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Markov Decision Process (MDP)

Tabular, episodic MDP: H horizon, S states, A actions.

Learning in MDP: at episode t, step h
m state s} € S;
m action a}, € A;
m next state s;, , ~ py(:|sp, a});

m reward rp(sf, al) - known.

Goal: find a policy nm: S — A that maximizes a value function

H

Vgr(s) = Eﬂ- Z fh'(Sh/7ah/) | Sp=25]|.
h'=h
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Examples

Figure: Left: MDP with S =3, A=2.
Right: Atari Breakout with S = 256548 ~ 10'70%° A = 4.
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Bellman Equations

Action-value function for policy

H

Qn(s,a) =E; Z rw(Sw,aw)) | sp=5,an = a|.

h=h
Bellman equations for policy 7
Qn (s,a) = ra(s, a) + pnViia(s, a)

)
Vi (s) = Qi (s, ma(s))
V,‘?-/T+1( ) =0

where pyf(s, a) = X, pa(s']s, a)F(s)).
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Optimal Bellman Equations

Optimal policy m* maximizes V[ (s) for all s € S and h € [H].

Optimal value and action-value functions

Vi(s) = Vi (s), Qils,a) = Qf (s, a).

Optimal Bellman equations

Qj(5.2) = r(s.2) + paVia(s.2)
Vi (5) = max Qj(s. )

Viira(s) =0

where pyf(s,a) = . pn(s’|s, a)f(s’). Then mj(s) = arg max, Q; (s, a).
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Online Reinforcement Learning Algorithm

Online algorithm: outputs a refined policy 7t after each episode
t=1,...,T.

Goal: regret minimization

.
RT = Vi(sf) — W (sf).
t=1

Good algorithm: sublinear regret RT = o( T).

Optimal algorithm: T = O(VH3SAT) (matches the lower bound).
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Exploration-Exploitation Dilemma

Figure: Image source: UC Berkeley Intro to Al course
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http://ai.berkeley.edu/lecture_slides.html

Optimism in the Face of Uncertainty

Optimal Bellman Equations Upper confidence bound

—t it ‘
* * ; = + % B s
Qh(s7 a) — [rh + pn Vh+1](57 a) Qh(s a) [rh PVt + h](s a)

Vii(s) = max Q} (s, a) V;(S) = meGZ(Sv a)

m P} - empirical model (mean over

= pj, - unknown! transitions);

m Bj - exploration bonus.

The most important: 6;(5, a) > Qf (s, a) with high probability.
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Optimism in the Face of Uncertainty: visualization

UCB(s,a,)

Q*(s,a1)

mean

UCB(s,az)

mean
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How to Choose Bonuses: Hoeffding and Bernstein
inequalities

Argument: bounded random variables concentrates near mean.
Given: Xi,..., X, i.i.d. random variables, | X;| < b a.s., E[X;] = 0.

Theorem (Hoeffding inequality)
With probability at least 1 — § the following holds

4 2
1 $x] < 26210g(2/3)
n = n

Theorem (Bernstein inequality)
With probability at least 1 — § the following holds

% Z x| < \/2Var[X1] log(2/6) . 2blog(2/6)

n 3n
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Upper Confidence Bound Value lteration UCBVI
[Azar et al., 2017]

Recall the setup

Qu(s,3) = r(s.a) + BLVpii(s.a) + Bi(s, a)

upper approximation of pj Vh*ﬂ(s,a)

V:,(s) = maax5:,(s, a).

Let L = log(5SAHT /6).
m UCBVI with Hoeffding bonuses

THL

Vi (s, a).

Bi(s,a) =

m UCBVI with Bernstein bonuses

8LVars  pt(.|s,a) [V3ia(5)] 14HL

+ correction.
nt(s,a) 3nt(s, a) I

Bi(s,a) =

Near optimal in tabular setting: (5(\/ H3SAT) regret (best up to poly-log).
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UCBVI with Hoeffding bonuses: optimism proof

Lemma

For all s,a, h,t € S x A x [H] x [T] it holds with high probability

Qu(s,a) > Q(s,a),  V(s) = Vi(s).
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UCBVI with Hoeffding bonuses: optimism proof

Lemma

For all s,a, h,t € S x A x [H] x [T] it holds with high probability
Qh(s:2) > Qj(s.2). Vi) 2 Vi(s).

m First, by Hoeffding bound and union bound for all
s,a,hteSxAx[H] x[T]

BE(S, a) Z /ﬁll; Vi:(+1(s7 a) — Pn V;+1(57 a) Z _Blt)(sa a)
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UCBVI with Hoeffding bonuses: optimism proof

Lemma

For all s,a, h,t € S x A x [H] x [T] it holds with high probability
Qh(s:2) > Qj(s.2). Vi) 2 Vi(s).

