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TeKCT Ha nocaeayoLwWwmx cnamaax B OCHOBHOM aHIZIMUCKUMA
(cBA3aHO ¢ N13MeHeHneM B Nporpamme LWKO/bl)

MHoroareHTHaa cuctema Unun MYI'IbTMaI'EHTHaf-I?

A cuuTtalo, YTO NpaBUNbHO NepBoe. AHANOrU:

MHoromepHoe npoctpaHcTso (multidimensional)
MHorokaHanbHasa cBAa3b (multi-channel)
MHoOroBeKkTopHasa BHELWHAA NoAUTUKA (multi-vector)
 MHoroypoBHeBas 3awuTta (multi-level)
 MHoroKpurtepuanbHasa ontumusauua (multi-criterial)

«MynbTn» B OCHOBHOM COXpPaHAETCA TaM, rae ABa KOPHA c/10Ba No
OTAE/NIbHOCTU He NepeBoAAT, Hanpumep My/1bTUCTabUNbHOCTD.

AreHTtbl — KTO (UTO) OHUN?
B Al/CS — paa cBoicTs (KnoueBoe — aBTOHOMHOCTb)

B Teopuu ynpasaeHUA — NPOCTO NOACUCTEMA C/IOXKHOM
cuctembl. Hanpumep, HepBHAA KaeTKa.




MuHyTa HocTtanbrnu: TMLU 2013r., 03. CeHex
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* Moe nepsoe y4actue B JIETHEW LLIKONEe U Oo4ANH U3 MOUX NepsbIX 40K/1a40B Mo
KOHCEHCYCY N MHOIoareHTHbiIm CUCTEMaM

http://www.youtube.com/watch?v=fNJ7MCO0bqgiM

* CTex MHOroe M3aMeHmN0Cb — OT Ha3BaHMA LWKObl 40 NOHMMAHUA TOro, ANA Yero Ha
CaMOM aene Hy*KHbl KOHCEHCYCHbIE a/ITOPUTMbI.



Large-Scale Complex Systems Dynamics

Swarms, herds, flocks
(biological or man-made agents)
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About consensus:

- Direct meaning: harmony, concord, unaimity, solidarity;

* In Multi-Agent Systems (MAS) and Complexity Science: coordinated
behavior of subsystems, synchrony in some variables of interest.

Applications in Natural and Social Sciences:
effects of spontaneous order (from synchronous fireflies to sociodynamics);

MpunoxkeHuna K coumonorum mol o6cyamm B nATHULY!

Applications in Robotic and Computer Systems:

time synchronization, frequency synchronization in power grids, load balance, flocking and
swarming of mobile robots, blockchain etc...

v' distributed optimization and computing.



IV.

MnaH nekuum:

Mpumep: pacnpeneneHHoe ycpeaHeHUe B CEHCOPHbIX ceTAX. ANropuTMbl
UTEePaTUBHOIO YyCpPeaHEeHUs.

YauButenbHaa po6acTHOCTb anNropuTMOB YCpeOHEeHUs: KOHCEHCYC B
HepaBeHCTBaXx

KoHceHcyc ¢ orpaHuyeHnamu. PacnpegeneHHoe pelleHne NUHENHbIX YypaBHEHUN.

HenoaBuXXHble TOUYKM NapacXumarLwwmx oTobpaxeHnn. B cTopoHy
pacnpeaeneHHOW oNnTUMMU3aLUK, UNTU NoYeMy s 06 3TOM BCeM paccKasbIiBalo Ha
AaHHOM LWKone.

3aknroyeHue.



I. Distributed Averaging in Sensor Networks



Wireless Sensor Network as a Self-Organizing System

Base station/ End user application Sensing Range

Huge number of simple agents (sensors) with limited ranges — motion sensors,
thermometers, manometers, concentration meters, smoke detectors etc.;

Communicate wireless (limited data-rate, nearest-neighbor connection, delays);

Can be accessed remotely via a few gateways (sinks);

Can coordinate in order to reach cooperative goals or enhance resilience/robustness.



Wireless Sensor Network. Averaging (1).
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Wireless Sensor Network Architecture

Is the straightforward centralized solution that good?

