Statistical speech synthesis: Neural is not enough (at least sometimes)

HUAWEI TECHNOLOGIES CO. LTD (Russia)

Mikhail Kudinov

HUAWEI TECHNOLOGIES CO., LTD.

HUAWEI Confidential

Contents:

1. What is speech

- 2. Why knowing deep learning is enough for good TTS system
- 3. Why sometimes it might not be true

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential Page 2

Preface: No country for old men



Interspeech 2019 -- Keynote -- Keiichi Tokuda: Statistical approach to speech synthesis

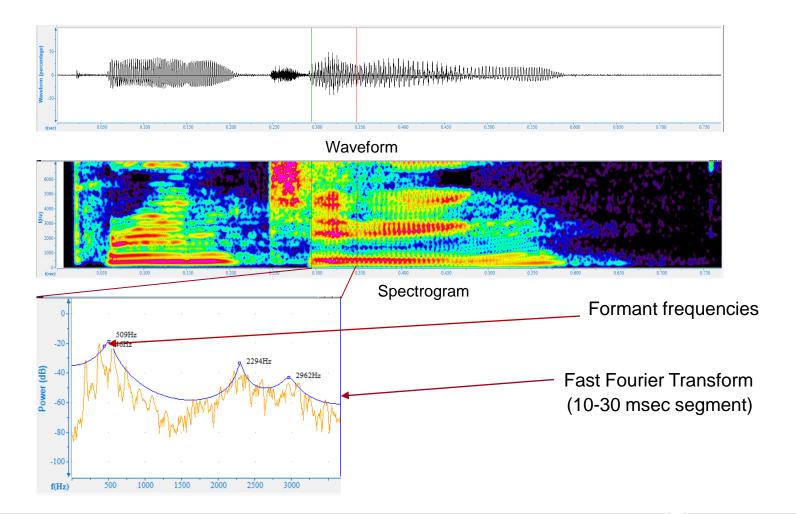
HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

Speech representation and production

WHAT IS SPEECH?

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

Waveform and Spectrogram

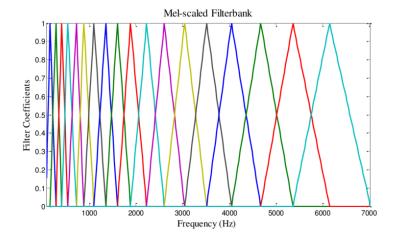


HUAWEI TECHNOLOGIES CO., LTD.

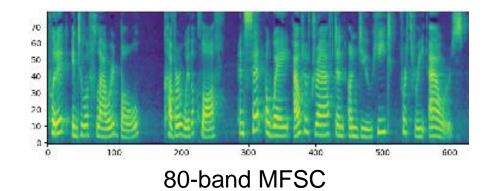
HUAWEI Confidential

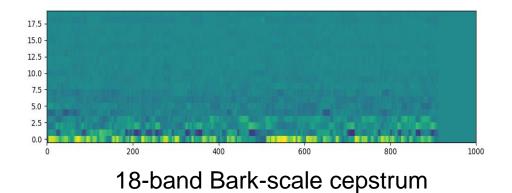
Closer to human perception: Mel-scale

- FFT coefficients are redundant
- Sound perception by the human auditory system is highly non-linear
- Idea #1: compress spectrum into a small number of energies in critical subbands
 - ⇒ Mel-scale spectral coefficients (MFSC)
 - ⇒ Bark-scale spectral coefficients
- Idea #2: decorrelate log(MFSC) or log(BFSC) in PCA-like manner (use DCT)
 - ⇒ Mel-frequency cepstral coefficients
 - ⇒ Bark-frequency cepstral coefficients



Acoustic representations: MFSC vs. BFCC



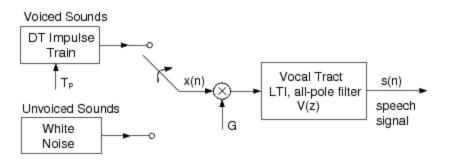


Page 7

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

Source-Filter model

- Speech signal is a convolution of independent Source (vocal cords) and Filter (vocal tract)
- Linearity assumption: Vocal tract filtering phenomena can be approximately modeled as a linear recursive filter
- Source signal is either an impulse train (voiced sounds) or a white noise (unvoiced sounds)