m First, by Hoeffding bound and union bound for all
s,a,hteSxAx[H] x[T]

Bft7(57 a) Z /ﬁll; Vl:(+1(s7 a) — Pn V;+1(57 a) Z _Blt)(sa 3)
m Next use backward induction over h=H+1,...,1

—t . it
Qh(57 a) - Qh(sa a) = pll;vh+1(sa a) + B};(Sa a) - phvi;k+1(s7 a)
> ﬁzvl;»l(sv a) + B;’;(S, a) — Pn VIT+1(Sa a) > 0.

and
t

Vi(s) = Qh(s. 7 (s)) = Qi(s, 7 (s)) = Vi (s).
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Scalability issues

Example: Go, S ~ 1072 possible states.

Figure: Image source: Wikipedia

Bonus-based approach cannot be scaled: they required counters for all states.
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Entering the Bayesian domain: posterior for transitions

m transitions ps(-|s,a) <= multinomial Mult(pp(s’ls, a)s'es);
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Entering the Bayesian domain: posterior for transitions

m transitions ps(-|s,a) <= multinomial Mult(pp(s’ls, a)s'es);

m Conjugate prior for multinomial is Dirichlet distribution: if prior p9(s, a)
is Dir({n%(s'|s, a)}s'es), then posterior pt (s, a) is
Dir({Ad(s']s, a) + ni(s']s, a)}sres)

9
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Preliminaries: properties of Dirichlet distribution

The Dirichlet distribution Dir(«) for o = (g, ..., am) € RZ;is a
distribution over m-dimensional simplex A, = {x € R™ | >, x; < 1}

m

E Oc 1 ai—1
p(le"'7Xm) XI o HX Y

i—1 i=1

where B(«) is a multivariate beta-function.
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Preliminaries: properties of Dirichlet distribution

The Dirichlet distribution Dir(«) for o = (g, ..., am) € RZ;is a
distribution over m-dimensional simplex A, = {x € R™ | >, x; < 1}

m
ap—1 aj—1
X;)*° Hx,-’ ,

m
=1 i=1

(X1, ) = %(1_

1

where B(«) is a multivariate beta-function.

m Representation using gamma distribution

(Wo, ., Wim) ~ Dir(a) <= Wi = =, Y ~ [(ar,1).
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Preliminaries: properties of Dirichlet distribution

The Dirichlet distribution Dir(«) for o = (g, ..., am) € RZ;is a
distribution over m-dimensional simplex A, = {x € R™ | >, x; < 1}

m
ap—1 aj—1
X;)*° Hx,-’ ,

m
=1 i=1

(X1, ) = %(1_

1

where B(«) is a multivariate beta-function.

m Representation using gamma distribution

_ Y., g
(wo, ..., wn) ~ Dir(a) <= w; = T;Yi’ Y "~ (e, 1).
m Aggregation property: if « € N" and @ =>." o
m a
> =Y iy
i=0 j=1

where w ~ Dir(a), w ~ Dir(1%), y; are copies of x; repeated «; times.
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Bayes-UCBVI: From Dirichlet...

Based on joint work with D.Belomenstny, E.Moulines, A.Naumov,
S.Samsonov, Y.Tang, M.Valko, P.Menard. "From Dirichlet to Rubin:
Optimistic Exploiration in RL without Bonuses”, Oral at ICML-2022.

Idea: use directly an upper quantile over posterior distribution.

quantile over posterior chosen quantile
—t ——— — ¢ /T/H
Qh(sv a) = rh(57 a) =+ prp,:(s,a) (pvh+1a Hh(sa a) )
—t —t
Vi(s) = max Qy(s, a)
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Bayes-UCBVI: From Dirichlet...

Based on joint work with D.Belomenstny, E.Moulines, A.Naumov,

S.Samsonov, Y.Tang, M.Valko, P.Menard. "From Dirichlet to Rubin:
Optimistic Exploiration in RL without Bonuses”, Oral at ICML-2022.

Idea: use directly an upper quantile over posterior distribution.

quantile over posterior chosen quantile
—t — —t
Qh(sa a) = rh(57 a) =+ Qprvp;(s,a) (pvh+1a KZ(S, a) )
—t —t
Vi(s) = max Qy(s, a)

m Near optimal in tabular setting: (5(\/ H3SAT) regret.
m Scalable due to Bayesian bootstrap.
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..to Rubin: Bayesian bootstrap

Given: sample y!,....y" ~ P.
Goal: confidence interval for E,p[y].

Classical (Efron) Bootstrap Bayesian Bootstrap
m Resample y32 ... y"P. m Sample w? ~ Dir(1");
= ?omfute_mean estimate as m Compute mean estimate as
el yhe. S whiyl:

= Repeat B times. m Repeat B times.

