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Chapter 1
Stochastic optimization and Data Science

AbstractThis chapter aims tomotivate stochastic optimization problems by statistics
and statistical learning theory, where the goal is to maximize log-likelihood or
minimize population risk.

In this chapter, we briefly describe two main approaches for solving expectation
minimization problems

min
G∈&

{
5 (G) = Eb∼D [ 5 (G, b)]

}
. (1.1)

The first approach is offline (Monte Carlo / Sample Average Approximation) and the
second one is online (Stochastic Approximation).

1.1 Stochastic optimization motivation

Following [109] one can say that «Optimization problems involving stochastic mod-
els occur in almost all areas of science and engineering, so diverse as telecommuni-
cation, medicine, or finance, to name just a few. This stimulates interest in rigorous
ways of formulating, analyzing, and solving such problems. Due to the presence of
random parameters in the model, the theory combines concepts of the optimization
theory, the theory of probability and statistics, and functional analysis. Moreover,
in recent years the theory and methods of stochastic programming have undergone
major advances.»

This «major advances» are strongly stimulated by the explosive growth of interest
to Data science problems. In the last decade there appear a several good books
dedicated to the connection of Stochastic Optimization and Data Science [109, 106,
8]. In this section we briefly describe two main original sources for appearance
of stochastic optimization problems in Data Science: 1) Statistics source (Fisher’s
theorem,maximum likelihood estimation) and 2)Machine Learning source (expected
risk minimization).

1



2 1 Stochastic optimization and Data Science

1.1.1 Statistical motivation

We start with the the most simple situation. Let G∗ ∈ R be an unknown scalar
parameter, [ ∼ N

(
0, f2) – Gaussian noise. Assume that we can measure

b: = G∗ + [: , : = 1, ..., # ,

where [: i.i.d. (independent identically distributed as [). The goal is to estimate G∗
from

{
b:

}#
:=1.

The main observation is as follows: G∗ is a solution of Stochastic optimization
problem

min
G∈R
Eb

[
5 (G, b) := (b − G)2

]
, (1.2)

where b ∼ N
(
G∗, f2) . Indeed,

Eb (b − G)2 = Eb b2 − 2GEb b + G2 = G2
∗ + f2 − 2GG∗ + G2 = (G∗ − G)2 + f2

attains minimum at G = G∗. But we do not know G∗ (and maybe f2). How should
we solve the problem (1.2)? Since

{
b:

}#
:=1 is available one can use Monte Carlo

approach. This approach consists in the replacing of problems (1.2) by empirical
version

min
G∈R

[
1
#

#∑
:=1
(b: − G)2

]
. (1.3)

The problem (1.3) could be easily solved

Ḡ# =
1
#

#∑
:=1

b: . (1.4)

What is known in Statistics as Sample Average, which is the best know estimate of
unknown parameter in the described parametric model, see Theorem 1.1 below.

The same solution (1.4) could be obtained by online procedure

G:+1 = G: − 1
2(: + 1) ∇G 5 (G

: , b: ) = G: − 1
: + 1

(G: − b: ), : = 0, ..., # − 1, (1.5)

where G0 = b1. This procedure corresponds to the Stochastic Gradient Descent
(SGD) for 2-strongly convex in 2-norm stochastic optimization problem (1.2).

The main question which should have occurred after the reading the text above:
By what scheme was 5 (G, b) selected in (1.2)? Maybe there are many ways to choose
5 (G, b). And if so, what is the best way? Below we briefly describe the basics of
maximum likelihood theory, which allows us to obtain the answer for these questions.

Assume that some random variable b depends on unknown vector of parameters
G∗ ∈ R=. Let ?(G, b) is probability (probability density function) that we observe b
if the true vector of parameters is G ∈ R=. In the described above example = = 1 and
probability density function was
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?(G, b) = 1
√

2cf2
exp

(
− (b − G)

2

2f2

)
.

If i.i.d. samples
{
b:

}#
:=1 are available let us introduce likelihood

?

(
G,

{
b:

}#
:=1

)
=

#∏
:=1

?(G, b: ).

Perhaps one of the most productive ideas in Statistics is to estimate true vector of
parameters G∗ as a vector that maximize likelihood ?

