Math of Reinforcement Learning: Bayesian Approach

Daniil Tiapkin

HDI Lab, HSE University

Reinforcement Learning

Markov Decision Process (MDP)

Tabular, episodic MDP: H horizon, S states, A actions.
Learning in MDP: at episode t, step h

- state $s_{h}^{t} \in \mathcal{S}$;
- action $a_{h}^{t} \in \mathcal{A}$;

■ next state $s_{h+1}^{t} \sim p_{h}\left(\cdot \mid s_{h}^{t}, a_{h}^{t}\right)$;

- reward $r_{h}\left(s_{h}^{t}, a_{h}^{t}\right)$ - known.

Goal: find a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ that maximizes a value function

$$
V_{h}^{\pi}(s)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \mid s_{h}=s\right] .
$$

Examples

Figure: Left: MDP with $S=3, A=2$.
Right: Atari Breakout with $S=256^{84 \cdot 84} \approx 10^{17000}, A=4$.

Bellman Equations

Action-value function for policy π

$$
\left.Q_{h}^{\pi}(s, a)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right)\right) \mid s_{h}=s, a_{h}=a\right] .
$$

Bellman equations for policy π

$$
\begin{aligned}
Q_{h}^{\pi}(s, a) & =r_{h}(s, a)+p_{h} V_{h+1}^{\pi}(s, a) \\
V_{h}^{\pi}(s) & =Q_{h}^{\pi}\left(s, \pi_{h}(s)\right) \\
V_{H+1}^{\pi}(s) & =0
\end{aligned}
$$

where $p_{h} f(s, a)=\sum_{s^{\prime}} p_{h}\left(s^{\prime} \mid s, a\right) f\left(s^{\prime}\right)$.

Optimal Bellman Equations

Optimal policy π^{\star} maximizes $V_{h}^{\pi}(s)$ for all $s \in \mathcal{S}$ and $h \in[H]$.
Optimal value and action-value functions

$$
V_{h}^{\star}(s)=V_{h}^{\pi^{\star}}(s), \quad Q_{h}^{\star}(s, a)=Q_{h}^{\pi^{\star}}(s, a) .
$$

Optimal Bellman equations

$$
\begin{aligned}
Q_{h}^{\star}(s, a) & =r_{h}(s, a)+p_{h} V_{h+1}^{\star}(s, a) \\
V_{h}^{\star}(s) & =\max _{a} Q_{h}^{\star}(s, a) \\
V_{H+1}^{\star}(s) & =0
\end{aligned}
$$

where $p_{h} f(s, a)=\sum_{s^{\prime}} p_{h}\left(s^{\prime} \mid s, a\right) f\left(s^{\prime}\right)$. Then $\pi_{h}^{\star}(s)=\arg \max _{a} Q_{h}^{\star}(s, a)$.

Online Reinforcement Learning Algorithm

Online algorithm: outputs a refined policy π^{t} after each episode $t=1, \ldots, T$.

Goal: regret minimization

$$
\mathfrak{R}^{T}=\sum_{t=1}^{T} V_{1}^{\star}\left(s_{1}^{t}\right)-V_{1}^{\pi^{t}}\left(s_{1}^{t}\right)
$$

Good algorithm: sublinear regret $\mathfrak{R}^{T}=o(T)$.
Optimal algorithm: $\mathfrak{R}^{T}=\mathcal{O}\left(\sqrt{H^{3} S A T}\right)$ (matches the lower bound).

Exploration-Exploitation Dilemma

Figure: Image source: UC Berkeley Intro to AI course

Optimism in the Face of Uncertainty

Optimal Bellman Equations

$$
\begin{aligned}
Q_{h}^{\star}(s, a) & =\left[r_{h}+p_{h} V_{h+1}^{\star}\right](s, a) \\
V_{h}^{\star}(s) & =\max _{a} Q_{h}^{\star}(s, a)
\end{aligned}
$$

Upper confidence bound

$$
\begin{aligned}
\bar{Q}_{h}^{t}(s, a) & =\left[r_{h}+\hat{p}_{h}^{t} \bar{V}_{h+1}^{t}+B_{h}^{t}\right](s, a) \\
\bar{V}_{h}^{t}(s) & =\max _{a} \bar{Q}_{h}^{t}(s, a)
\end{aligned}
$$

- \hat{p}_{h}^{t} - empirical model (mean over transitions);
- B_{h}^{t} - exploration bonus.