Vocal tract as a tube

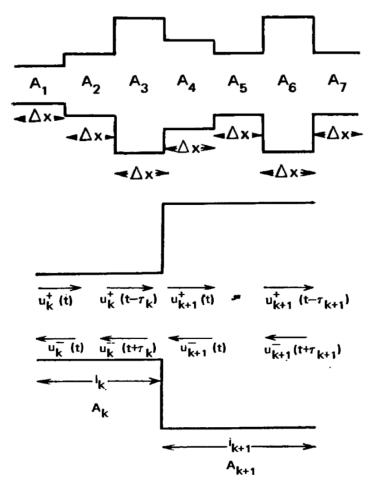
- Let's model the vocal tract as a tube with varying section
- In this case the sound pressure at the end of the last section is a linear combination of multiple running and reflected waves

$$v(t) = a_0 \delta(t - N\tau) + \sum_{k=1}^{\infty} a_k \delta(t - N\tau - 2k\tau)$$

• Or in discrete time

$$s(n) = Gu(n) + \sum_{k=1}^{\infty} a_k s(n-k)$$

- We can estimate ak from s(n)
- In this case ak's are called linear prediction coefficients (LPC)



HUAWEI TECHNOLOGIES CO., LTD.

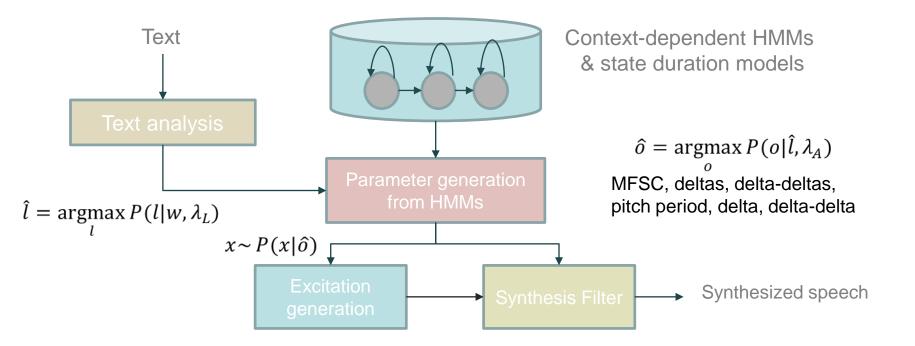
HUAWEI Confidential

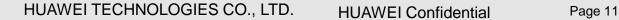
Unreasonable effectiveness and all the stuff

WHY DEEP LEARNING IS ALL YOU NEED

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

Statistical speech synthesis before Tacotron era



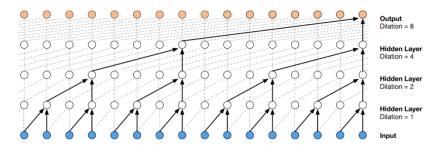


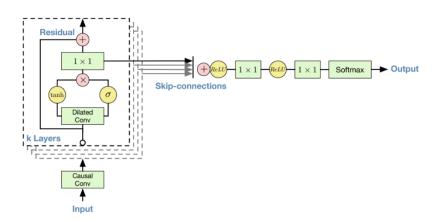
Neural vocoder: WaveNet [Oord17]

- Autoregressive model based
- Main building element: residual block with dilated convolutions
- 30 residual blocks
- Predicts mu-law companded outputs

 $\Rightarrow \frac{\ln(1+\mu|x|)}{1+\ln(1+\mu)}$

- 16kHz sound
- Best RTF is ~3.0 (Nvidia P100) [Kal18]



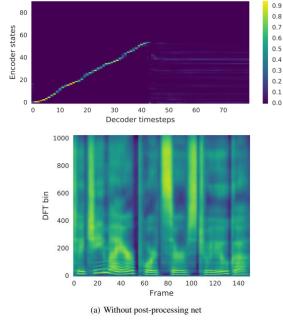


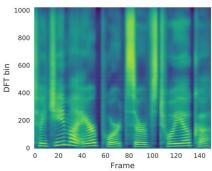
HUAWEI TECHNOLOGIES CO., LTD.

