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Abstract

Pre-trained language representation models
(PLMs) cannot well capture factual knowl-
edge from text. In contrast, knowledge
embedding (KE) methods can effectively
represent the relational facts in knowledge
graphs (KGs) with informative entity embed-
dings, but conventional KE models cannot
take full advantage of the abundant textual
information. In this paper, we propose a
unified model for Knowledge Embedding
and Pre-trained LanguagE Representation
(KEPLER), which can not only better in-
tegrate factual knowledge into PLMs but
also produce effective text-enhanced KE
with the strong PLMs. In KEPLER, we en-
code textual entity descriptions with a PLM
as their embeddings, and then jointly opti-
mize the KE and language modeling objec-
tives. Experimental results show that KE-
PLER achieves state-of-the-art performances
on various NLP tasks, and also works re-
markably well as an inductive KE model on
KG link prediction. Furthermore, for pre-
training and evaluating KEPLER, we con-
struct Wikidata5M1, a large-scale KG dataset
with aligned entity descriptions, and bench-
mark state-of-the-art KE methods on it. It
shall serve as a new KE benchmark and facil-
itate the research on large KG, inductive KE,
and KG with text. The source code can be
obtained from https://github.com/
THU-KEG/KEPLER.

1 Introduction

Recent pre-trained language representation models
(PLMs) such as BERT (Devlin et al., 2019) and

∗ Correspondence to: Z. Liu and J. Tang
1https://deepgraphlearning.github.

io/project/wikidata5m
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Figure 1: An example of a KG with entity descrip-
tions. The figure suggests that descriptions contain
abundant information about entities and can help
to represent the relational facts between them.

RoBERTa (Liu et al., 2019c) learn effective lan-
guage representation from large-scale unstructured
corpora with language modeling objectives and
have achieved superior performances on various
natural language processing (NLP) tasks. Exist-
ing PLMs learn useful linguistic knowledge from
unlabeled text (Liu et al., 2019a), but they gen-
erally cannot well capture the world facts, which
are typically sparse and have complex forms in
text (Petroni et al., 2019; Logan et al., 2019).

By contrast, knowledge graphs (KGs) contain
extensive structural facts, and knowledge embed-
ding (KE) methods (Bordes et al., 2013; Yang et al.,
2015; Sun et al., 2019) can effectively embed them
into continuous entity and relation embeddings.
These embeddings can not only help with the KG
completion but also benefit various NLP applica-
tions (Yang and Mitchell, 2017; Zaremoodi et al.,
2018; Han et al., 2018a). As shown in Figure 1,
textual entity descriptions contain abundant infor-
mation. Intuitively, KE methods can provide fac-
tual knowledge for PLMs, while the informative
text data can also benefit KE.
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Inspired by Xie et al. (2016), we use entity
descriptions to bridge the gap between KE and
PLM, and align the semantic space of text to
the symbol space of KGs (Logeswaran et al.,
2019). We propose KEPLER, a unified model for
Knowledge Embedding and Pre-trained LanguagE
Representation. We encode the texts and entities
into a unified semantic space with the same PLM
as the encoder, and jointly optimize the KE and the
masked language modeling (MLM) objectives. For
the KE objective, we encode the entity descriptions
as entity embeddings and then train them in the
same way as conventional KE methods. For the
MLM objective, we follow the approach of exist-
ing PLMs (Devlin et al., 2019; Liu et al., 2019c).
KEPLER has the following strengths:

As a PLM, (1) KEPLER is able to integrate fac-
tual knowledge into language representation with
the supervision from KG by the KE objective. (2)
KEPLER inherits the strong ability of language
understanding from PLMs by the MLM objective.
(3) The KE objective enhances the ability of KE-
PLER to extract knowledge from text since it re-
quires the model to encode the entities from their
corresponding descriptions. (4) KEPLER can be
directly adopted in a wide range of NLP tasks with-
out additional inference overhead compared to con-
ventional PLMs since we just add new training
objectives without modifying model structures.

There are also some recent works (Zhang et al.,
2019; Peters et al., 2019; Liu et al., 2020) directly
integrating fixed entity embeddings into PLMs to
provide external knowledge. However, (1) their
entity embeddings are learned by a separate KE
model, and thus cannot be easily aligned with the
language representation space. (2) They require an
entity linker to link the text to the corresponding
entities, making them suffer from the error propaga-
tion problem. (3) Compared to vanilla PLMs, their
sophisticated mechanisms to link and use entity
embeddings lead to additional inference overhead.

As a KE model, (1) KEPLER can take full ad-
vantage of the abundant information from entity
descriptions with the help of the MLM objective.
(2) KEPLER is capable of performing KE in the
inductive setting, i.e., it can produce embeddings
for unseen entities from their descriptions, while
conventional KE methods are inherently transduc-
tive and they can only learn representations for the
shown entities during training. Inductive KE is
essential for many real-world applications, such

as updating KGs with emerging entities and KG
construction, and thus is worth more investigation.

For pre-training and evaluating KEPLER, we
need a KG with (1) large amounts of knowledge
facts, (2) aligned entity descriptions, and (3) rea-
sonable inductive-setting data split, which cannot
be satisfied by existing KE benchmarks. Therefore,
we construct Wikidata5M, containing about 5M en-
tities, 20M triplets, and aligned entity descriptions
from Wikipedia. To the best of our knowledge,
it is the largest general-domain KG dataset. We
also benchmark several classical KE methods and
give data splits for both the transductive and the
inductive settings to facilitate future research.

To summarize, our contribution is three-fold:
(1) We propose KEPLER, a knowledge-enhanced
PLM by jointly optimizing the KE and MLM ob-
jectives, which brings great improvements on a
wide range of NLP tasks. (2) By encoding text
descriptions as entity embeddings, KEPLER shows
its effectiveness as a KE model, especially in the in-
ductive setting. (3) We also introduce Wikidata5M,
a new large-scale KG dataset, which shall promote
the research on large-scale KG, inductive KE, and
the interactions between KG and NLP.

2 KEPLER

As shown in Figure 2, KEPLER implicitly incor-
porates factual knowledge into language represen-
tations by jointly training with two objectives. In
this section, we detailedly introduce the encoder
structure, the KE and MLM objectives, and how
we combine the two as a unified model.

2.1 Encoder

For the text encoder, we use Transformer architec-
ture (Vaswani et al., 2017) in the same way as De-
vlin et al. (2019) and Liu et al. (2019c). The en-
coder takes a sequence of N tokens (x1, ..., xN )
as inputs, and computes L layers of d-dimensional
contextualized representations Hi ∈ RN×d, 1 ≤
i ≤ L. Each layer of the encoder Ei is a combi-
nation of a multi-head self-attention network and
a multi-layer perceptron, and the encoder gets the
representation of each layer by Hi = Ei(Hi−1).
Eventually, we get a contextualized representation
for each position, which could be further used in
downstream tasks. Usually, there is a special token
<s> added to the beginning of the text, and the
output at <s> is regarded sentence representation.
We denote the representation function as E<s>(·).