The most important: $\bar{Q}_{h}^{t}(s, a) \geq Q_{h}^{\star}(s, a)$ with high probability.

Optimism in the Face of Uncertainty: visualization

How to Choose Bonuses: Hoeffding and Bernstein inequalities

Argument: bounded random variables concentrates near mean.
Given: X_{1}, \ldots, X_{n} i.i.d. random variables, $\left|X_{i}\right|<b$ a.s., $\mathbb{E}\left[X_{i}\right]=0$.

Theorem (Hoeffding inequality)

With probability at least $1-\delta$ the following holds

$$
\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right| \leq \sqrt{\frac{2 b^{2} \log (2 / \delta)}{n}}
$$

Theorem (Bernstein inequality)

With probability at least $1-\delta$ the following holds

$$
\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right| \leq \sqrt{\frac{2 \operatorname{Var}\left[X_{1}\right] \log (2 / \delta)}{n}}+\frac{2 b \log (2 / \delta)}{3 n} .
$$

Upper Confidence Bound Value Iteration UCBVI

 [Azar et al., 2017]Recall the setup

$$
\begin{aligned}
\bar{Q}_{h}^{t}(s, a) & =r_{h}(s, a)+\underbrace{\widehat{p}_{h}^{t} \bar{V}_{h+1}^{t}(s, a)+B_{h}^{t}(s, a)}_{\text {upper approximation of } p_{h} V_{h+1}^{*}(s, a)} \\
\bar{V}_{h}^{t}(s) & =\max _{a} \bar{Q}_{h}^{t}(s, a) .
\end{aligned}
$$

Let $L=\log (5 S A H T / \delta)$.
■ UCBVI with Hoeffding bonuses

$$
B_{h}^{t}(s, a)=\frac{7 H L}{\sqrt{n_{h}^{t}(s, a)}} .
$$

- UCBVI with Bernstein bonuses

$$
B_{h}^{t}(s, a)=\sqrt{\frac{8 L \operatorname{Var}_{\left.s^{\prime} \sim \hat{p}_{h}^{t} \cdot \mid s, a\right)}\left[\bar{V}_{h+1}^{t}\left(s^{\prime}\right)\right]}{n_{h}^{t}(s, a)}}+\frac{14 H L}{3 n_{h}^{t}(s, a)}+\text { correction } .
$$

Near optimal in tabular setting: $\widetilde{\mathcal{O}}\left(\sqrt{H^{3} S A T}\right)$ regret (best up to poly-log).

UCBVI with Hoeffding bonuses: optimism proof

Lemma

For all $s, a, h, t \in \mathcal{S} \times \mathcal{A} \times[H] \times[T]$ it holds with high probability

$$
\bar{Q}_{h}^{t}(s, a) \geq Q_{h}^{\star}(s, a), \quad \bar{V}_{h}^{t}(s) \geq V_{h}^{\star}(s) .
$$

UCBVI with Hoeffding bonuses: optimism proof

Lemma

For all $s, a, h, t \in \mathcal{S} \times \mathcal{A} \times[H] \times[T]$ it holds with high probability

$$
\bar{Q}_{h}^{t}(s, a) \geq Q_{h}^{\star}(s, a), \quad \bar{V}_{h}^{t}(s) \geq V_{h}^{\star}(s) .
$$

- First, by Hoeffding bound and union bound for all

$$
\begin{aligned}
& s, a, h, t \in \mathcal{S} \times \mathcal{A} \times[H] \times[T] \\
& \quad B_{h}^{t}(s, a) \geq \hat{p}_{h}^{t} V_{h+1}^{\star}(s, a)-p_{h} V_{h+1}^{\star}(s, a) \geq-B_{h}^{t}(s, a)
\end{aligned}
$$

UCBVI with Hoeffding bonuses: optimism proof

Lemma

For all $s, a, h, t \in \mathcal{S} \times \mathcal{A} \times[H] \times[T]$ it holds with high probability

$$
\bar{Q}_{h}^{t}(s, a) \geq Q_{h}^{\star}(s, a), \quad \bar{V}_{h}^{t}(s) \geq V_{h}^{\star}(s) .
$$

- First, by Hoeffding bound and union bound for all
$s, a, h, t \in \mathcal{S} \times \mathcal{A} \times[H] \times[T]$

$$
B_{h}^{t}(s, a) \geq \hat{p}_{h}^{t} V_{h+1}^{\star}(s, a)-p_{h} V_{h+1}^{\star}(s, a) \geq-B_{h}^{t}(s, a)
$$