(
G,

{
b:

}#
:=1

)
. This problem can

be equivalently reformulated as minimization of (normalized) minus log-likelihood

min
G∈R=

[
− 1
#

log ?
(
G,

{
b:

}#
:=1

)
= − 1

#

=∑
:=1

log ?(G, b: )
]
.

This minimization problem can be considered as empirical (Monte Carlo) version
of Stochastic optimization problem

min
G∈R=
Eb [− log ?(G, b)] . (1.6)

In particular, for considered above Gaussian model this problem looks like

min
G∈R
Eb

[
1

2f2 (b − G)
2 + 1

2
log

(
2cf2

)]
,

which is equivalent to (1.2).
Moreover, the observation that the true value of unknown vector of parameters G∗

is a solution of (1.6) holds true in the general case, i.e.

G∗ ∈ Arg min
G∈R=
Eb [− log ?(G, b)] .

Indeed,1

Eb [− log ?(G, b)] = −
∫

?(G∗, b) log ?(G, b)3b ≥ −
∫

?(G∗, b) log ?(G∗, b)3b

since (Jensen’s inequality for entropy)

 ! (?(G∗, ·), ?(G, ·)) =
∫

?(G∗, b) log
(
?(G∗, b)
?(G, b)

)
3b ≥ 0

and  ! (?(G∗, ·), ?(G, ·)) = 0, when G = G∗.

1 For certainty, here ? (G, b ) is assumed to be a probability density function.
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So, we have just explained that in the general case 5 (G, b) := − log ?(G, b) in (1.2)
and maximum likelihood approach is nothing more than Monte Carlo approach for
Stochastic optimization problem (1.6).

Definitely the main gem of Statistics is Fisher’s theorem about asymptotic prop-
erties of maximum likelihood estimation (MLE)

Ĝ#"!� = arg max
G∈R=

?

(
G,

{
b:

}#
:=1

)
= arg min

G∈R=

[
− log ?

(
G,

{
b:

}#
:=1

)]
. (1.7)

Informal variant of this theorem looks as follows.

Theorem 1.1 Assume that ?(G, b) is sufficiently smooth and the set

{b : ?(G, b) > 0}

does not depend on G.2 Then
1) For all the statistics G̃#

({
b:

}#
:=1

)
with finite second moment Rao–Cramer

inequality holds true3

E{b :}#:=1

[(
G̃#

({
b:

}#
:=1

)
− G∗

) (
G̃#

({
b:

}#
:=1

)
− G∗

)) ]
<

[
#�G∗

]−1
,

where
�G∗ = Eb

[
∇G ?(G∗, b) (∇G ?(G∗, b)))

]
– Fisher information matrix.4

2) MLE Ĝ#
"!�

({
b:

}#
:=1

)
(see (1.7)) has asymptotically5 normal (Gaussian) dis-

tributionN
(
G∗,

[
#�G∗ ,#

]−1
)
and achieves equality in Rao–Cramer inequality. That

is MLE has asymptotically the smallest variance along all the directions and inde-
pendently of what is G∗.

As a consequence of this theorem onemay expect to build asymptotically the smallest
confident set around MLE. The online approach (based on SGD, proper stepsize
policy and Polyak–Juditsky–Ruppert averaging) leads to a similar asymptotic result.

Unfortunately, asymptotic theory does not fully characterize the real state of
affairs when # is not sufficiently large. For example, if we consider the Bernoullie
parametric model (coin flips) with likelihood ?(G, b) = G b (1 − G)1−b and G∗ > 0
small enough, then while # . 1/G∗ with positive probability for MLE Ĝ# = 0 [106].
Hence Eb [− log ?(0, b)] = ∞ is not well defined.

2 That is true for Gaussian noise model b = G + [, but is not true if the noise [ is uniformly
distributed on [0, G ].
3 � < � means that for all I ∈ R= 〈I, (�− �)I 〉 ≥ 0.
4 Note that  ! (? (G∗, ·) , ? (G∗ + ℎ, ·)) ' ℎ2

2 �G∗ .
5 When # →∞.
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Modern offline asymptotic theory of statistics [51] (le Cam’s theory) was further
developed in partially non asymptotic and misspecification6 directions [112]. In this
book we mainly (except the next section) concentrate on non asymptotic online
approaches for (1.6) and more general problems formulations.