Global information: how much memory do we need? how long to wait?
Complex protocols (guaranteed delivery, multi-path resolution etc.);
Security issues (malicious attacks on the central unit allow to access to all
information and change the result of computing).



Wireless Sensor Network. Averaging (ll).

A “rule of thumb” decentralization: each sensor i computes the average

* Initialize the process by the actual measurement:

* At each stage, average the own value with the neighbors’ values:

1

zi(k+1) = Ty z; (k) + ; (k)
N = {3} QZ a 3N3 = {1,2}
1 Ny = {3,4}
a N, = {1}

* All sensors perform the operations simultaneously, k=0,1,2,...



Wireless Sensor Network. Averaging (lll).

A numerical example: let’s see how it works on a small graph

_ 1
29/27 1‘1 4'4 28/27 N:4’T:ﬁZTi:17
1] 5/3 4/3]4/3

D(k) = max|a;(k) - T|

8/

910 117/9
8/9 0 ‘0

7
._1 1 Step 0 (D=3) Step 2 (D=1/3)
) Step 1 (D=1) Step 3 (D=1/9)

Algorithm seems to (and does) compute the mean value, but...

32/27 1
11/9?5/3 1
z;(k) >10/9 Vi=1,4 Vk > 3.

7/6 1.1 Actually, all values converge to 1.14286...
10/9 0 -1710/9 Is the algorithm completely useless then?

4_ 10/9 Step 0 (D=3) Step 2 (D=2/9)
7/6 Step 1 (D=2/3) Step 3 (D=5/27)




Wireless Sensor Network. Averaging (V).

To where and why does the vector x(k) converge? Look at its dynamics

* At each stage, average the own value with the neighbors’ values:

1

vi(k) + Y w;(k)

JEN;

* In the vector form, these dynamics shape into

r(k+1)=Wax(k),

N
W = (wy;), wij >0, ijl wg; = 1. ()

* Matrices obeying the condition (*) are said to be (row-)stochastic

= - 1 1 1

. s 3 0 3] 1 2 5 3 U 3

11 1 1 L1 19

4 4 4 1 w=13 3 3

0 1 1 1 o + L1 1

3 3 3 4 3 3 3 3

4 11 1 1 i 0 & 4
| 4 4 4 4 L3 3 3

a doubly stochastic matrix



Wireless Sensor Network. Averaging (V).
Consensus, Markov Chains, SIA (Fully Regular) Matrices

The DeGroot Model of Iterative Averaging (Opinion Pooling):
x(k) — vector of the agents’ opinions about the value of something (e.g. mean value)

r(k+1)=Waz(k), =z(0)eRY (+)
Dynamics of the Markov chain with transition matrix W:
e+ 1) =7xk)"W, m(0)>0,) m(0)=1 (1

7 (k) = P(chain in state i at time k)

The following three statements are equivalent (easy exercise from linear algebra):

» algorithm (+) establishes consensus: limy_ .. z;(k) = & = & [z(0)] Vz(0)

» the Markov chain (!) is ergodic: limg oo (k) = my = const  Vw(0)
e the matrix W is fully regular, or stochastic indecomposable aperiodic (SIA)
T T
— r(k) —— 1 =, x(0
likaILNw*T[:] (k) —— In&, & =7, 2(0)
k— o0 7TT

k) —— ], 7] W=n.
k— o0



Wireless Sensor Network. Averaging (VI).
Consensus in the DeGroot model: A simple sufficient condition

r(k+1)=Waz(k), =z(0)eRY (+)
Each NxN matrix encodes some graph with N nodes
14— ] = Wi; > 0

A stochastic matrix is irreducible if its graph is strongly connected.