- Next use backward induction over $h=H+1, \ldots, 1$

$$
\begin{aligned}
\bar{Q}_{h}^{t}(s, a)-Q_{h}^{\star}(s, a) & =\hat{p}_{h}^{t} \bar{V}_{h+1}^{t}(s, a)+B_{h}^{t}(s, a)-p_{h} V_{h+1}^{\star}(s, a) \\
& \geq \hat{p}_{h}^{t} V_{h+1}^{\star}(s, a)+B_{h}^{t}(s, a)-p_{h} V_{h+1}^{\star}(s, a) \geq 0
\end{aligned}
$$

and

$$
\bar{V}_{h}^{t}(s) \geq \bar{Q}_{h}^{t}\left(s, \pi^{\star}(s)\right) \geq Q_{h}^{\star}\left(s, \pi^{\star}(s)\right)=V_{h}^{\star}(s)
$$

Scalability issues

Example: Go, $S \approx 10^{172}$ possible states.

Figure: Image source: Wikipedia

Bonus-based approach cannot be scaled: they required counters for all states.

Entering the Bayesian domain: posterior for transitions

$■$ transitions $p_{h}(\cdot \mid s, a) \Longleftrightarrow$ multinomial $\operatorname{Mult}\left(p_{h}\left(s^{\prime} \mid s, a\right)_{s^{\prime} \in \mathcal{S}}\right)$;

Entering the Bayesian domain: posterior for transitions

■ transitions $p_{h}(\cdot \mid s, a) \Longleftrightarrow$ multinomial $\operatorname{Mult}\left(p_{h}\left(s^{\prime} \mid s, a\right)_{s^{\prime} \in \mathcal{S}}\right)$;

- Conjugate prior for multinomial is Dirichlet distribution: if prior $\rho_{h}^{0}(s, a)$ is $\mathcal{D i r}\left(\left\{\bar{n}_{h}^{0}\left(s^{\prime} \mid s, a\right)\right\}_{s^{\prime} \in \mathcal{S}}\right)$, then posterior $\rho_{h}^{t}(s, a)$ is $\mathcal{D i r}\left(\left\{\bar{n}_{h}^{0}\left(s^{\prime} \mid s, a\right)+n_{h}^{t}\left(s^{\prime} \mid s, a\right)\right\}_{s^{\prime} \in \mathcal{S}}\right)$.

Preliminaries: properties of Dirichlet distribution

The Dirichlet distribution $\operatorname{Dir}(\alpha)$ for $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m}\right) \in \mathbb{R}_{>0}^{m}$ is a distribution over m-dimensional simplex $\Delta_{m}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} x_{i} \leq 1\right\}$

$$
p\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{B(\alpha)}\left(1-\sum_{i=1}^{m} x_{i}\right)^{\alpha_{0}-1} \prod_{i=1}^{m} x_{i}^{\alpha_{i}-1}
$$

where $B(\alpha)$ is a multivariate beta-function.

Preliminaries: properties of Dirichlet distribution

The Dirichlet distribution $\operatorname{Dir}(\alpha)$ for $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m}\right) \in \mathbb{R}_{>0}^{m}$ is a distribution over m-dimensional simplex $\Delta_{m}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} x_{i} \leq 1\right\}$

$$
p\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{B(\alpha)}\left(1-\sum_{i=1}^{m} x_{i}\right)^{\alpha_{0}-1} \prod_{i=1}^{m} x_{i}^{\alpha_{i}-1}
$$

where $B(\alpha)$ is a multivariate beta-function.

- Representation using gamma distribution

$$
\left(w_{0}, \ldots, w_{m}\right) \sim \mathcal{D} \operatorname{ir}(\alpha) \Longleftrightarrow w_{i}=\frac{Y_{i}}{\sum_{i=0}^{m} Y_{i}}, \quad Y_{i} \stackrel{\text { i.i.d }}{\sim} \Gamma\left(\alpha_{i}, 1\right) .
$$

Preliminaries: properties of Dirichlet distribution

The Dirichlet distribution $\operatorname{Dir}(\alpha)$ for $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m}\right) \in \mathbb{R}_{>0}^{m}$ is a distribution over m-dimensional simplex $\Delta_{m}=\left\{x \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} x_{i} \leq 1\right\}$

$$
p\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{B(\alpha)}\left(1-\sum_{i=1}^{m} x_{i}\right)^{\alpha_{0}-1} \prod_{i=1}^{m} x_{i}^{\alpha_{i}-1}
$$

where $B(\alpha)$ is a multivariate beta-function.