Then use quantiles of B mean estimates to construct a confidence interval.
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Scalable implementation

m targets for Q-function estimation y/(s, a) £ ry(s, a) +V;+1(sl’]+1) for
n=1,...,n}(s,a).

m prior targets y/(s, a) 2 ry(s,a) + V(o) for n=—no +1,...,0.

By aggregation property and sample quantile approximation

—t —t
Qh(sv a) £ rh(sa a) + prvp;(s,a) (P Vh+1(sa a), H;(Sa a))

nj,(s,a)
— QWNDir(ﬁ(s,a)) Z wayi(s, a), kh(s, a)
n=—np+1
nj(s,a)
~ Qp~unif((8]) Z wiP(s, a)yp(s, a), ki (s, a)
n=—np+1

upper confidence bound by Bayesian bootstrap
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Deep RL extension: Bayes-UCBDQN

Recall

Qh(5:3) ~ Qoo (@ (5. 2), wi (s, 2))

ni(s,a)

where 5;’b(s,a)é Z wib(s, a)yl(s, a) .

n=—np+1

Uniform Dirichlet distribution = exponential (I'(1,1)) with normalization

nj(s,a)

Qi"(s,a) =argmin Y z(s.a)(x — yi(s,2))"

n=—np+1

where z/""(s, a) ~ £(1) i.id. .

Deep RL:
m sample minibatch of targets;
m update parameters by the gradient of weighted linear regression.
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Experimental results
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Figure: Left: Regret of Bayes-UCBVI and Incr-Bayes-UCBVI compared to
baselines on grid-world with 5 rooms of size 5 x 5. Right: deep RL algorithms with
median human normalized scores across Atari-57 games.
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Back to theory: optimistic prior

Figure: Extended state space by a fake state sp, ro > 1.

Goal: encourage initial exploration.
m Tabular: prior p9(s'|s, a) = Dir({no}s=s, U{0}scs)-
m Deep RL: Add ng prior transitions to sp;

Math of RL: Bayesian approach 22



Theoretical analysis

Let us fix § € (0,1), 0 = 2, np = O(log(T)), and the quantile function

Cid
- SAH[2ni(s, a) + 1P[m}(s, a)PP/2

polynomial in parameters

ki(s,a) 21
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Theoretical analysis

Let us fix § € (0,1), 0 2 2, np = O(log(T)), and the quantile function

Cid
- SAH[2ni(s, a) + 1P[mj(s, a)P/2

polynomial in parameters

ki(s,a) =1

Theorem (Regret bound)
For Bayes-UCBVI, with probability at least 1 — 4,

RT = O(\/H35ATL + H352AL2),

where L £ O(log(HSAT/6)).
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Theoretical analysis

A

Let us fix § € (0,1), 0 2 2, np = O(log(T)), and the quantile function

Cid
- SAH[2ni(s,a) + 1P[mj(s, a)P2

polynomial in parameters

ki(s,a) =1

Theorem (Regret bound)
For Bayes-UCBVI, with probability at least 1 — 4,

RT = O(\/H35ATL + H352AL2>,

where L £ O(log(HSAT/6)).

Matches the lower bound Q(v/ H3SAT) up to poly-log terms.
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Sketch of proof

The heart of the analysis is a novel anti-concentration inequality.
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Sketch of proof

The heart of the analysis is a novel anti-concentration inequality.

Theorem (Dirichlet boundary crossing, Informal)

For any a = (ap, 1, . . ., o) € N1 define p € A, with
p(l) =ay/a,l=0,...,m, wherea =" ;. Under technical
assumptions, for f: {0,...,m} — [0, bg] and u € (pf, by)

exp(—a Kind P, i1, f o P
COEAPI) < g 2 1] < expl= Ko ),

where KCindp, u, f) is given by

a f(X)—u
Kinlp, u, ) = /\rg[%,xl] Ex~p [Iog <1 A - .
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Sketch of proof

The heart of the analysis is a novel anti-concentration inequality.

Theorem (Dirichlet boundary crossing, Informal)

For any a = (ap, 1, . . ., o) € N1 define p € A, with
p(l) =ay/a,l=0,...,m, wherea =" ;. Under technical
assumptions, for f: {0,...,m} — [0, bg] and u € (pf, by)

exp(—a Kind P, i1, f o P
COEAPI) < g 2 1] < expl= Ko ),

where KCindp, u, f) is given by

a f(X)—u
Kinlp, u, ) = /\rg[%,xl] Ex~p [Iog (1 A - .

m Lower bound is an essential part for optimism;

m Upper bound is important for the reduction to UCBVI.
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Takeaways

m Optimism in the face of uncertainty principle as a solution to
exploration-exploitation dilemma;

m Bayesian perspective gives more possibility to scale up algorithms;

m Reinforcement learning is full of mathematical questions and fun!
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Thank you!
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