At the end of this sectionwe aim to demonstrate the role of regularization in offline
approach as a Bayesian prior. Assume that in the general scheme, which described
by the parametric model ?(G, b), we have an additional information about vector of
parameters G: G is a random vector that was a priory independently generated from
the distribution with density function c(G).

A Bayesian estimator is an estimator that minimize the posterior expected value
of loss function (we consider quadratic loss), which is coincide with a posterior
mean:

Ĝ#� = arg min
G∈R=

∫
R=

‖G − I‖2?
(
I,

{
b:

}#
:=1

)
c(I)3I =

∫
R=

G?

(
G,

{
b:

}#
:=1

)
c(G)3G.

(1.8)
Informal analogue of Theorem 1.1 in this case looks as follows.

Theorem 1.2 Assume that ?(G, b), c(G) are sufficiently smooth and the set

{b : ?(G, b) > 0}

does not depend on G. Then
1) For all the statistics G̃#

({
b:

}#
:=1

)
with finite second moment van Trees in-

equality holds true

E(
G,{b :}#:=1

) [(
G̃#

({
b:

}#
:=1

)
− G

) (
G̃#

({
b:

}#
:=1

)
− G

)) ]
<

[
#�? + �c

]−1
,

where
�? = E(G, b )

[
∇G ?(G, b) (∇G ?(G, b)))

]
– Fisher information matrix and

�c = EG
[
∇c(G) (∇c(G)))

]
.

2) Bayesian estimator Ĝ#
�

({
b:

}#
:=1

)
(see (1.8)) has conditional (with a priori

drawing G = G∗) asymptotically normal distribution N
(
G∗,

[
#�G∗

]−1
)
.

A close result is contained in the Bernstein–von Mises theorem: a posterior distri-
bution has asymptotically normal distribution centered at the MLE with covariance
matrix #�G∗ .

In Bayesian statistics a maximum a posterior estimation (MAP):

6 If the parametric model is wrong, MLE could be interpreted as asymptotically the best way to
estimate the KL-projection of the true vector of parameters on the parametric model.
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Ĝ#"�% = arg max
G∈R=

?

(
G,

{
b:

}#
:=1

)
c(G) = arg min

G∈R=

[
− log ?

(
G,

{
b:

}#
:=1

)
− log c(G)

]
.

plays also an important role. MAP has typically the same asymptotic behavior as
Bayesian estimator.

Let us consider several examples. The first example is Regularized Least Squares.

Ridge Regression and LASSO

Assume that G∗ ∈ R= be an unknown vector of parameters, [ ∼ N
(
0, f2) Gaussian

noise. Assume that we can measure

b: = 〈0: , G∗〉 + [: , : = 1, ..., # ,

where [: i.i.d. (independent identically distributed as [) andmatrix � = [01, ..., 0# ])

is known.7 The goal is to estimate G∗ from b :=
{
b:

}#
:=1. Simple calculations lead

to the following formulas

Ĝ#"!� = arg min
G∈R=

[
1

2f2 ‖�G − b‖
2
2

]
,

Ĝ#� = Ĝ#"�% = arg min
G∈R=

[
1

2f2 ‖�G − b‖
2
2 +

1
2f2

c

‖G − Ḡ‖22
]
,

where a priory G8 , 8 = 1, ..., = assumed to be independent and identically distributed
according to N

(
Ḡ, f2

c

)
(Ridge Regression) and

Ĝ#"�% = arg min
G∈R=

[
1

2f2 ‖�G − b‖
2
2 + _‖G‖1

]
,

where the prior probability density is (LASSO):

c(G) =
=∏
8=1

_

2
exp(−_ |G8 |) =

(
_

2

)=
exp (−_‖G‖1) .

It is obvious that Bayesian estimator and MAP asymptotically (# →∞) coincide
withMLE. Another important observation that Bayesian estimator andMAP asymp-
totically coincide with MLE when f2

c → ∞. Both of these observations take place
in the general case. So Bayesian prior can be interpreted as regularizer in Bayesian
version of maximum likelihood optimization problem.

The second example goes back to Vadim V. Mottl.