- Representation using gamma distribution

$$
\left(w_{0}, \ldots, w_{m}\right) \sim \operatorname{Dir}(\alpha) \Longleftrightarrow w_{i}=\frac{Y_{i}}{\sum_{i=0}^{m} Y_{i}}, \quad Y_{i} \stackrel{\text { i.i.d }}{\sim} \Gamma\left(\alpha_{i}, 1\right) .
$$

- Aggregation property: if $\alpha \in \mathbb{N}^{m}$ and $\bar{\alpha}=\sum_{i=0}^{m} \alpha_{i}$

$$
\sum_{i=0}^{m} w_{i} x_{i}=\sum_{j=1}^{\bar{\alpha}} \hat{w}_{j} y_{j}
$$

where $w \sim \mathcal{D} \operatorname{ir}(\alpha), \hat{w} \sim \mathcal{D i r}\left(\mathbf{1}^{\bar{\alpha}}\right), y_{j}$ are copies of x_{i} repeated α_{i} times.

Bayes-UCBVI: From Dirichlet...

Based on joint work with D.Belomenstny, E.Moulines, A.Naumov, S.Samsonov, Y.Tang, M. Valko, P.Menard. "From Dirichlet to Rubin: Optimistic Exploiration in RL without Bonuses", Oral at ICML-2022.

Idea: use directly an upper quantile over posterior distribution.

$$
\begin{aligned}
\bar{Q}_{h}^{t}(s, a) & =r_{h}(s, a)+\overbrace{\mathbb{Q}_{p \sim \rho_{h}^{t}(s, a)}}^{\text {quantile over posterior }}(p \bar{V}_{h+1}^{t}, \overbrace{\kappa_{h}^{t}(s, a)}^{\text {chosen quantile }}) \\
\bar{V}_{h}^{t}(s) & =\max _{a} \bar{Q}_{h}^{t}(s, a)
\end{aligned}
$$

Bayes-UCBVI: From Dirichlet...

Based on joint work with D.Belomenstny, E.Moulines, A.Naumov, S.Samsonov, Y.Tang, M. Valko, P.Menard. "From Dirichlet to Rubin: Optimistic Exploiration in RL without Bonuses", Oral at ICML-2022.

Idea: use directly an upper quantile over posterior distribution.

$$
\begin{aligned}
\bar{Q}_{h}^{t}(s, a) & =r_{h}(s, a)+\overbrace{\mathbb{Q}_{p \sim \rho_{h}^{t}(s, a)}}^{\text {quantile over posterior }}(p \bar{V}_{h+1}^{t}, \overbrace{\kappa_{h}^{t}(s, a)}^{\text {chosen quantile }}) \\
\bar{V}_{h}^{t}(s) & =\max _{a} \bar{Q}_{h}^{t}(s, a)
\end{aligned}
$$

- Near optimal in tabular setting: $\widetilde{\mathcal{O}}\left(\sqrt{H^{3} S A T}\right)$ regret.
- Scalable due to Bayesian bootstrap.
...to Rubin: Bayesian bootstrap

Given: sample $y^{1}, \ldots, y^{n} \sim \mathcal{P}$.
Goal: confidence interval for $\mathbb{E}_{y \sim \mathcal{P}}[y]$.

Classical (Efron) Bootstrap

- Resample $y^{1, b}, \ldots, y^{n, b}$.
- Compute mean estimate as
$\frac{1}{n} \sum_{i=1}^{n} y^{i, b}$.
- Repeat B times.

Bayesian Bootstrap

- Sample $w^{b} \sim \operatorname{Dir}\left(\mathbf{1}^{n}\right)$;
- Compute mean estimate as $\sum_{i=1}^{n} w^{b, i} y^{i}$;
- Repeat B times.

Then use quantiles of B mean estimates to construct a confidence interval.

Scalable implementation

■ targets for Q-function estimation $y_{h}^{n}(s, a) \triangleq r_{h}(s, a)+\bar{V}_{h+1}^{t}\left(s_{h+1}^{n}\right)$ for $n=1, \ldots, n_{h}^{t}(s, a)$.
■ prior targets $y_{h}^{n}(s, a) \triangleq r_{h}(s, a)+\bar{V}_{h}^{t}\left(s_{0}\right)$ for $n=-n_{0}+1, \ldots, 0$.