HUAWEI Confidential

Neural feature-generation: Tacotron/Tacotron2

- Seq2Seq model with attention
 - ⇒ Content-based in Tacotron [Wang17]
 - ⇒ Location-sensitive attention in Tacoton2 [Shen18]
- Predicts 80-band MFSC
 - ⇒ Griffin-Lim vocoder in Tacotron
 - ⇒ WaveNet in Tacotron2
- Predicting N frames per inference step
 - \Rightarrow N = 2-3 in Tacotron
 - \Rightarrow N = 1 in Tacoton2 (as reported in [Shen18])
- Makes use of so-called PostNet increasing frequency resolution
- Tacotron2: separate stop-token prediction





HUAWEI TECHNOLOGIES CO., LTD. HUAWI

HUAWEI Confidential

Parallel WaveNet, ClariNet (and WaveGlow)

- Idea #1: use trained autoregressive model as a reference distribution (teacher) to trained a non-autoregressive vocoder (based on IAF) via KLdivergence minimization
- Parallel WaveNet [Oord&Li17]

⇔ MoL

⇒ Power loss, Style loss, Contrastive loss

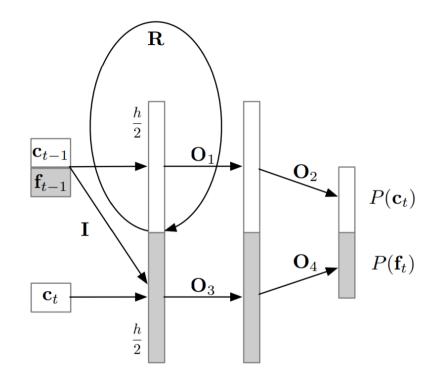
• ClariNet [Ping19]

- ⇒ Normal distribution
- ⇒ STFT loss (almost like power loss)
- ⇒ Tricks with KL divergence regularization
- WaveGlow [Pren18] uses Glow network and is trained from scratch

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

Recurrent Vocoders: WaveRNN

- Recurrent neural network conditioned on linguistic features (so, like original WaveNet it's not actually a vocoder) [Kal18]
- Quality comparable to WaveNet but RTF=0.25 on GPU at 24kHz
- 16-bit prediction via 2-step prediction: coarse (first 8-bit) and fine (second 8bit) parts
- Block sparsification



On desperate living without GPU (and memory)

WHY DEEP LEARNING IS NOT ALL YOU NEED

HUAWEI TECHNOLOGIES CO., LTD. HUAWE

HUAWEI Confidential

Going mobile

- Memory consumption
- CPU
- ROM
- Tacotron is considerably fast
- Bottleneck: vocoder
- LPCNet to the rescue!

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential Page 17

LPCNet: LPC estimation

• We can estimate ak by minimizing energy of the residual

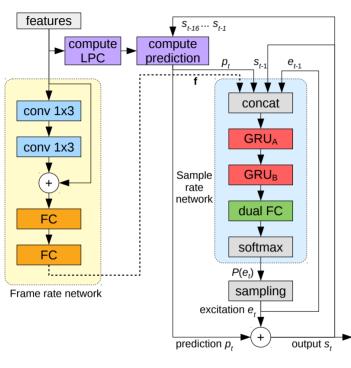
$$E = \sum_{n} e^{2}(n) = \sum_{n} (s(n) - \tilde{s}(n))^{2} = \sum_{n} (s(n) - \sum_{k=1}^{p} a_{k} s(n-k))^{2}$$

⇒ which is equivalent to MSE minimization in the analysis window

- LPCs can be found in both time and frequency domain i.e. from spectrum
- If we know e(n) and ak for the speech frame we can restore s(n)
- Small module of e(n) is a resource of compression in speech codecs

LPCNet

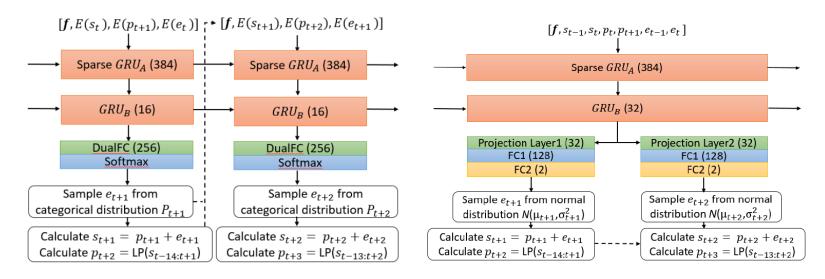
- Compute LPCs from Bark-scale cepstral coefficients
- Use frame-rate network to compute feature vector f
- Feed f to a sample rate recurrent network predicting excitation signal e(n)
- Output signal is computed as if it was restored from true LPCs and excitation signal
- Operates on 8kHz, 8-bit mu-law
- RTF: ~0.2 on CPU