Soft-SVM

7 Note that 0: could also be generated randomly. In this case for the results to be preserved it is
enough to require that {0: }=:=1 and

{
[:

}=
:=1 are independent.
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In this example Soft-Support-Vector Machine (Soft-SVM) is derived based on
Bayesian inference with

?

(
G, b: :=

(
H: , 0:

))
∝

{
1, if H: 〈G, 0:〉 ≥ 1
exp

(
−

(
1 − H: 〈G, 0:〉

) )
, else,

where H: ∈ {−1, 1} and a priory G8 , 8 = 1, ..., = assumed to be independent and
identically distributed according toN

(
0, f2

c

)
. Improper probability density function

?
(
G, b:

)
has a natural interpretation: there exists «true» hyperplane (determined by

the vector G∗) such that the data points with H: = 1 lie mostly from the one side of
this hyperplane and the data points with H: = −1 lie mostly from the other side. The
goal is to recognize this hyperplane from the data points having a prior information
about G∗. Simple calculations lead to the following formula

Ĝ#"�% = arg min
G∈R=

[
#∑
:=1

max
{
0, 1 − H: 〈G, 0:〉

}
+ 1

2f2
c

‖G‖22

]
.

1.1.2 Machine Learning motivation

In the statistical approach the loss function is 5 (G, b) := − log ?(G, b). It means
that we required parametric model ?(G, b). In many practical situations ?(G, b) is
not available. However in Regression problems we can introduce least square loss
function 5 (G, b := (H, 0)) = (H − 〈0, G〉)2. And without any knowledge of proba-
bility nature of b we can consider expected loss minimization problem (stochastic
optimization problem):

min
G∈R=
E(H,0)

[
(H − 〈0, G〉)2

]
.

In offline approach this problem has a form:

min
G∈R=
‖. − �G‖22,

where . =
(
H1, ..., H#

)) , � = [01, ..., 0# ]) . Similarly, in Classification problems
we can introduce hinge-loss function 5 (G, b := (H, 0)) = max {0, 1 − H〈G, 0〉} and
corresponding stochastic optimization problems has a form:

min
G∈R=
E(H,0) [max {0, 1 − H〈G, 0〉}] .

In many real world applications we have some prior information about how much
could be (should be) G∗. Typically, this information formalize as a constraint of the
type G ∈ &, where & is often chosen as a ball �=? ('?) in ?-norm (? ≥ 1) centered
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at 0 with radius '? or another convex compact set with simple structure, e.g. unit
simplex (= (1). So the final stochastic optimization problem in general has a form8

min
G∈&⊆R=

� (G) := Eb 5 (G, b). (1.9)

For & = �=2 ('2) (or & = �=1 ('1)) if the constraint is reached it could be replaced
by ‖G‖22-regularization (or ‖G‖1-regularization) with Lagrange multiplayer as a reg-
ularization parameter.

All the considered above concrete problems (Regression and Classification) have
two things in common. The target functions:

1) are convex: for all b and G, I ∈ &

5 (I, b) ≥ 5 (G, b) + 〈∇G 5 (G, b), I − G〉

and "-Lipschitz continuous in G in 2-norm: for all b and G, I ∈ &

| 5 (I, b) − 5 (G, b) | ≤ " ‖I − G‖2.

2) have generalized linear structure:

5 (G, b) := 6 (H(b), 〈G, 0(b)〉) .

The first common thing guarantees the effectiveness of online approach. Both of
them guarantee the effectiveness of offline approach.

Let us start with offline approach. We introduce the empirical loss

�̄ (G) := �̄
(
G,

{
b:

}#
:=1

)
=

1
#

#∑
:=1

5 (G, b: )

and minimizer of the empirical loss

Ĝ# ∈ Argmin
G∈&

�̄

(
G,

{
b:

}#
:=1

)
.

Theorem 1.3 (Learnability for generalized linearmodels)Consider the stochastic
optimization problem (1.9) with 5 (G, b) satisfies 1) and 2) and convex & ⊆ �=2 (').
With probability at least 1 − V:

sup
G∈&

���̄ (G) − � (G)�� = O (
"'

√
log (1/V)

#

)
,

hence with probability at least 1 − V:

8 Here and everywhere below we will denote the solution of this problem as G∗. If the solution is
not unique G∗ means one of the solutions, e.g. such that is the closest to the starting point (initial
guess).