Algorithms(+) establishes consensus, if W is irreducible and has a positive diagonal
wiy; >0 Ve>0
T _ [w:—] N {x(k) m ILNS*) f* — WICC(O)

*
. >0, ) 1ly=1,7,W=mn/

* *

limk_>oo Wk = ILNT('

71-T

*

Average consensus (as desired) means double stochasticity of W:
=Ny IzW =15 < ) wy=1Vj
(]



Wireless Sensor Network. Averaging (VII).
Solution for undirected connected interaction graphs

v(k+1)=Wa(k), =z(0)eRY (+)
(1—a|N;|, i=j
wi; =@, JE NZ(¢>Z c NJ) ,  Where Oé|NZ| < 1.
0, J &N

W is symmetric (thus doubly stochastic), irreducible (connectivity)

zi(k+1)=(1—a|N;|)z;(k —I—O{ZSISJ
JEN;

A solution to the averaging problem:

 decentralized (no global information, except for the gain a);

* secure (transmissions only between neighbor agents), redundant;

* computes the exact value not in finite time, but converges exponentially;

* can be extended to general strongly connected graph (finding W is less trivial);

* other extensions: distributed filtering and inference (the measured value is
generated by a non-trivial and partially uncertain systems, observations are noisy)



IIl. Amazing Robustness. From Equations to Inequalities



Robustness of consensus algorithms
v(k+1) = Wa(k).

(always assumed: W is irreducible with positive diagonal entries)

1. Bounded communication delay doesn’t destroy consensus
r;(k+1) = wyx;(k) + Z wi;izi(t —1(k)) = lim x;(k) = & Vi.
k— o0
J71
2. Synchronization (not convergence!) is robust against small perturbations
r(k+1)=Wazx(k)+nk) =

T s(k) — 25(8)| < ¢ Tm |(k)] Vi)
k— o0 k— 00

3. Amazing robustness against sign-preserving disturbances

v(k+1)=Wax(k)+n(k), nk)>0ivk =
lim (k) = & = & [2(0),7()] <00 Vi.

k— 00

Important notice: {, < oo —= n(k) — 0 (<=)

k— 00



Theorem (A. Proskurnikov, M. Cao, 2017)

Let W be a square row-stochastic irreducible matrix with positive diagonal entries.
Then, each solution to the system of recurrent inequalities

v(k+1)>Wax(k) < z;(k+1) > wax]

converges to a vector of identical components
v(k) —— &y, & € RU {400}
— 00
If, additionally, {, < o0 then the “residual” x(k + 1) — Wz (k) —— 0

k—o00

The requirement of irreducibility (strong connectivity) cannot be relaxed

The result applies to the reversed inequalities as follows

r(k+1) <Wx(k) (& € RU{—o00})

Proceedings of IEEE Conference on Decision and Control CDC 2017, Melbourne



Sketch of the proof
v(k+1)>Wax(k) < z;(k+1) > wax]

Important constructions: ordering permutation of the vector and the minimal positive entry
minz; (k) = y1 (k) < ya(k) < ... < yy(k) = maxa; (k)
q := min{w;; : w;; > 0}.
Observation 1: the minimum is not decreasing y1(k + 1) > y1(k) = ¢, = hm y1 (k)
Observation2: w;; >0 = x;(k+1) > qz;(k)+ (1 — q)y1(k) (*)
Vi wy; >0 = zi(k+1) > qri(k)+ (1 — ¢y (k) (N
Observation3: yi(k+1) > qya(k) + (1 —q@)yi(k) = ya2(k) — €.

iy = i1 (k)5 £ i1 1 y1 (k) = 24, (k), win; > 0 <2 2y (k+1) > qua(k)+(1—q)yr (k)
(")

Vm # iy wm(k) 2 y2(k) = am(k+1) 2 qya2(k) + (1 = @)y (k).
Observation 4 (similar): ys(k +1) > qysi1(k) + (1 — q)y1(k)
y1(k), .. ys(k) = & = ysta1(k) = &



lll. Constrained Consensus and Distributed Equation Solving



HemHoro UCTOPUN. KN1aCCUYECKaA 3a4a4a O HaxXoxXAeHUu 06LI.I,EV| TOYKMU
BbINYK/bIX MHOX>KeCTB, HO B MHOroareHTHOM NOCTaHOBKe.

MpepwecTeylowme pabotbl (0OCHOBHbIE).

* J.von Neumann, Functional Operators, Vol. ll. The Geometry of Orthogonal Spaces, Princeton Univ.
Press, 1933

* Kaczmarz S. Angen‘aherte aufl'osung von systemen linearer gleichungen// Bull. Int. I’Acad. Polon. Sci.
Lett. A. — 1937. — 35. — C. 355-357.