<s> Johannes Kepler was a German astronomer … <s> An astronomer is a scientist in the field of  … … Kepler <mask> to have had an epiphany on …
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Figure 2: The KEPLER framework. We encode entity descriptions as entity embeddings and jointly train
the knowledge embedding (KE) and masked language modeling (MLM) objectives on the same PLM.

The encoder requires a tokenizer to convert plain
texts into sequences of tokens. Here we use the
same tokenization as RoBERTa: the Byte-Pair En-
coding (BPE) (Sennrich et al., 2016).

Unlike previous knowledge-enhanced PLM
works (Zhang et al., 2019; Peters et al., 2019),
we do not modify the Transformer encoder struc-
ture to add external entity linkers or knowledge-
integration layers. It means that our model has no
additional inference overhead compared to vanilla
PLMs, and it makes applying KEPLER in down-
stream tasks as easy as RoBERTa.

2.2 Knowledge Embedding

To integrate factual knowledge into KEPLER, we
adopt the knowledge embedding (KE) objective in
our pre-training. KE encodes entities and relations
in knowledge graphs (KGs) as distributed represen-
tations, which benefits lots of downstream tasks,
such as link prediction and relation extraction.

We first define KGs: a KG is a graph with enti-
ties as its nodes and relations between entities as
its edges. We use a triplet (h, r, t) to describe a
relational fact, where h, t are the head entity and
the tail entity, and r is the relation type within a pre-
defined relation setR. In conventional KE models,
each entity and relation is assigned a d-dimensional
vector, and a scoring function is defined for training
the embeddings and predicting links.

In KEPLER, instead of using stored embeddings,
we encode entities into vectors by using their cor-
responding text. By choosing different textual data
and different KE scoring functions, we have mul-
tiple variants for the KE objective of KEPLER. In
this paper, we explore three simple but effective
ways: entity descriptions as embeddings, entity
and relation descriptions as embeddings, and entity

embeddings conditioned on relations. We leave ex-
ploring advanced KE methods as our future work.

Entity Descriptions as Embeddings For a rela-
tional triplet (h, r, t), we have:

h = E<s>(texth),

t = E<s>(textt),

r = Tr,

(1)

where texth and textt are the descriptions
for h and t, with a special token <s> at the begin-
ning. T ∈ R|R|×d is the relation embeddings and
h, t, r are the embeddings for h, t and r.

We use the loss from Sun et al. (2019) as
our KE objective, which adopts negative sam-
pling (Mikolov et al., 2013) for efficient optimiza-
tion:

LKE = − log σ(γ − dr(h, t))

−
n∑

i=1

1

n
log σ(dr(h

′
i, t
′
i)− γ),

(2)

where (h′i, r, t
′
i) are negative samples, γ is the

margin, σ is the sigmoid function, and dr is the
scoring function, for which we choose to follow
TransE (Bordes et al., 2013) for its simplicity,

dr(h, t) = ‖h+ r− t‖p, (3)

where we take the norm p as 1. The negative
sampling policy is to fix the head entity and ran-
domly sample a tail entity, and vice versa.

Entity and Relation Descriptions as Embed-
dings A natural extension for the last method
is to encode the relation descriptions as relation
embeddings as well. Formally, we have,

r̂ = E<s>(textr), (4)



where textr is the description for the relation
r. Then we use r̂ to replace r in Equation 2 and 3.

Entity Embeddings Conditioned on Relations
In this manner, we use entity embeddings con-
ditioned on r for better KE performances. The
intuition is that semantics of an entity may have
multiple aspects, and different relations focus on
different ones (Lin et al., 2015). So we have,

hr = E<s>(texth,r), (5)

where texth,r is the concatenation of the de-
scription for the entity h and the description for
the relation r, with the special token <s> at the
beginning and </s> in between. Correspondingly,
we use hr instead of h for Equation 2 and 3.

2.3 Masked Language Modeling

The masked language modeling (MLM) objective
is inherited from BERT and RoBERTa. During pre-
training, MLM randomly selects some of the input
positions, and the objective is to predict the tokens
at these selected positions within a fixed dictionary.

To be more specific, MLM randomly selects
15% of input positions, among which 80% are
masked with the special token <mask>, 10% are
replaced by other random tokens, and the rest re-
main unchanged. For each selected position j, the
last layer of the contextualized representation HL,j

is used for a W -way classification, where W is the
size of the dictionary. At last, a cross-entropy loss
LMLM is calculated over these selected positions.

We initialize our model with the pre-trained
checkpoint of RoBERTaBASE. However, we still
keep MLM as one of our objectives to avoid catas-
trophic forgetting (McCloskey and Cohen, 1989)
while training towards the KE objective. Actually,
as demonstrated in Section 5.1, only using the KE
objective leads to poor results in NLP tasks.

2.4 Training Objectives

To incorporate factual knowledge and language
understanding into one PLM, we design a multi-
task loss as shown in Figure 2 and Equation 6,

L = LKE + LMLM, (6)

where LKE and LMLM are the losses for KE and
MLM correspondingly. Jointly optimizing the two
objectives can implicitly integrate knowledge from
external KGs into the text encoder, while preserv-
ing the strong abilities of PLMs for syntactic and

semantic understanding. Note that those two tasks
only share the text encoder, and for each mini-
batch, text data sampled for KE and MLM are not
(necessarily) the same. This is because seeing a
variety of text (instead of just entity descriptions) in
MLM can help the model to have better language
understanding ability.

2.5 Variants and Implementations

We introduce the variants of KEPLER and the pre-
training implementations here. The fine-tuning
details will be introduced in Section 4.

KEPLER Variants
We implement multiple versions of KEPLER in
experiments to explore the effectiveness of our pre-
training framework. We use the same denotations
in Section 4 as below.

KEPLER-Wiki is the principal model in our
experiments, which adopts Wikidata5M (Section 3)
as the KG and the entity-description-as-embedding
method (Equation 1). All other variants, if not
specified, use the same settings. KEPLER-Wiki
achieves the best performances on most tasks.

KEPLER-WordNet uses the WordNet (Miller,
1995) as its KG source. WordNet is an English
lexical graph, where nodes are lemmas and synsets,
and edges are their relations. Intuitively, incorpo-
rating WordNet can bring lexical knowledge and
thus benefits NLP tasks. We use the same WordNet
3.0 as in KnowBert (Peters et al., 2019), which is
extracted from the nltk2 package.