1.1 Stochastic optimization motivation 9

� (G) − � (G∗) ≤ �̄ (G) − �̄ (Ĝ# ) + O
(
"'

√
log (1/V)

#

)
. (1.10)

If additionally for all b and G, I ∈ &

5 (I, b) ≥ 5 (G, b) + 〈∇G 5 (G, b), I − G〉 +
`

2
‖I − G‖22,

i.e. 5 (G, b) is `-strongly convex in G in 2-norm, then with probability at least 1 − V:

� (G) − � (G∗) ≤ 2
(
�̄ (G) − �̄ (Ĝ# )

)
+ O

(
"2 log (1/V)

`#

)
. (1.11)

If the property 2) is no longer met, then (1.11) should be rewritten as follows: with
probability at least 1 − V:

� (G) − � (G∗) ≤

√
2"2

`

(
�̄ (G) − �̄ (Ĝ# )

)
+ Õ

(
"2 log (1/V)

`#

)
. (1.12)

Moreover, all these inequalities are optimal up to a constant factor.
This theorem reduces stochastic optimization problem to the empirical loss (risk)

minimization problem

min
G∈&

1
#

#∑
:=1

5 (G, b: ) (1.13)

with proper choice of # , see the next section.
Now we move to online approach and explain why it is so called. In the core of

online approach lies standard SGD:

G:+1 = c&
(
G: − ℎ:∇G 5 (G: , b: )

)
, (1.14)

where c& is a euclidean projection onto &. Note that

‖G:+1 − G∗‖22 =



c& (

G: − ℎ:∇G 5 (G: , b: ) − G∗
)


2

2
≤

≤ ‖G: − ℎ:∇G 5 (G: , b: ) − G∗‖22 = ‖G
:+1 − G∗‖22−

−2ℎ: 〈∇G 5 (G: , b: ), G: − G∗〉 + ℎ2
: ‖∇G 5 (G

: , b: )‖22 ≤
≤ ‖G:+1 − G∗‖22 − 2ℎ: 〈∇G 5 (G: , b: ), G: − G∗〉 + ℎ2

:"
2.

The last inequality holds true since 5 (G, b) is "-Lipschitz continuous in G in 2-norm
and therefore, ‖∇G 5 (G: , b: )‖2 ≤ " . From the convexity of 5 (G, b) on G:

5 (G: , b: ) − 5 (G∗, b: ) ≤ 〈∇G 5 (G: , b: ), G: − G∗〉 ≤

≤ 1
2ℎ:

(
‖G: − G∗‖22 − ‖G

:+1 − G∗‖22
)
+ ℎ:"

2

2
.
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From the `-strong convexity of 5 (G, b) on G:

5 (G: , b: ) − 5 (G∗, b: ) ≤ 〈∇G 5 (G: , b: ), G: − G∗〉 −
`

2
‖G: − G∗‖22 ≤

≤ 1
2

(
1
ℎ:
− `

)
‖G: − G∗‖22 −

1
2ℎ:
‖G:+1 − G∗‖22 +

ℎ:"
2

2
.

Summing for : = 1, ..., # «convex» inequality with ℎ: ≡ '

"
√
#

and «strongly
convex» inequality with9 ℎ: = 1

`:
we obtain after normalization (multiplication on

#−1):
1
#

#∑
:=1

5 (G: , b: ) ≤ 1
#

#∑
:=1

5 (G∗, b: ) +
" ‖G1 − G∗‖2√

#
, (1.15)

1
#

#∑
:=1

5 (G: , b: ) ≤ 1
#

#∑
:=1

5 (G∗, b: ) +
"2 (1 + log #)

2`#
. (1.16)

Note that in (1.15), (1.16) G∗ ∈ & can be chosen in an arbitrary manner, say such
that minimize RHS, i.e.

1
#

#∑
:=1

5 (G: , b: ) ≤ min
G∈&

1
#

#∑
:=1

5 (G, b: ) + " ‖G
1 − G∗‖2√
#

,

1
#

#∑
:=1

5 (G: , b: ) ≤ min
G∈&

1
#

#∑
:=1

5 (G, b: ) + "
2 (1 + log #)

2`#
.