*  Cimmino G. Calcolo approssiomatto per le soluzioni dei sistemi di equazioni lineari// La Ricerca Sci.
XVI. Ser. Il. — 1938. — 1. — C. 326-333.

HaxoxkaeHue TOUKM, anHa.qnemau.l,eﬁ nepece4yeHno HEeCKOZIbKUX runepnpocTpaHCTB

*  flIky6oBuu B.A. PeKyppeHTHble KOHEYHO-CX0AALLNECA aiIfOPUTMbI peLleHUs CUCTEM HepaBeHCcTB //
OAH CCCP. 1966. T.166. No 6. C. 1308-131

* [ybun N.T., Nonsak b. T., Pauk E. B. MeTtog npoeKkuun ana HaxoXXaeHua obwen ToOUKU BbINYKAbIX
mHoXecTB// XypH. Bblu. maT. U maT. pu3s. — 1967. —7. — C. 1-24.

*  BbparmaH J/1.M., PenakcauMOHHbI MeToA, HaxoXKAeHUa o6Lei TOUKU BbIMYK/bIX MHOXECTB U ero

NpPUMeHeHue ANa pelleHnsa 3a4au BbiNyKnoro nporpammuposaHua//XypH. Bbiu. maT. u mat. $pus. —
1967. —7. — C.620-631

EctectBeHHOe 0606LLeHMe: 3a4a4a O KOHCEHCYCE C BbiNyKAbiMu orpaHudyeHnamm (rpynna A. Nedic, rpynna
W. Ren, A.S. Morse, B.D.O. Andersson u ap.) KOHCEHCYCHbIW aNropuTm + MeToa, NPoeKLUn.



Constrained Consensus (l):
A problem of rational decision making

vl

M

|
|

Each of N agents has a convex set (constraint) in a decision sﬁce which the
agent prefers to keep private. L
Find a point in the decision space, satisfying all of these constraints



Constrained Consensus (ll):
Potential applications

Distributed solving of linear equations a;r:c =0b;, 1=1,...,N.
(e.g. PageRank, Katz or Eigenvector
Centrality computation in a network)

Agent i keeps confidential data a; € R™ b, € R.  Decision spaceis {z} = R".

The algorithm delivers some solution of the resulting system (assuming that it exists)

A board of directors are discussing a portfolio of investments. In total, 1 bin S is to be
distributed between M assets (actions, currencies etc.). Each director has a
subjective expectation of the financial gain from each asset (can be negative), and
aims to keep the expective profit non-negative. This leads to constraints:

az-Tx >0, x> O,xT]lM = 1.



Constrained Consensus (lll):
Distributed algorithms

X Projection operator:
returns the nearest 2pomt

o0 VY € Qo —y|? > o — Po(x)]” + |y — Po(2)]
- b—a'x
Q={y:a y=0} = Polx)=2+ al? a
The agents’ constraint sets:
E,L' = CODVEZ' g Rn, Pz = PE,“
=, ==1N...NEN#£0
Consider the following two algorithms
Ei(k+1) = wu Pi(&(k)) + sz’jfj(k); (1)

J71

ik +1) (Z wi;&i(k ) ° (2)



Constrained Consensus (IV):
Why do the algorithms work? Consider (1) as a simpler one:

JFe
Observation 1. Algorithm (1) hides some inequality inside!

& €2y, mih) = &G(k) - &I" =
0 < ay(k + 1) < wi| P(&(R)) = &P+ Y wislé(k) — &7 <
J71

< Zj wz’jxj(k) — wm‘f@(k) — Pz(fz(k))‘Q < Zj wijxj(k)

Observation 2. Consensus in this inequality implies that (1) is “almost linear”

fz k + 1 wafj + 5% )7 5z(k> — gz(k> o PZ(S'L(k)) — 0

Observation 3. We know the robustness property. ‘fz(k) _ fj (k)’ — 0
Hence, all agents’ vectors converge to the desired set. k—o0

maxd(6(k), ;) > 0 = d(&(k),Z.) = 0Vi



Constrained Consensus (V).
Theorem (almost proved on the previous slide)

Ef,; = COHVE@ g Rn P — P:“

=, =Z1N...NEN #£0
Gk +1) = wzsz(‘fz(k)) + szj@'(k); (1)

k1) = P (D wigg(h)). ®)