KEPLER-W+W takes both Wikidata5M and
WordNet as its KGs. To jointly train with two KG
datasets, we modify the objective in Equation 6 as

L = LWiki + LWordNet + LMLM, (7)

whereLWiki andLWordNet are losses from Wiki-
data5M and WordNet respectively.

KEPLER-Rel uses the entity and relation de-
scriptions as embeddings method (Equation 4). As
the relation descriptions in Wikidata are short (11.7
words on average) and homogeneous, encoding re-
lation descriptions as relation embeddings results
in worse performance as shown in Section 4.

KEPLER-Cond uses the entity-embedding-
conditioned-on-relation method (Equation 5). This
model achieves superior results in link prediction
tasks, both transductive and inductive (Section 4.3).

2https://www.nltk.org

https://www.nltk.org


Dataset #entity #relation #training #validation #test

FB15K 14, 951 1, 345 483, 142 50, 000 59, 071
WN18 40, 943 18 141, 442 5, 000 5, 000
FB15K-237 14, 541 237 272, 115 17, 535 20, 466
WN18RR 40, 943 11 86, 835 3, 034 3, 134

Wikidata5M 4, 594, 485 822 20, 614, 279 5, 163 5, 133

Table 1: Statistics of Wikidata5M (transductive setting) compared with existing KE benchmarks.

KEPLER-OnlyDesc trains the MLM objective
directly on the entity descriptions from the KE
objective rather than uses the English Wikipedia
and BookCorpus as other versions of KEPLER.
However, as the entity description data are smaller
(2.3 GB vs 13 GB) and homogeneous, it harms the
general language understanding ability and thus
performs worse (Section 4.2).

KEPLER-KE only adopts the KE objective
in pre-training, which is an ablated version of
KEPLER-Wiki. It is used to show the necessity
of the MLM objective for language understanding.

Pre-training Implementation

In practice, we choose RoBERTa (Liu et al., 2019c)
as our base model and implement KEPLER in
the fairseq framework (Ott et al., 2019) for pre-
training. Due to the computing resource limit, we
choose the BASE size (L = 12, d = 768) and
use the released roberta.base parameters for
initialization, which is a common practice to save
pre-training time (Zhang et al., 2019; Peters et al.,
2019). For the MLM objective, we use the En-
glish Wikipedia (2,500M words) and BookCorpus
(800M words) (Zhu et al., 2015) as our pre-training
corpora (except KEPLER-OnlyDesc). We extract
text from these two corpora in the same way as De-
vlin et al. (2019). For the KE objective, we encode
the first 512 tokens of entity descriptions from the
English Wikipedia as entity embeddings.

We set the γ in Equation 2 as 4 and 9 for NLP
and KE tasks respectively, and we use the models
pre-trained with 10 and 30 epochs for NLP and KE.
Specially, the γ is 1 for KEPLER-WordNet. The
two hyper-parameters are tuned by multiple trials
for γ in {1, 2, 4, 6, 9} and the number of epochs
in {5, 10, 20, 30, 40}, and we select the model by
performances on TACRED (F-1) and inductive link
prediction (HITS@10). We use gradient accumula-
tion to achieve a batch size of 12, 288.

Entity Type Occurrence Percentage

Human 1, 517, 591 33.0%
Taxon 363, 882 7.9%
Wikimedia list 118, 823 2.6%
Film 114, 266 2.5%
Human Settlement 110, 939 2.4%

Total 2, 225, 501 48.4%

Table 2: Top-5 entity categories in Wikidata5M.

Subset #entity #relation #triplet

Training 4, 579, 609 822 20, 496, 514
Validation 7, 374 199 6, 699
Test 7, 475 201 6, 894

Table 3: Statistics of Wikidata5M inductive setting.

3 Wikidata5M

As shown in Section 2, to train KEPLER, the KG
dataset should (1) be large enough, (2) contain high-
quality textual descriptions for its entities and rela-
tions, and (3) have a reasonable inductive setting,
which most existing KG datasets do not provide.
Thus, based on Wikidata3 and English Wikipedia4,
we construct Wikidata5M, a large-scale KG dataset
with aligned text descriptions from corresponding
Wikipedia pages, and also an inductive test set.
In the following sections, we first introduce the
data collection (Section 3.1) and the data split (Sec-
tion 3.2), and then provide the results of represen-
tative KE methods on the dataset (Section 3.3).

3.1 Data Collection

We use the July 2019 dump of Wikidata and
Wikipedia. For each entity in Wikidata, we align it
to its Wikipedia page and extract the first section
as its description. Entities with no pages or with
descriptions fewer than 5 words are discarded.

3https://www.wikidata.org
4https://en.wikipedia.org

https://www.wikidata.org
https://en.wikipedia.org


Method MR MRR HITS@1 HITS@3 HITS@10

TransE (Bordes et al., 2013) 109370 25.3 17.0 31.1 39.2
DistMult (Yang et al., 2015) 211030 25.3 20.8 27.8 33.4
ComplEx (Trouillon et al., 2016) 244540 28.1 22.8 31.0 37.3
SimplE (Kazemi and Poole, 2018) 115263 29.6 25.2 31.7 37.7
RotatE (Sun et al., 2019) 89459 29.0 23.4 32.2 39.0

Table 4: Performances of different KE models on Wikidata5M (% except MR).

We retrieve all the relational facts in Wikidata.
A fact is considered to be valid when both of its
entities are not discarded, and its relation has a non-
empty page in Wikidata. The final KG contains
4, 594, 485 entities, 822 relations and 20, 624, 575
triplets. Statistics of Wikidata5M along with four
other widely-used benchmarks are shown in Ta-
ble 1. Top-5 entity categories are listed in Table 2.
We can see that Wikidata5M is much larger than
other KG datasets, covering various domains.

3.2 Data Split

For Wikidata5M, we take two different settings:
the transductive setting and the inductive setting.

The transductive setting (shown in Table 1) is
adopted in most KG datasets, where the entities are
shared and the triplet sets are disjoint across train-
ing, validation and test. In this case, KE models
are expected to learn effective entity embeddings
only for the entities in the training set.

In the inductive setting (shown in Table 3), the
entities and triplets are mutually disjoint across
training, validation and test. We randomly sample
some connected subgraphs as the validation and
test set. In the inductive setting, the KE models
should produce embeddings for the unseen entities
given side features like descriptions, neighbors, etc.
The inductive setting is more challenging and also
meaningful in real-world applications, where enti-
ties in KGs experience open-ended growth, and the
inductive ability is crucial for online KE methods.

Although Wikidata5M contains massive entities
and triplets, our validation and test set are not large,
which is limited by the standard evaluation method
of link prediction (Section 3.3). Each episode of
evaluation requires |E|× |T |×2 times of KE score
calculation, where |E| and |T | are the total num-
ber of entities and the number of triplets in test set
respectively. As Wikidata5M contains massive en-
tities, the evaluation is very time-consuming, hence
we have to limit the test set to thousands of triplets
to ensure tractable evaluations. This indicates that

large-scale KE urges a more efficient evaluation
protocol. We will leave exploring it to future work.