Since we do not still use the probability nature of b: , it follows that the last two
inequalities characterize SGD (1.14) as online learning procedure in the standard
online sense [19].

If we remember now about i.i.d. nature of
{
b:

}#
:=1, remember that: Eb 5 (G: , b) ≡

� (G), 5 (G, b) is "-Lipschitz continuous in G in 2-norm and � (G) is convex, than
(1.15), (1.16) could be further simplify (online to batch conversion).

Theorem 1.4 Consider stochastic optimization problems (1.9) with 5 (G, b) satisfies
1). Then for G: generated by (1.14) with probability at least 1 − V:

� (Ḡ# ) − � (G∗) = O
(
" ‖G1 − G∗‖2 log (1/V)

√
#

)
, (1.17)

where

Ḡ# =
1
#

#∑
:=1

G: . (1.18)

If additionally 5 (G, b) is `-strongly convex in G in 2-norm, then with probability at
least 1 − V:

9 In this case we have the telescopic property: 1
ℎ:+1
− ` = 1

ℎ:
.
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� (Ḡ# ) − � (G∗) = O
(
"2 log (#/V)

`#

)
. (1.19)

Since ‖G1 − G∗‖2 ≤ 2', it follows that (1.17) and (1.19) correspond to (1.10) and
(1.11), (1.12) in sample complexity – the required number of samples # . However,
online approach does not require to solve an auxiliary empirical problem (1.13)
and was justified under weaker assumptions. More detailed comparison online and
offline approaches is given in the next section.

To conclude this section, remind the main observation: statistical approach for
data science problems is a particular case of the general machine learning (ML)
approach, where the loss function has a specific form determined by log-likelihood
functions. So further we will consider mainly ML approach, which characterize
stochastic optimization problem (1.9).

1.2 Sample Average Approximation vs Stochastic Approximation

In this section we consider stochastic optimization problem (1.9)

min
G∈&⊆R=

� (G) := Eb [ 5 (G, b)] .

We are mainly interested in the sample complexity of offline (also called Sample Av-
erage Approximation) and online (also called Stochastic Approximation) procedures,
which generate G̃#

({
b:

}#
:=1

)
from the solution of the empirical problem (1.13) or

from the procedure of type (1.14). More precisely, we are interested to estimate such
# := # (Y, V) that

P
(
�

(
G̃

(
{b: }#:=1

))
− � (G∗) ≤ Y

)
≥ 1 − V.

Assume that & ⊆ �=? ('?) (? ≥ 1) and for all b and G, H ∈ &:

| 5 (H, b) − 5 (G, b) | ≤ "? ‖H − G‖ ? . (1.20)

Let Ḡ#
X,W

:= Ḡ#
X,W

(
{b: }#

:=1

)
be the (X, W)-solution of the empirical problem (1.13)

min
G∈&

[
�̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]
,

that is, with probability at least 1 − W:

�̄

(
Ḡ#X,W

)
−min
G∈&

�̄ (G) = �̄
(
Ḡ#X,W

)
− �̄

(
Ĝ#

)
≤ X.
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1.2.1 Non-convex case and convex case

One of the first and quite unexpected results about offline approach looks as follows.

Theorem 1.5 Assume that (1.20) holds true. Then for Ḡ#
Y/2,V/2

(
{b: }#

:=1

)
:

# = O
(
"2
?'

2
?

Y2

(
= log

(
"?'?

Y

)
+ log

(
1
V

)))
. (1.21)

This bound is optimal up to a logarithmic factor. Moreover, if we additionally assume
that 5 (G, b) is convex and smooth in G, (1.21) would be still an optimal bound.

Proof Nazary, please add the proof of the Theorem based on [109] (https://
cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/
SPbook.pdf) Sections 5.3.1 and 5.3.2. The proof also contains the following
assumption: For any G, G ′ ∈ - there exists constant fG,G′ > 0 such that the
moment generating function "G,G′ (C) = Eb [exp C. (G, G ′)] of random variable

. (G, G ′) := [ 5 (G, b) − � (G)] − [ 5 (G, b) − � (G)] satisfies "G,G′ (C) ≤ exp
f2
G,G′ C

2

2 ,
for every C ∈ R. Assumptions

• (M1) The expectation function � (G) is well defined and finite valued for all
G ∈ &. �

For Y ≥ 0 denote by

(Y :=
{
G ∈ & : � (G) ≤ min

G∈&
� (G) + Y

}
, (̂Y# :=

{
G ∈ & : �̄ (G) ≤ min

G∈&
�̄ (G) + Y

}
the sets of Y-optimal solutions of the true and the SAA problems, respectively.