By aggregation property and sample quantile approximation

$$
\begin{aligned}
\bar{Q}_{h}^{t}(s, a) & \triangleq r_{h}(s, a)+\mathbb{Q}_{p \sim \rho_{h}^{t}(s, a)}\left(p \bar{V}_{h+1}^{t}(s, a), \kappa_{h}^{t}(s, a)\right) \\
& =\mathbb{Q}_{w \sim \mathcal{D i r}\left(1^{\bar{T}_{h}^{t}(s, a)}\right)}\left(\sum_{n=-n_{0}+1}^{n_{h}^{t}(s, a)} w_{n} y_{h}^{n}(s, a), \kappa_{h}^{t}(s, a)\right) \\
& \approx \underbrace{\mathbb{Q}_{b \sim \mathcal{U} \operatorname{nif}([B])}\left(\sum_{n=-n_{0}+1}^{n_{h}^{t}(s, a)} w_{h}^{n, b}(s, a) y_{h}^{n}(s, a), \kappa_{h}^{t}(s, a)\right)}
\end{aligned}
$$

upper confidence bound by Bayesian bootstrap

Deep RL extension: Bayes-UCBDQN

Recall

$$
\begin{aligned}
& \bar{Q}_{h}^{t}(s, a) \approx \mathbb{Q}_{b \sim \mathcal{U n i f}([B])}\left(\bar{Q}_{h}^{t, b}(s, a), \kappa_{h}^{t}(s, a)\right) \\
& \quad \text { where } \bar{Q}_{h}^{t, b}(s, a) \triangleq \sum_{n=-n_{0}+1}^{n_{h}^{t}(s, a)} w_{h}^{n, b}(s, a) y_{h}^{n}(s, a) .
\end{aligned}
$$

Uniform Dirichlet distribution $=$ exponential $(\Gamma(1,1))$ with normalization

$$
\begin{gathered}
\bar{Q}_{h}^{t, b}(s, a)=\underset{x}{\arg \min } \sum_{n=-n_{0}+1}^{n_{h}^{t}(s, a)} z_{h}^{n, b}(s, a)\left(x-y_{h}^{n}(s, a)\right)^{2} \\
\text { where } z_{h}^{n, b}(s, a) \sim \mathcal{E}(1) \text { i.i.d. . }
\end{gathered}
$$

Deep RL:

- sample minibatch of targets;
- update parameters by the gradient of weighted linear regression.

Experimental results

Figure: Left: Regret of Bayes-UCBVI and Incr-Bayes-UCBVI compared to baselines on grid-world with 5 rooms of size 5×5. Right: deep RL algorithms with median human normalized scores across Atari- 57 games.

Back to theory: optimistic prior

Figure: Extended state space by a fake state $s_{0}, r_{0}>1$.

Goal: encourage initial exploration.

- Tabular: prior $\rho_{h}^{0}\left(s^{\prime} \mid s, a\right)=\mathcal{D i r}\left(\left\{n_{0}\right\}_{s^{\prime}=s_{0}} \cup\{0\}_{s^{\prime} \in \mathcal{S}}\right)$.
- Deep RL: Add n_{0} prior transitions to s_{0};

Theoretical analysis

Let us fix $\delta \in(0,1), r_{0} \triangleq 2, n_{0} \triangleq \mathcal{O}(\log (T))$, and the quantile function

$$
\kappa_{h}^{t}(s, a) \triangleq 1-\underbrace{\frac{C_{\kappa} \delta}{S A H\left[2 n_{h}^{t}(s, a)+1\right]^{3}\left[\bar{n}_{h}^{t}(s, a)\right]^{3 / 2}}}_{\text {polynomial in parameters }} .
$$

Theoretical analysis

Let us fix $\delta \in(0,1), r_{0} \triangleq 2, n_{0} \triangleq \mathcal{O}(\log (T))$, and the quantile function

$$
\kappa_{h}^{t}(s, a) \triangleq 1-\underbrace{\frac{C_{\kappa} \delta}{S A H\left[2 n_{h}^{t}(s, a)+1\right]^{3}\left[\bar{n}_{h}^{t}(s, a)\right]^{3 / 2}}}_{\text {polynomial in parameters }} .
$$

Theorem (Regret bound)

For Bayes-UCBVI, with probability at least $1-\delta$,

$$
\mathfrak{R}^{T}=\mathcal{O}\left(\sqrt{H^{3} S A T} L+H^{3} S^{2} A L^{2}\right),
$$

where $L \triangleq \mathcal{O}(\log (H S A T / \delta))$.