3.3 Benchmark

To assess the challenges of Wikidata5M, we bench-
mark several popular KE models on our dataset in
the transductive setting (as they inherently do not
support the inductive setting). Because their origi-
nal implementations do not scale to Wikidata5M,
we benchmark these methods with GraphVite (Zhu
et al., 2019), a multi-GPU KE toolkit.

In the transductive setting, for each test triplet
(h, r, t), the model ranks all the entities by scor-
ing (h, r, t′), t′ ∈ E , where E is the entity set ex-
cluding other correct t. The evaluation metrics,
MRR (mean reciprocal rank), MR (mean rank),
and HITS@{1,3,10}, are based on the rank of the
correct tail entity t among all the entities in E . Then
we do the same thing for the head entities. We re-
port the average results over all test triplets and
over both head and tail entity predictions.

Table 4 shows the results of popular KE meth-
ods on Wikidata5M, which are all significantly
lower than on existing KG datasets like FB15K-
237, WN18RR, etc. It demonstrates that Wiki-
data5M is more challenging due to its large scale
and high coverage. The results advocate for more
efforts towards large-scale KE.

4 Experiments

In this section, we introduce the experiment set-
tings and results of our model on various NLP and
KE tasks, along with some analyses on KEPLER.

4.1 Experimental Setting

Baselines In our experiments, RoBERTa is an
important baseline since KEPLER is based on it
(all mentioned models are of BASE size if not spec-
ified). As we cannot afford the full RoBERTa cor-
pora (126 GB, and we only use 13 GB) in KEPLER
pre-training, we implement Our RoBERTa for di-
rect comparisons to KEPLER. It is initialized by



RoBERTaBASE and is further trained with the MLM
objective on the same corpora as KEPLER.

We also evaluate recent knowledge-enhanced
PLMs, including ERNIEBERT (Zhang et al., 2019)
and KnowBertBERT (Peters et al., 2019). As
ERNIE and our principal model KEPLER-Wiki
only use Wikidata, we take KnowBert-Wiki in
the experiments to ensure fair comparisons with
the same knowledge source. Considering KE-
PLER is based on RoBERTa, we reproduce the
two models with RoBERTa too (ERNIERoBERTa

and KnowBertRoBERTa). The reproduction of
KnowBert is based on its original implementa-
tion5. On relation classification, we also compare
with MTB (Baldini Soares et al., 2019), which
adopts “matching the blank” pre-training. Differ-
ent from other baselines, the original MTB is based
on BERTLARGE (denoted by MTB (BERTLARGE)).
For a fair comparison under the same model size,
we reimplement MTB with BERTBASE (MTB).

Hyper-parameter The pre-training settings are
in Section 2.5. For fine-tuning on downstream
tasks, we set KEPLER hyper-parameters the same
as reported in KnowBert on TACRED and OpenEn-
tity. On FewRel, we set the learning rate as 2e-5
and batch size as 20 and 4 for the Proto and PAIR
frameworks respectively. For GLUE, we follow
the hyper-parameters reported in RoBERTa. For
baselines, we keep their original hyper-parameters
unchanged or use the best trial in KEPLER search-
ing space if no original settings are available.

4.2 NLP Tasks

In this section, we demonstrate the performance of
KEPLER and its baselines on various NLP tasks.

Relation Classification
Relation classification requires models to classify
relation types between two given entities from text.
We evaluate KEPLER and other baselines on two
widely-used benchmarks: TACRED and FewRel.

TACRED (Zhang et al., 2017) has 42 relations
and 106, 264 sentences. Here we follow the set-
tings of Baldini Soares et al. (2019), where we add
four special tokens before and after the two entity
mentions, and concatenate the representations at
the beginnings of the two entities for classification.
Note that the original KnowBert also takes entity
types as inputs, which is different from Zhang et al.
(2019); Baldini Soares et al. (2019). To ensure fair

5https://github.com/allenai/kb

Model P R F-1

BERT 67.2 64.8 66.0
BERTLARGE - - 70.1
MTB 69.7 67.9 68.8
MTB (BERTLARGE) - - 71.5
ERNIEBERT 70.0 66.1 68.0
KnowBertBERT 73.5 64.1 68.5
RoBERTa 70.4 71.1 70.7
ERNIERoBERTa 73.5 68.0 70.7
KnowBertRoBERTa 71.9 69.9 70.9

Our RoBERTa 70.8 69.6 70.2
KEPLER-Wiki 71.5 72.5 72.0
KEPLER-WordNet 71.4 71.3 71.3
KEPLER-W+W 71.1 72.0 71.5
KEPLER-Rel 71.3 70.9 71.1
KEPLER-Cond 72.1 70.7 71.4
KEPLER-OnlyDesc 72.3 69.1 70.7
KEPLER-KE 63.5 60.5 62.0

Table 5: Precision, recall and F-1 on TACRED (%).
KnowBert results are different from the original
paper since different task settings are used.

comparisons, we re-evaluate KnowBert with the
same setting as other baselines, thus the reported
results are different from the original paper.

From the TACRED results in Table 5, we can
observe that: (1) KEPLER-Wiki is the best one
among KEPLER variants and significantly outper-
forms all the baselines, while other versions of KE-
PLER also achieve good results. It demonstrates
the effectiveness of KEPLER on integrating factual
knowledge into PLMs. Based on the result, we use
KEPLER-Wiki as the principal model in the fol-
lowing experiments. (2) KEPLER-WordNet shows
a marginal improvement over Our RoBERTa, while
KEPLER-W+W underperforms KEPLER-Wiki. It
suggests that pre-training with WordNet only has
limited benefits in the KEPLER framework. We
will explore how to better combine different KGs
in our future work.

FewRel (Han et al., 2018b) is a few-shot relation
classification dataset with 100 relations and 70, 000
instances, which is constructed with Wikipedia text
and Wikidata facts. Furthermore, Gao et al. (2019)
propose FewRel 2.0, adding a domain adaptation
challenge with a new medical-domain test set.