In the close setting online approach gives a better result, see also (1.17) for ? = 2.

Theorem 1.6 Assume that (1.20) holds true and 5 (G, b) is convex in G in &. Then
for Ḡ#

(
{b: }#

:=1

)
(see (1.18)) generated by the proper modification of (1.14):10

# = Õ
(
"2
?'

2
?

Y2 ln
(

1
V

))
, if ? ∈ [1, 2],

# = O
(
=1−2/?"

2
2'

2
?

Y2 log
(

1
V

))
, if ? > 2.

10 We will talk about «proper» (Mirror Descent) modification in the next chapter in more details.
Note that for ? ≥ 2 it is proper to use (1.14). The factor =1−2/? appears since the diameter of
�=? ('?) in 2-norm is O

(
=1/2−1/?'?

)
.

https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
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These bounds are optimal up to logarithmic factors in the wide class of all reasonable
ways to generate Ḡ#

(
{b: }#

:=1

)
.11

It seems that online setting (e.g. for ? = 2) is better than offline in the sample
complexity for convex 5 (G, b) in G. In the next section we show that the gap factor
= in the sample complexity bounds between online and offline approaches can be
eliminated by the proper regularization.

1.2.2 Strongly convex case and regularization

If 5 (G, b) is `?-strongly convex in G in ?-norm (? ≥ 1), that is for all b and G, H ∈ &:

5 (H, b) ≥ 5 (G, b) + 〈∇G 5 (G, b), H − G〉 +
`?

2
‖H − G‖2? , (1.22)

then Theorem 1.5 can be improved.

Theorem 1.7 Assume that (1.20) and (1.22) hold true. Then for

Ḡ#
X,V/2

(
{b: }#

:=1

)
, X = Y2`?

8" 2
?
and Ḡ#

(
{b: }#

:=1

)
– generated by the proper (restarted12 Mirror Descent) modification of (1.14):

# = Õ
©­­«
"2
?

`?Y
log

©­­«
log

(
"2
?/(`?Y)

)
V

ª®®¬
ª®®¬ , ? ∈ [1, 2] . (1.23)

This bound is optimal to up a logarithmic factor in the wide class of all reasonable
ways to generate Ḡ#

(
{b: }#

:=1

)
. Moreover, this bound corresponds (1.12) and (1.19)

when ? = 2 and the bound on X derived from the condition that the first term in RHS
of (1.12) equals Y/2. The bound on X also cannot be improved up to a numerical
constant.

Proof For simplicity, we prove (1.23) only in terms of expectation, rather that high
probability bounds.

Nazary, please add the proof of the Theorem based on [107] (https://home.
ttic.edu/~nati/Publications/nonlinearTR.pdf) Section 4 and https:
//www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf p. 508.
Note that the proof of the theorem it’s sufficient to describe in terms of expectation,
rather that high probability bounds. �

11 We discuss it also in more details in the next chapter. Also in the next chapter we mention that in
the non-convex case online approach gives much worse results # ∝ Y−(=+1) , which is also optimal
bound for non-convex class of 5 (G, b ) . Note that the bound on # ∝ =1−2/?" 2

2 '
2
? Y
−2 in the

regime ? > 2 can be refined in the dimension-free case # . = : # ∝ " ?
? '

?
? Y
−? [82].

12 See the proof of Theorem 1.10 for ? = 2 and the next chapter in the general case.

https://home.ttic.edu/~nati/Publications/nonlinearTR.pdf
https://home.ttic.edu/~nati/Publications/nonlinearTR.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
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We emphasis that in Theorem 1.5 X ' Y, but in Theorem 1.7 X ' Y2`?
" 2
?

and the last
bound cannot be weakened!

Based on Theorem 1.7 one can derive the result that improve Theorem 1.5 in the
convex case (`? ' 0). Assume for the clarity that ? = 2.