Val[19]

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

Multisample Gaussian LPCNet



Idea #1: predict n>1 samples per step

⇒ Speedup up to 50%

Idea #2: predict parameters of Normal distribution

⇒ 16-bit sound

 \Rightarrow ~50% reduction in number of parameters

Summary

- Tacotron and WaveNet have revolutionized server-based TTS systems
- State-of-art server-based TTS systems are based on Tacotron-like architectures and parallel vocoders (WaveGlow, ClariNet) which require powerful GPU
- CPU-based and mobile services still require a bit of classical DSP techniques to have solid real-time guarantees
- Latest research is focused on emotional multi-speaker and sampleefficient TTS solutions

References

- [Oord17] A. van den Oord et al. WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
- [Kal18] N. Kalchbrenner et al. EFFICIENT NEURAL AUDIO SYNTHESIS
- [Wang17] Y. Wang et al. TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS
- [Shen18] J. Shen et al. NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS
- [Oord&Li17] A. van den Oord et al. PARALLEL WAVENET: FAST HIGH-FIDELITY SPEECH SYNTHESIS
- [Ping18] W.Ping et al. CLARINET: PARALLEL WAVE GENERATION IN END-TO-END TEXT-TO-SPEECH
- [Pren19] R.Prenger et al. WAVEGLOW: A FLOW-BASED GENERATIVE NETWORK FOR SPEECH SYNTHESIS
- [Val19] J.-M. Valin, J. Skoglund LPCNET: IMPROVING NEURAL SYNTHESIS THROUGH LINEAR PREDICTION

Thank You

www.huawei.com

Speech synthesis approaches

- Rule-based, formant synthesis
 - ⇒ Phonetic units are generated according to hand-crafted rules
- Corpus-based, concatenative synthesis
 - ⇒ Concatenate speech units from a database
 - Diphone synthesis
 - Unit selection synthesis
- Corpus-based statistical synthesis
 - ⇒ Feature-generation+vocoder
 - HMM
 - DNN
 - ⇒ E2E systems

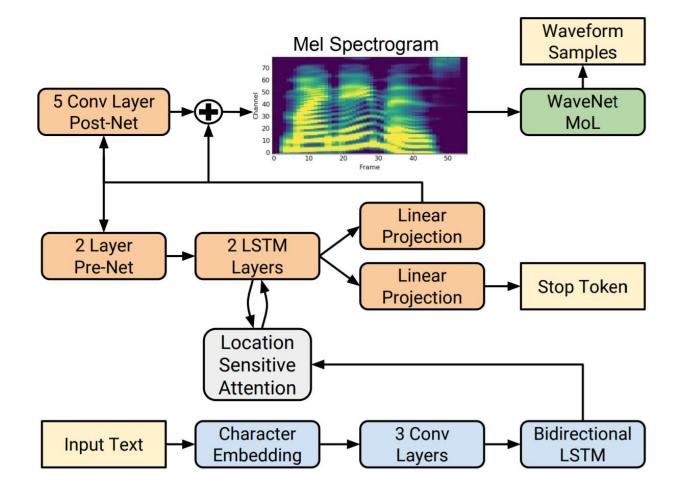
Statistical speech synthesis

- Given a training database consisting of pairs of speech waveforms X and texts W estimate a statistical model parameters λ for generating speech waveform x for text w ∉ W : x ~ P(x|w, λ)
- Usually $P(\mathbf{x}|\mathbf{w}, \lambda)$ is decomposed into submodules

 $\Rightarrow \mathsf{P}(\boldsymbol{x}|\boldsymbol{w}, \lambda) = \mathsf{p}(\boldsymbol{x}|\boldsymbol{f}) \mathsf{p}(\boldsymbol{f}|\boldsymbol{I}, \lambda A) \mathsf{p}(\boldsymbol{I}|\boldsymbol{w}, \lambda L)$

- ⇒ **f**: parameteric representation of speech waveform x
- ⇒ I: linguistic feature
- $\Rightarrow \lambda = \{\lambda A, \lambda L\}$: generative model parameter
 - λ_A : acoustic model parameter
 - λ L: linguistic model parameter

Tacotron2 architecture layout [Shen18]



HUAWEI TECHNOLOGIES CO., LTD. HUAWEI Confidential