FewRel takes the N -way K-shot setting. Rela-
tions in the training and test sets are disjoint. For
every evaluation episode, N relations, K support-
ing samples for each relation, and several query
sentences are sampled from the test set. The mod-

https://github.com/allenai/kb


Model FewRel 1.0 FewRel 2.0
5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5

MTB (BERTLARGE)† 93.86 97.06 89.20 94.27 − − − −

Proto (BERT) 80.68 89.60 71.48 82.89 40.12 51.50 26.45 36.93
Proto (MTB) 81.39 91.05 71.55 83.47 52.13 76.67 48.28 69.75
Proto (ERNIEBERT)† 89.43 94.66 84.23 90.83 49.40 65.55 34.99 49.68
Proto (KnowBertBERT)† 86.64 93.22 79.52 88.35 64.40 79.87 51.66 69.71
Proto (RoBERTa) 85.78 95.78 77.65 92.26 64.65 82.76 50.80 71.84
Proto (Our RoBERTa) 84.42 95.30 76.43 91.74 61.98 83.11 48.56 72.19
Proto (ERNIERoBERTa)† 87.76 95.62 80.14 91.47 54.43 80.48 37.97 66.26
Proto (KnowBertRoBERTa)† 82.39 93.62 76.21 88.57 55.68 71.82 41.90 58.55
Proto (KEPLER-Wiki) 88.30 95.94 81.10 92.67 66.41 84.02 51.85 73.60

PAIR (BERT) 88.32 93.22 80.63 87.02 67.41 78.57 54.89 66.85
PAIR (MTB) 83.01 87.64 73.42 78.47 46.18 70.50 36.92 55.17
PAIR (ERNIEBERT)† 92.53 94.27 87.08 89.13 56.18 68.97 43.40 54.35
PAIR (KnowBertBERT)† 88.48 92.75 82.57 86.18 66.05 77.88 50.86 67.19
PAIR (RoBERTa) 89.32 93.70 82.49 88.43 66.78 81.84 53.99 70.85
PAIR (Our RoBERTa) 89.26 93.71 83.32 89.02 63.22 77.66 49.28 65.97
PAIR (ERNIERoBERTa)† 87.46 94.11 81.68 87.83 59.29 72.91 48.51 60.26
PAIR (KnowBertRoBERTa)† 85.05 91.34 76.04 85.25 50.68 66.04 37.10 51.13
PAIR (KEPLER-Wiki) 90.31 94.28 85.48 90.51 67.23 82.09 54.32 71.01

Table 6: Accuracies (%) on the FewRel dataset. N -K indicates the N -way K-shot setting. MTB uses the
LARGE size and all the other models use the BASE size. † indicates oracle models which may have seen
facts in the FewRel 1.0 test set during pre-training.

Model P R F-1

UFET (Choi et al., 2018) 77.4 60.6 68.0
BERT 76.4 71.0 73.6
ERNIEBERT 78.4 72.9 75.6
KnowBertBERT 77.9 71.2 74.4
RoBERTa 77.4 73.6 75.4
ERNIERoBERTa 80.3 70.2 74.9
KnowBertRoBERTa 78.7 72.7 75.6

Our RoBERTa 75.1 73.4 74.3
KEPLER-Wiki 77.8 74.6 76.2

Table 7: Entity typing results on OpenEntity (%).

els are required to classify queries into one of theN
relations only given the sampled N ×K instances.

We use two state-of-the-art few-shot frameworks:
Proto (Snell et al., 2017) and PAIR (Gao et al.,
2019). We replace the text encoders with our base-
lines and KEPLER and compare the performance.
Since FewRel 1.0 is constructed with Wikidata, we
remove all the triplets in its test set from Wiki-
data5M to avoid information leakage for KEPLER.
However, we cannot control the KGs used in our
baselines. We mark the models utilizing Wikidata
and have information leakage risk with † in Table 6.

As Table 6 shows, KEPLER-Wiki achieves the
best performance over the BASE-size PLMs in
most settings. From the results, we also have some
interesting observations: (1) RoBERTa consistently
outperforms BERT on various NLP tasks (Liu et al.,
2019c), yet the RoBERTa-based models here are
comparable or even worse than BERT-based mod-
els in the PAIR framework. Since PAIR uses sen-
tence concatenation, this result may be credited
to the next sentence prediction (NSP) objective
of BERT. (2) KEPLER brings improvements on
FewRel 2.0, while ERNIE and KnowBert even
degenerate in most of the settings. It indicates
that the paradigms of ERNIE and KnowBert can-
not well generalize to new domains which may
require much different entity linkers and entity em-
beddings. On the other hand, KEPLER not only
learns better entity representations but also acquires
a general ability to extract factual knowledge from
the context across different domains. We further
verify this in Section 5.5. (3) KnowBert underper-
forms ERNIE in FewRel while it typically achieves
better results on other tasks. This may be because it
uses the TuckER (Balazevic et al., 2019) KE model
while ERNIE and KEPLER follow TransE (Bor-
des et al., 2013). We will explore the effects of



different KE methods in the future.
We also have another two observations with re-

gard to ERNIE and MTB: (1) ERNIE performs
the best on 1-shot settings of FewRel 1.0. We
believe this is because that the knowledge em-
bedding injection of ERNIE has particular advan-
tages in this case, since it directly brings knowl-
edge about entities. When using 5-shot (support-
ing text provides more information) and FewRel
2.0 (ERNIE does not have knowledge for biomed-
ical entities), KEPLER outperforms ERNIE. (2)
Though MTB (BERTLARGE) is the state-of-the-art
model on FewRel, its BERTBASE version does
not outperform other knowledge-enhanced PLMs,
which suggests that using large models contributes
much to its gain. We also notice that when com-
bined with PAIR, MTB suffers an obvious perfor-
mance drop, which may be because its pre-training
objective degenerates sentence-pair tasks.

Entity Typing
Entity typing requires to classify given entity men-
tions into pre-defined types. For this task, we carry
out evaluations on OpenEntity (Choi et al., 2018)
following the settings in Zhang et al. (2019). Ope-
nEntity has 6 entity types and 2,000 instances for
training, validation and test each.

To identify the entity mentions of interest, we
add two special tokens before and after the en-
tity spans, and use the representations of the first
special tokens for classification. As shown in Ta-
ble 7, KEPLER-Wiki achieves state-of-the-art re-
sults. Note that the KnowBert results are different
from the original paper since we use KnowBert-
Wiki here rather than KnowBert-W+W to ensure
the same knowledge resource and fair comparisons.
KEPLER does not perform linking or entity em-
bedding pre-training like ERNIE and KnowBert,
which bring them special advantages in entity span
tasks. However, KEPLER still outperforms these
baselines, which proves its effectiveness.

GLUE
The General Language Understanding Evaluation
(GLUE) (Wang et al., 2019b) collects several natu-
ral language understanding tasks and is widely used
for evaluating PLMs. In general, solving GLUE
does not require factual knowledge (Zhang et al.,
2019) and we use it to examine whether KEPLER
harms the general language understanding ability.

Table 8 shows the GLUE results. We can ob-
serve that KEPLER-Wiki is close to Our RoBERTa,

suggesting that while incorporating factual knowl-
edge, KEPLER maintains a strong language un-
derstanding ability. However, there are significant
performance drops of KEPLER-OnlyDesc, which
indicates that the small-scale entity description data
are not sufficient for training KEPLER with MLM.