Let W be a square row-stochastic irreducible matrix with positive diagonal entries.
Then, both algorithms (1) and (2) provide the convergence

f’t(k) m f* — f* [(fz( ))z 17W] € =

Algorithm (1): Nedic, Parrilo, Ozdaglar, 2010, IEEE TAC (doubly stochastic
W)

* Algorithm (2): You, Song, Tempo, 2016, IEEE CDC
* Modifications: Mou, Liu, Morse, 2015, IEEE TAC (only linear constraints)



IV. Fixed Points of Paracontractive Maps. Towards Distributed Optimization



An Extension of the Constrained Consensus Protocols

&k +1) = wi B(&(R) + > wi&(k); (1)

Gk +1) = P (D0 wi&s(h)) &)
Which properties of the projection operators have we actually used?

N
=i ={x: P(x) =x} #0, E*:ﬂEi#@.
1=1

Ve g 2 Vy € i |Pi(z) — B(y)| = [Fi(x) —y| < |z —yl.
(paracontraction property)
The previous theorem retains its validity if all “projectors” are continuous and paracontractive:
if there exists a common fixed point, the algorithms (1), (2) deliver one of such points.

Constraint (fixed point) sets are unknown by the agents!

Fullmer, Liu, Morse, Proc. of IEEE CDC 2016, Proc. Of ACC 2017



Example:
Simultaneous Optimization of Smooth Strongly Convex Functions

Pi(z) =2 — o;V fi(z)

milr —y> < (Vfi(z) = Vi) (v —y) < Lz — y|?

If the set where all functions achieve the global minimum is non-empty,
then the algorithms (1a) and (2a) will compute one of the optimal points.

Gk +1) =) wii&(k) — iV fi(& (k) (1a)
&i(k+1) = vi(k) — oV fi(vi(k)),  vi(k) = Zj wi;& (k). (2a)

Optimization, but very special: each agent has own cost function, many technical
assumptions, no constraints. What about more general cases?
Can we combine the general constrained consensus algorithm with the gradient descent?



Constrained Optimization via Constrained Consensus:
Nedic’s theory

N
1=1

s.t. & eg, Vi=1,...,N.

Under certain assumptions, the following algorithm with time-varying
step-size parameter finds a global optimum (generally, non-unique)

&i(k+1) = Pe, vi(k) — (k) V fi(uvi(k))],  wi(k) = Zj wi;&5 (k).
Zai(k) = 00, Zozi(kf < 00

Conditions are: double stochasticity of W, bounded (sub)gradients, compact sets

Alternative approaches exist, e.g. primal-dual (Lagrangian multipliers).

Nedic, Ozdaglar, Parrilo, 2010, IEEE TAC, vol.55, no.4



Conclusions and Extensions.

Consensus algorithms open up the perspective to solve complex problems in a
distributed way (e. g., solve systems of linear equations and/or inequalities)

Consensus algorithms (under strong connectivity assumptions) are amazingly
robust: consensus is not destroyed, replacing the equation by inequality

Constrained consensus algorithms are closely related to distributed convex
optimization, which has recently been thoroughly studied
(deterministic/stochastic gradient descent, primal-dual methods)

Consensus algorithms are closely related to models of social dynamics;

Extensions to time-varying (e.g. repeatedly strongly connected) graphs and
continuous time exist;

Most challenging problem is synchronization of agents that have non-trivial
heterogeneous dynamics (e.g. power generators, neurons, robots etc.)
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P. Giselsson, M.D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer, Accelerated gradient methods and dual
decomposition in distributed model predictive control, Automatica, vol. 49, no. 3, pp. 829-833, Mar. 2013

* N Bof, R Carli, G Notarstefano, L Schenato, D Varagnolo, Multi-Agent Newton-Raphson Optimizaton

Over Lossy Networks, IEEE Transactions on Automatic Control (published online)



A genuine leader is not a searcher
for consensus but a molder of
consensus.

— Martin Luther K é;‘t_..rf__} _

AZ QUOTES

UCTUHHDBIN inpep He ULLET KOHCEHCYCa, a ero popmupyer
(MapTtuH /Tiotep KuHr)



Cnacubo 3a BHUMaHue!
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