Theoretical analysis

Let us fix $\delta \in(0,1), r_{0} \triangleq 2, n_{0} \triangleq \mathcal{O}(\log (T))$, and the quantile function

$$
\kappa_{h}^{t}(s, a) \triangleq 1-\underbrace{\frac{C_{\kappa} \delta}{S A H\left[2 n_{h}^{t}(s, a)+1\right]^{3}\left[\bar{n}_{h}^{t}(s, a)\right]^{3 / 2}}}_{\text {polynomial in parameters }} .
$$

Theorem (Regret bound)

For Bayes-UCBVI, with probability at least $1-\delta$,

$$
\mathfrak{R}^{T}=\mathcal{O}\left(\sqrt{H^{3} S A T} L+H^{3} S^{2} A L^{2}\right),
$$

where $L \triangleq \mathcal{O}(\log (H S A T / \delta))$.

Matches the lower bound $\Omega\left(\sqrt{H^{3} S A T}\right)$ up to poly-log terms.

Sketch of proof

The heart of the analysis is a novel anti-concentration inequality.

Sketch of proof

The heart of the analysis is a novel anti-concentration inequality.

Theorem (Dirichlet boundary crossing, Informal)

For any $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m+1}$ define $\bar{p} \in \Delta_{m}$ with $\bar{p}(\ell)=\alpha_{l} / \bar{\alpha}, \ell=0, \ldots, m$, where $\bar{\alpha}=\sum_{j=0}^{m} \alpha_{j}$. Under technical assumptions, for $f:\{0, \ldots, m\} \rightarrow\left[0, b_{0}\right]$ and $\mu \in\left(\bar{p} f, b_{0}\right)$

$$
\frac{\exp \left(-\bar{\alpha} \mathcal{K}_{i n f}(\bar{p}, \mu, f)\right)}{\bar{\alpha}^{3 / 2}} \leq \mathbb{P}_{w \sim \mathcal{D i r}(\alpha)}[w f \geq \mu] \leq \exp \left(-\bar{\alpha} \mathcal{K}_{\text {inf }}(\bar{p}, \mu, f)\right)
$$

where $\mathcal{K}_{\text {inf }}(p, u, f)$ is given by

$$
\mathcal{K}_{i n f}(p, u, f) \triangleq \max _{\lambda \in[0,1]} \mathbb{E}_{X \sim p}\left[\log \left(1-\lambda \frac{f(X)-u}{b_{0}-u}\right)\right] .
$$

Sketch of proof

The heart of the analysis is a novel anti-concentration inequality.

Theorem (Dirichlet boundary crossing, Informal)

For any $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m+1}$ define $\bar{p} \in \Delta_{m}$ with $\bar{p}(\ell)=\alpha_{l} / \bar{\alpha}, \ell=0, \ldots, m$, where $\bar{\alpha}=\sum_{j=0}^{m} \alpha_{j}$. Under technical assumptions, for $f:\{0, \ldots, m\} \rightarrow\left[0, b_{0}\right]$ and $\mu \in\left(\bar{p} f, b_{0}\right)$

$$
\frac{\exp \left(-\bar{\alpha} \mathcal{K}_{i n f}(\bar{p}, \mu, f)\right)}{\bar{\alpha}^{3 / 2}} \leq \mathbb{P}_{w \sim \mathcal{D i r}(\alpha)}[w f \geq \mu] \leq \exp \left(-\bar{\alpha} \mathcal{K}_{\text {inf }}(\bar{p}, \mu, f)\right)
$$

where $\mathcal{K}_{\text {inf }}(p, u, f)$ is given by

$$
\mathcal{K}_{i n f}(p, u, f) \triangleq \max _{\lambda \in[0,1]} \mathbb{E}_{X \sim p}\left[\log \left(1-\lambda \frac{f(X)-u}{b_{0}-u}\right)\right] .
$$

- Lower bound is an essential part for optimism;
- Upper bound is important for the reduction to UCBVI.

Takeaways

- Optimism in the face of uncertainty principle as a solution to exploration-exploitation dilemma;

■ Bayesian perspective gives more possibility to scale up algorithms;

- Reinforcement learning is full of mathematical questions and fun!

Thank you!

Bibliography I

居
Azar, M. G., Osband, I., and Munos, R. (2017). Minimax regret bounds for reinforcement learning.
In International Conference on Machine Learning.