For the small datasets STS-B, MRPC and RTE,
directly fine-tuning models on them typically result
in unstable performance. Hence we fine-tune mod-
els on a large-scale dataset (here we use MNLI)
first and then further fine-tune them on the small
datasets. The method has been shown to be effec-
tive (Wang et al., 2019a) and is also used in the
original RoBERTa paper (Liu et al., 2019c).

4.3 KE Tasks

We show how KEPLER works as a KE model, and
evaluate it on Wikidata5M in both the transductive
link prediction setting and the inductive setting.

Experimental Settings
In link prediction, the entity and relation embed-
dings of KEPLER are obtained as described in
Section 2.2 and 2.5. The evaluation method is de-
scribed in Section 3.3. We also add RoBERTa and
Our RoBERTa as baselines. They adopt Equation 1
and 4 to acquire entity and relation embeddings,
and use Equation 3 as their scoring function.

In the transductive setting, we compare our mod-
els with TransE (Bordes et al., 2013). We set its
dimension as 512, negative sampling size as 64,
batch size as 2048 and learning rate as 0.001 after
hyper-parameter searching. The negative sampling
size is crucial for the performance on KE tasks,
but limited by the model complexity, KEPLER can
only take a negative size of 1. For a direct compari-
son to intuitively show the benefits of pre-training,
we set a baseline TransE†, which also uses 1 as the
negative sampling size and keeps the other hyper-
parameters unchanged.

Since conventional KE methods like TransE in-
herently cannot provide embeddings for unseen
entities, we take DKRL (Xie et al., 2016) as our
baseline in the KE experiments, which utilizes con-
volutional neural networks to encode entity descrip-
tions as embeddings. We set its dimension as 768,
negative sampling size as 64, batch size as 1024
and learning rate as 0.0005.

Transductive Setting
Table 9a shows the results of the transductive set-
ting. We observe that:



Model MNLI (m/mm) QQP QNLI SST-2
392K 363K 104K 67K

RoBERTa 87.5/87.2 91.9 92.7 94.8
Our RoBERTa 87.1/86.8 90.9 92.5 94.7
KEPLER-Wiki 87.2/86.5 91.7 92.4 94.5
KEPLER-OnlyDesc 85.9/85.6 90.8 92.4 94.4

Model CoLA STS-B MRPC RTE
8.5K 5.7K 3.5K 2.5K

RoBERTa 63.6 91.2 90.2 80.9
Our RoBERTa 63.4 91.1 88.4 82.3
KEPLER-Wiki 63.6 91.2 89.3 85.2
KEPLER-OnlyDesc 55.8 90.2 88.5 78.3

Table 8: GLUE results on the dev set (%). All
the results are medians over 5 runs. We report F-1
scores for QQP and MRPC, Spearman correlations
for STS-B, and accuracy scores for the other tasks.
The “m/mm” stands for matched/mismatched eval-
uation sets for MNLI (Williams et al., 2018).

(1) KEPLER underperforms TransE. It is reason-
able since KEPLER is limited by its large model
size, and thus cannot use a large negative sampling
size (1 for KEPLER, while typical KE methods use
64 or more) and more training epochs (30 vs 1000
for TransE), which are crucial for KE (Zhu et al.,
2019). On the other hand, KEPLER and its variants
perform much better than TransE† (with a negative
sampling size of 1), showing that using the same
negative sampling size, KEPLER can benefit from
pre-trained language representations and textual en-
tity descriptions so that outperform TransE. In the
future, we will explore reducing the model size of
KEPLER to take advantage of both large negative
sampling size and pre-training.

(2) The vanilla RoBERTa perform poorly in KE
while KEPLER achieves favorable performances,
which demonstrates the effectiveness of our multi-
task pre-training to infuse factual knowledge.

(3) Among the KEPLER variants, KEPLER-
Cond has superior results, which substantiates
the intuition in Section 2.2. KEPLER-Rel per-
forms worst, which we believe is due to the short
and homogeneous relation descriptions of Wiki-
data. KEPLER-KE significantly underperforms
KEPLER-Wiki, which suggests that the MLM ob-
jective is necessary as well for the KE tasks to build
effective language representation.

(4) We also notice that DKRL performs well on
the transductive setting and the result is close to
KEPLER. We believe this is because DKRL takes
a much smaller encoder (CNN) and thus is easier
to train. In the more difficult inductive setting, the
gap between DKRL and KEPLER is larger, which

better shows the language understanding ability of
KEPLER to utilize textual entity descriptions.

Inductive Setting
Table 9b shows the Wikidata5M inductive results.
KEPLER outperforms DKRL and RoBERTa by a
large margin, demonstrating the effectiveness of
our joint training method. But KEPLER results are
still far from ideal performances required by prac-
tical applications (constructing KG from scratch,
etc.), which urges further efforts on inductive KE.
Comparisons among KEPLER variants are consis-
tent with in the transductive setting.

In addition, we clarify why results in the induc-
tive setting are much higher than the transductive
setting, while the inductive setting is more difficult:
As shown in Table 1 and 3, the entities involved
in the inductive evaluation is much less than the
transductive setting (7, 475 vs. 4, 594, 485). Con-
sidering the KE evaluation metrics are based on
entity ranking, it is reasonable to see higher val-
ues in the inductive setting. The performance in
different settings should not be directly compared.

5 Analysis

In this section, we analyze the effectiveness and
efficiency of KEPLER with experiments. All the
hyper-parameters are the same as reported in Sec-
tion 4.1, including models in the ablation study.

5.1 Ablation Study
As shown in Equation 6, KEPLER takes a multi-
task loss. To demonstrate the effectiveness of the
joint objective, we compare full KEPLER with
models trained with only the MLM loss (Our
RoBERTa) and only the KE loss (KEPLER-KE)
on TACRED. As demonstrated in Table 10, com-
pared to KEPLER-Wiki, both ablation models suf-
fer significant drops. It suggests that the perfor-
mance gain of KEPLER is credited to the joint
training towards both objectives.

5.2 Knowledge Probing Experiment
Section 4.2 shows that KEPLER can achieve sig-
nificant improvements on NLP tasks requiring fac-
tual knowledge. To further verify whether KE-
PLER can better integrate factual knowledge into
PLMs and help to recall them, we conduct exper-
iments on LAMA (Petroni et al., 2019), a widely-
used knowledge probe. LAMA examines PLMs’
abilities on recalling relational facts by cloze-style
questions. For instance, given a natural language



Model MR MRR HITS@1 HITS@3 HITS@10

TransE (Bordes et al., 2013) 109370 25.3 17.0 31.1 39.2
TransE† 406957 6.0 1.8 8.0 13.6
DKRL (Xie et al., 2016) 31566 16.0 12.0 18.1 22.9
RoBERTa 1381597 0.1 0.0 0.1 0.3
Our RoBERTa 1756130 0.1 0.0 0.1 0.2
KEPLER-KE 76735 8.2 4.9 8.9 15.1
KEPLER-Rel 15820 6.6 3.7 7.0 11.7
KEPLER-Wiki 14454 15.4 10.5 17.4 24.4
KEPLER-Cond 20267 21.0 17.3 22.4 27.7

(a) Transductive results on Wikidata5M (% except MR). TransE† denotes a TransE modeled trained with the same
negative sampling size (1) as KEPLER.

