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1. What is speech

2. Why knowing deep learning is enough for good TTS 

system

3. Why sometimes it might not be true
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Preface: No country for old men
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WHAT IS SPEECH?

Speech representation and production
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Waveform and Spectrogram
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Waveform

Spectrogram

Fast Fourier Transform

(10-30 msec segment)

Formant frequencies
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Closer to human perception: Mel-scale

 FFT coefficients are redundant

 Sound perception by the human auditory 

system is highly non-linear

 Idea #1: compress spectrum into a small 

number of energies in critical subbands

Mel-scale spectral coefficients (MFSC)

Bark-scale spectral coefficients
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 Idea #2: decorrelate log(MFSC) or log(BFSC) in PCA-like 

manner (use DCT)

Mel-frequency cepstral coefficients

Bark-frequency cepstral coefficients
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Acoustic representations: MFSC vs. BFCC
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80-band MFSC 

18-band Bark-scale cepstrum
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Source-Filter model
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 Speech signal is a convolution of 

independent Source (vocal cords) and 

Filter (vocal tract)

 Linearity assumption: Vocal tract 

filtering phenomena can be 

approximately modeled as a linear 

recursive filter

 Source signal is either an impulse train 

(voiced sounds) or a white noise 

(unvoiced sounds)
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Vocal tract as a tube

 Let’s model the vocal tract as a tube 

with varying section

 In this case the sound pressure at the 

end of the last section is a linear 

combination of multiple running and 

reflected waves
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 Or in discrete time

 We can estimate ak from s(n)

 In this case ak’s are called linear 

prediction coefficients (LPC)
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WHY DEEP LEARNING IS ALL 

YOU NEED

Unreasonable effectiveness and all the stuff
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Statistical speech synthesis before Tacotron era
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Context-dependent HMMs 

& state duration models

Text analysis

Parameter generation 

from HMMs

Text

Synthesis Filter
Excitation 

generation
Synthesized speech

MFSC, deltas, delta-deltas, 

pitch period, delta, delta-delta
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Neural vocoder: WaveNet [Oord17]


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Neural feature-generation: Tacotron/Tacotron2

 Seq2Seq model with attention

 Content-based in Tacotron [Wang17]

 Location-sensitive attention in Tacoton2 [Shen18]

 Predicts 80-band MFSC

 Griffin-Lim vocoder in Tacotron

 WaveNet in Tacotron2

 Predicting N frames per inference step

 N = 2-3 in Tacotron

 N = 1 in Tacoton2 (as reported in [Shen18])

 Makes use of so-called PostNet increasing frequency 

resolution

 Tacotron2: separate stop-token prediction
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Parallel WaveNet, ClariNet (and WaveGlow)

 Idea #1: use trained autoregressive model as a reference distribution 

(teacher) to trained a non-autoregressive vocoder (based on IAF) via KL-

divergence minimization 

 Parallel WaveNet [Oord&Li17] 

MoL

Power loss, Style loss, Contrastive loss

 ClariNet [Ping19]

Normal distribution

STFT loss (almost like power loss)

Tricks with KL divergence regularization

 WaveGlow [Pren18] uses Glow network and is trained from scratch 
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Recurrent Vocoders: WaveRNN

 Recurrent neural network conditioned 

on linguistic features (so, like original 

WaveNet it’s not actually a vocoder) 

[Kal18]

 Quality comparable to WaveNet but 

RTF=0.25 on GPU at 24kHz

 16-bit prediction via 2-step prediction: 

coarse (first 8-bit) and fine (second 8-

bit) parts

 Block sparsification
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WHY DEEP LEARNING IS NOT 

ALL YOU NEED

On desperate living without GPU (and memory)
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Going mobile

 Memory consumption

 CPU

 ROM

 Tacotron is considerably fast

 Bottleneck: vocoder

 LPCNet to the rescue!
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LPCNet: LPC estimation

 We can estimate ak by minimizing energy of the residual 

which is equivalent to MSE minimization in the analysis window

 LPCs can be found in both time and frequency domain i.e. from spectrum

 If we know e(n) and ak for the speech frame we can restore s(n)

 Small module of e(n) is a resource of compression in speech codecs
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LPCNet

 Compute LPCs from Bark-scale 

cepstral coefficients

 Use frame-rate network to compute 

feature vector f

 Feed f to a sample rate recurrent 

network predicting excitation signal 

e(n)

 Output signal is computed as if it was 

restored from true LPCs and excitation 

signal

 Operates on 8kHz, 8-bit mu-law

 RTF: ~0.2 on CPU
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Val[19]
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Multisample Gaussian LPCNet

 Idea #1: predict n>1 samples per step

Speedup up to 50%

 Idea #2: predict parameters of Normal distribution

 16-bit sound

 ~50% reduction in number of parameters
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Summary

 Tacotron and WaveNet have revolutionized server-based TTS systems

 State-of-art server-based TTS systems are based on Tacotron-like 

architectures and parallel vocoders (WaveGlow, ClariNet) which require 

powerful GPU

 CPU-based and mobile services still require a bit of classical DSP 

techniques to have solid real-time guarantees

 Latest research is focused on emotional multi-speaker and sample-

efficient TTS solutions
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Speech synthesis approaches

 Rule-based, formant synthesis

 Phonetic units are generated according to hand-crafted rules

 Corpus-based, concatenative synthesis

Concatenate speech units from a database

− Diphone synthesis

− Unit selection synthesis

 Corpus-based statistical synthesis

 Feature-generation+vocoder

− HMM

− DNN

 E2E systems
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Statistical speech synthesis
 Given a training database consisting of pairs of speech waveforms X and texts W

estimate a statistical model parameters λ for generating speech waveform x for

text w ∉ W : x ~ P(x|w, λ)

 Usually P(x|w, λ) is decomposed into submodules

P(x|w, λ) = p(x|f) p(f|l, λA) p(l|w, λL)

 f: parameteric representation of speech waveform x

 l: linguistic feature

 λ = {λA, λL}: generative model parameter

− λA : acoustic model parameter

− λL: linguistic model parameter
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Tacotron2 architecture layout [Shen18]
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