→ Hyperbolic Geometry

Can we go from the final point to the starting one?
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Hyperbolic geometry

I Curvature κ:

I κ = 0 — Euclidean geometry R2

I κ > 0 — Spherical geometry S2
I κ < 0 — Hyperbolic geometry H2

I H2 cannot be isometrically embedded into Rn (∀n):

I we cannot map points of H2 into points of Rn in such way
that the distances between points are preserved.

I Many equivalent models of Hd , e.g.:

I Hyperboloid model
I Poincaré model
I Upper half-space model

I We’ll use the so-called native model [Krioukov et al., 2010].
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Native model of H2

Interior of the Euclidean disk of radius R:

I if (r , θ) are polar coordinates of p ∈ H2, then r = hyperbolic
distance of p from the origin.

I distance x between two points p = (r , θ) and p′ = (r ′, θ′)
satisfies2

cosh x = cosh r cosh r ′ − sinh r sinh r ′ cos(θ − θ′). (3)

2

for curvature κ = −1
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Euclidean vs Hyperbolic geometries

Property Euclidean Hyperbolic3

Parallel lines 1 ∞

Shape of triangles
Sum of angles in triangles π < π
Circle length 2πr 2π sinh r = O(er )
Disk area πr2 2π(cosh r − 1) = O(er )

3κ = −1



Random Hyperbolic Graph (RHG)

Construction by Krioukov et al. [2010]:

I place randomly n points (nodes) into a hyperbolic disk of
radius R

I connect those pairs of points (i , j) for which xij ≤ R.

θ ∼ U [0, 2π)

r ∼ ρ(r) :=
α sinhαr

coshαR − 1
, α ∈ (0, 1)

I R and α are chosen to fit the RHG degree distribution to that
of BPMI.
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Graph Terminology

I Graph: G = (V, E)
I V – set of vertices {i}.
I E – set of pairs (i , j) with i , j ∈ V

I Adjacency matrix (eij) with eij =

{
1 if (i , j) ∈ E
0 if (i , j) /∈ E

.

I Degree of a vertex: deg(i) =
∑

j∈V eij
I Let Gi = {j ∈ V | eij = 1} — the set of nearest neighbors of a

vertex i , and li =
∑

j∈V eij

[∑
k∈Gi ; j<k ejk

]
I Local clustering coefficient C (i) = li

(|Gi |2 )

I Clustering coefficient C = 1
n

∑
i∈V C (i).
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Complex Networks

I k̄ = 1
n

∑
j∈V eij – average degree per vertex.

I Random Graphs:

eij
iid∼ Bernoulli(p)

Erdős and Rényi [1960] showed

C ≈ k̄

n
and deg(i) ∼ Binomial(n − 1, p)

I Complex Networks:

C � k̄

n
and p(deg(i) = k) ∝ 1

kγ
,

where γ is some constant.

I RHG is a complex network.
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RHG and BPMI
A — BPMI matrix:

Aij = H(PMIij)

B — adjacency matrix of the RHG:

Bij = H(R − xij)

If RHG and BPMI are
structurally similar, then

R − xij ∼ PMIij
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Can we (approximately) match RHG nodes to BPMI nodes? i.e.
find a permutation matrix P that solves

‖A− PBP>‖ → min
P∈Pn
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Approximate Graph Matching

‖A− PBP>‖ → min
P∈Pn

Approximate solution [Umeyama, 1988]:

1. Find eigendecompositions of A and B:

A = UAΛAU>A , B = UBΛBU>B

2. P̃ := |UA||UB |>

3. To obtain a permutation matrix P from P̃ we apply the
Auction algorithm of Bertsekas [1979].
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Word Embeddings from RHG

Word embedding matrix W can be obtained from PBP> by

1. SVD:
PBP> = UΣV.

2. As in Levy and Goldberg [2014]:

W := U1:n,1:dΣ
1/2
1:d ,1:d .
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Evaluation

I Dataset: text8

I Ignore words that appeared less than 500 times

I Vocabulary: 3,446 tokens

I Evaluation: word similarity task WS353

Overall Similarity Relatedness

SGNS .669 .767 .661
PMI + SVD .432 .498 .433
BPMI + SVD .362 .432 .322
RHG + Permute + SVD .263 .254 .246

Table: Evaluation of word embeddings on the WS353 task. Evaluation
metric is the Spearman’s correlation with the human ratings.

Bad quality of word embeddings from RHG.
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Conclusion

I Throwing points randomly in hyperbolic disk, we get word
representations.

I Each point corresponds to a word of human language.

I Relation ≈ Hyperbolic distance.

I Semiotic arbitrariness [De Saussure, 2011]:

What’s in a name? That which we call a rose

By any other name would smell as sweet.
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