Model MR MRR HITS@1 HITS@3 HITS@10

DKRL (Xie et al., 2016) 78 23.1 5.9 32.0 54.6
RoBERTa 723 7.4 0.7 1.0 19.6
Our RoBERTa 1070 5.8 1.9 6.3 13.0
KEPLER-KE 138 17.8 5.7 22.9 40.7
KEPLER-Rel 35 33.4 15.9 43.5 66.1
KEPLER-Wiki 32 35.1 15.4 46.9 71.9
KEPLER-Cond 28 40.2 22.2 51.4 73.0

(b) Inductive results on Wikidata5M (% except MR).

Table 9: Link prediction results on Wikidata5M transductive and inductive settings.

Model P R F-1

Our RoBERTa 70.8 69.6 70.2
KEPLER-KE 63.5 60.5 62.0
KEPLER-Wiki 71.5 72.5 72.0

Table 10: Ablation study results on TACRED (%).

template “Paris is the capital of <mask>”, PLMs
are required to predict the masked token without
fine-tuning. LAMA reports the micro-averaged
precision at one (P@1) scores. However, Poerner
et al. (2020) present that LAMA contains some
easy questions which can be answered with superfi-
cial clues like entity names. Hence we also evaluate
the models on LAMA-UHN (Poerner et al., 2020),
which filters out the questionable templates from
the Google-RE and T-REx corpora of LAMA.

The evaluation results are shown in Table 11,
from which we have the following observations:
(1) KEPLER consistently outperforms the vanilla
PLM baseline Our RoBERTa in almost all the set-
tings except ConceptNet, which focuses on com-
monsense knowledge rather than factual knowl-
edge. It indicates that KEPLER can indeed bet-
ter integrate factual knowledge. (2) Although
KEPLER-W+W cannot outperform KEPLER-Wiki

on NLP tasks (Section 4.2), it shows significant im-
provements in LAMA-UHN, which suggests that
we should explore which kind of knowledge is
needed on different scenarios in the future. (3) All
the RoBERTa-based models perform worse than
vanilla BERTBASE by a large margin, which is con-
sistent with the results of Wang et al. (2020). This
may be due to different vocabularies used in BERT
and RoBERTa, which presents the vulnerability of
LAMA-style probing again (Kassner and Schütze,
2020). We will leave developing a better knowl-
edge probing framework as our future work.

5.3 Running Time Comparison

Compared to vanilla PLMs, KEPLER does not in-
troduce any additional parameters or computations
during fine-tuning and inference, which is efficient
for practice use. We compare the running time of
KEPLER and other knowledge-enhanced PLMs
(ERNIE and KnowBert) in Table 12. The time is
evaluated on TACRED training set for one epoch
with one NVIDIA Tesla V100 (32 GB), and all
models use 32 batch size and 128 sequence length.
The “entity linking” time of KnowBert is for en-
tity candidate generation. We can observe that KE-
PLER requires much less running time since it does



Model LAMA LAMA-UHN

Google-RE T-REx ConceptNet SQuAD Google-RE T-REx

BERT 9.8 31.1 15.6 14.1 4.7 21.8
RoBERTa 5.3 24.7 19.5 9.1 2.2 17.0

Our RoBERTa 7.0 23.2 19.0 8.0 2.8 15.7
KEPLER-Wiki 7.3 24.6 18.7 14.3 3.3 16.5
KEPLER-W+W 7.3 24.4 17.6 10.8 4.1 17.1

Table 11: P@1 results on knowledge probing benchmark LAMA and LAMA-UHN.

Model Entity Fine- Inference
Linking tuning

ERNIERoBERTa 780s 730s 194s
KnowBertRoBERTa 190s 677s 235s
KEPLER 0s 508s 152s

Table 12: Three parts of running time for one epoch
of TACRED training set.
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Figure 3: TACRED performance (F-1) of KEPLER
and RoBERTa change with the rate of entity men-
tions being masked.

not need entity linking or entity embedding fusion,
which will benefit time-sensitive applications.

5.4 Correlation with Entity Frequency

To better understand how KEPLER helps the entity-
centric tasks, we provide analyses on the correla-
tions between KEPLER performance and entity
frequency in this section. The motivation is to
verify a natural hypothesis that KEPLER improve-
ments mainly come from better representing the
entity mentions in text, especially the rare entities,
which do not show up frequently in the pre-training
corpora and thus cannot be well learned by the

language modeling objectives.

We perform entity linking for the TACRED
dataset with BLINK (Wu et al., 2020) to link
the entity mentions in text to their corresponding
Wikipedia identifiers. Then we count the occur-
rences of the entities in Wikipedia with the hyper-
links in rich text, denoting the entity frequencies.
We conduct two experiments to analyze the corre-
lations between KEPLER performance and entity
frequency: (1) In Table 13, we divide the entity
mentions into five parts by their frequencies, and
compare the TACRED performances while only
keeping entities in one part and masking the other.
(2) In Figure 3, we sequentially mask the entity
mentions in the ascending order of entity frequen-
cies and see the F-1 changes.

From the results, we can observe that:

(1) Figure 3 shows that when the entity mask-
ing rate is low, the improvements of KEPLER over
RoBERTa are generally much higher than when
the entity masking rate is high. It indicates that
the improvements of KEPLER do mainly come
from better modeling entities in context. However,
even when all the entity mentions are masked, KE-
PLER still outperforms RoBERTa. We claim this
is because the KE objective can also help to learn
to understand fact-related text since it requires the
model to recall facts from textual descriptions. This
claim is further substantiated in Section 5.5.

(2) From Table 13, we can observe that the im-
provement in the “0%-20%” setting is marginally
higher than the other settings, which demonstrates
that KEPLER does have special advantages on
modeling rare entities compared to vanilla PLMs.
But the improvements in the frequent settings are
also significant and we cannot say that the overall
improvements of KEPLER are mostly from the rare
entities. In general, the results in Table 13 show
that KEPLER can better model all the entities, no



Entity Frequency 0%-20% 20%-40% 40%-60% 60%-80% 80%-100%

KEPLER-Wiki 64.7 64.4 64.8 64.7 68.8
Our RoBERTa 64.1 64.3 64.5 64.3 68.5

Improvement +0.6 +0.1 +0.3 +0.4 +0.3

Table 13: F-1 scores on TACRED (%) under different settings by entity frequencies. We sort the entity
mentions in TACRED by their corresponding entity frequencies in Wikipedia. The “0%-20%” setting
indicates only keeping the least frequent 20% entity mentions and masking all the other entity mentions
(for both training and validation), and so on. The results are averaged over 5 runs.

matter rare or frequent.

Model ME OE

Our RoBERTa 54.0 46.8
KEPLER-KE 40.2 47.0
KEPLER-Wiki 54.8 48.9

Table 14: Masked-entity (ME) and only-entity (OE)
F-1 scores on TACRED (%).

5.5 Understanding Text or Storing
Knowledge

We argue that by jointly training the KE and the
MLM objectives, KEPLER (1) can better under-
stand fact-related text and better extract knowledge
from text, and also (2) can remember factual knowl-
edge. To investigate the two abilities of KEPLER
in a quantitative aspect, we carry out an experi-
ment on TACRED, in which the head and tail en-
tity mentions are masked (masked-entity, ME) or
only head and tail entity mentions are shown (only-
entity, OE). The ME setting shows to what extent
the models can extract facts only from the textual
context without the clues in entity names. The OE
setting demonstrates to what extent the models can
store and predict factual knowledge, as only the
entity names are given to the models.

As shown in Table 14, KEPLER-Wiki shows
significant improvements over Our RoBERTa in
both settings, which suggests that KEPLER has in-
deed possessed superior abilities on both extracting
and storing knowledge compared to vanilla PLMs
without knowledge infusion. And the KEPLER-
KE model performs poorly on the ME setting but
achieves marginal improvements on the OE setting.
It indicates that without the help of the MLM ob-
jective, KEPLER only learns the entity description
embeddings and degenerates in general language
understanding, while it can still remember knowl-

edge into entity names to some extent.

6 Related Work

Pre-training in NLP There has been a long his-
tory of pre-training in NLP. Early works focus on
distributed word representations (Collobert and We-
ston, 2008; Mikolov et al., 2013; Pennington et al.,
2014), many of which are often adopted in current
models as word embeddings. These pre-trained
embeddings can capture the semantics of words
from large-scale corpora and thus benefit NLP ap-
plications. Peters et al. (2018) push this trend a step
forward by using a bidirectional LSTM to form con-
textualized word embeddings (ELMo) for richer
semantic meanings under different circumstances.

Apart from word embeddings, there is another
trend exploring pre-trained language models. Dai
and Le (2015) propose to train an auto-encoder
on unlabeled textual data and then fine-tune it on
downstream tasks. Howard and Ruder (2018) pro-
pose a universal language model (ULMFiT). With
the powerful Transformer architecture (Vaswani
et al., 2017), Radford et al. (2018) demonstrate
an effective pre-trained generative model (GPT).
Later, Devlin et al. (2019) release a pre-trained
deep Bidirectional Encoder Representation from
Transformers (BERT), achieving state-of-the-art
performance on a wide range of NLP benchmarks.

After BERT, similar PLMs spring up recently.
Yang et al. (2019) propose a permutation language
model (XLNet). Later, Liu et al. (2019c) show that
more data and more parameter tuning can benefit
PLMs, and release a new state-of-the-art model
(RoBERTa). Other works explore how to add more
tasks (Liu et al., 2019b) and more parameters (Raf-
fel et al., 2020; Lan et al., 2020) to PLMs.

Knowledge-Enhanced PLMs Recently, many
works have investigated how to incorporate knowl-
edge into PLMs. MTB (Baldini Soares et al., 2019)



takes a straightforward “matching the blank” pre-
training objective to help the relation classification
task. ERNIE (Zhang et al., 2019) identifies entity
mentions in text and links pre-processed knowledge
embeddings to the corresponding positions, which
shows improvements on several NLP benchmarks.
With a similar idea as ERNIE, KnowBert (Peters
et al., 2019) incorporates an integrated entity linker
in their model and adopts end-to-end training. Be-
sides, Logan et al. (2019) and Hayashi et al. (2020)
utilize relations between entities inside one sen-
tence to train better generation models. Xiong et al.
(2019) adopt entity replacement knowledge learn-
ing for improving entity-related tasks.

Some contemporaneous or following works try
to inject factual knowledge into PLMs in different
ways. E-BERT (Poerner et al., 2020) aligns entity
embeddings with word embeddings and then di-
rectly adds the aligned embeddings into BERT to
avoid additional pre-training. K-Adapter (Wang
et al., 2020) injects knowledge with additional neu-
ral adapters to support continuous learning.

Knowledge Embedding KE methods have been
extensively studied. Conventional KE models
define different scoring functions for relational
triplets. For example, TransE (Bordes et al., 2013)
treats tail entities as translations of head entities and
uses L1-norm or L2-norm to score triplets, while
DistMult (Yang et al., 2015) uses matrix multiplica-
tions and ComplEx (Trouillon et al., 2016) adopts
complex operations based on it. RotatE (Sun et al.,
2019) combines the advantages of both of them.

Inductive Embedding Above KE methods learn
entity embeddings only from KG and are inherently
transductive, while some works (Wang et al., 2014;
Xie et al., 2016; Yamada et al., 2016; Cao et al.,
2017; Shi and Weninger, 2018; Cao et al., 2018) in-
corporate textual metadata such as entity names or
descriptions to enhance the KE methods and hence
can do inductive KE to some extent. Besides KG, it
is also common for general inductive graph embed-
ding methods (Hamilton et al., 2017; Bojchevski
and Günnemann, 2018) to utilize additional node
features like text attributes, degrees, etc. KEPLER
follows this line of studies and takes full advantage
of textual information with an effective PLM.

Hamaguchi et al. (2017) and Wang et al. (2019c)
perform inductive KE by aggregating the trained
embeddings of the known neighboring nodes with
graph neural networks, and thus do not need ad-

ditional features. But these methods require the
unseen nodes to be surrounded by known nodes
and cannot embed new (sub)graphs. We leave how
to develop KEPLER to do fully inductive KE with-
out additional features as future work.

7 Conclusion and Future Work

In this paper, we propose KEPLER, a simple but
effective unified model for knowledge embedding
and pre-trained language representation. We train
KEPLER with both the KE and MLM objectives
to align the factual knowledge and language rep-
resentation into the same semantic space, and ex-
perimental results on extensive tasks demonstrate
its effectiveness on both NLP and KE applications.
Besides, we propose Wikidata5M, a large-scale KG
dataset to facilitate future research.

In the future, we will (1) explore advanced ways
for more smoothly unifying the two semantic space,
including different KE forms and different train-
ing objectives, and (2) investigate better knowl-
edge probing methods for PLMs to shed light on
knowledge-integrating mechanisms.
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