Lemma 1.1 (Tiknonov’s regularization)Consider regularized stochastic optimiza-
tion problem

min
G∈&

[
�` (G) := Eb 5 (G, b) +

`

2
‖G‖22

]
(1.24)

with ` = Y/'2
2. Assume that

�` (G̃) −min
G∈&

�` (G) ≤
Y

2
.

Then
� (G̃) −min

G∈&
� (G) = � (G̃) − � (G∗) ≤ Y.

Proof Indeed,

� (G̃) − � (G∗) ≤ �` (G̃) −
(
�` (G∗) −

`

2
‖G∗‖22

)
≤

≤ �` (G̃) −min
G∈&

�` (G) +
`

2
'2

2 ≤
Y

2
+ Y

2
= Y.

�

The combination of Theorem 1.7 and Lemma 1.1 allow to improve the result of
Theorem 1.5 in the convex case.

Theorem 1.8 (the role of the regularization) Assume that (1.20) holds true and
5 (G, b) is convex in G in &. Then for Ḡ#

X,V/2

(
{b: }#

:=1

)
to be a

(
X = Y3

8" 2
2 '

2
2
,
V

2

)
-

solution of the empirical version of (1.24):

min
G∈&

[
1
#

#∑
:=1

5 (G, b: ) + Y

2'2
2
‖G‖22

]
, (1.25)

we have:

# = Õ
(
"2

2'
2
2

Y2 log
(

log ("2'2/Y))
V

))
.

Moreover, in the general case ? ∈ [1, 2] the described above technique (with proper
regularization) allows to obtain the bounds on # that correspond to the bounds in
Theorem 1.6 up to logarithmic factors.

To conclude, from the Theorem 1.8 we derive that in the sample complexity bounds
online approach and offline approach (with proper regularization in the convex case)
are equivalent up to a logarithmic factors.
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1.2.3 r-growth condition

We say that � (G) := Eb 5 (G, b) satisfies A-growth condition (A ≥ 1) on &2Y if for all

G ∈ &2Y := {G ∈ & : � (G) ≤ � (G∗) + 2Y} :

� (G) − � (G∗) ≥ `?,A ‖G − G∗‖A? , (1.26)

where G∗ is a projection of G (in ?-norm) on the set of the solutions of (1.9).
We relax the condition (1.20) as follows: for all G, H ∈ & sub-Gaussian variance

of 5 (H, b) − 5 (G, b) − (� (H) − � (G)) bounded from above by _2‖H − G‖2? , i.e. for all
C ∈ R:

Eb [exp (C · ( 5 (H, b) − 5 (G, b) − (� (H) − � (G))))] ≤ exp
(
C2_2‖H − G‖2?/2

)
.

(1.27)
Note that if (1.20) holds true, then _2 ≤ 2"2.

Theorem 1.9 Assume that 5 (G, b) is convex in G in Q and (1.26), (1.27) hold true.
Then for Ḡ#

Y/2,V/2

(
{b: }#

:=1

)
:

# = O
(

_2
?

`
2/A
?,AY

2(A−1)/A

(
= log

(
"̄?'?,Y

Y

)
+ log

(
1
V

)))
, (1.28)

where "̄? = Eb
[
"? (b)

]
and for all b and G, H ∈ &:

| 5 (H, b) − 5 (G, b) | ≤ "? (b)‖H − G‖ ?; (1.29)

'?,Y is the diameter of &2Y in ?-norm. In particular, for A = 1 '?,Y ≤ 4Y/`?,1.
Thus in the case of «sharp minimum» (A = 1) # does not depend on Y at all.

The bound (1.31) is optimal up to a logarithmic factor.

Proof Nazary, please add the proof of the Theorem based on [109] (https://
cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/
SPbook.pdf) Section 5.3.2. �

Optimality of (1.31)

Consider a simple example for ? = 2, & = �=2 (1):

5 (G, b) = ‖G‖A2 − A 〈b, G〉,

b ∈ N (0, f2�=), where �= – identity = × = matrix. Hence � (G) = ‖G‖A2 , G∗ = 0,
`2,A = 1 in (1.26) and

5 (H, b) − 5 (G, b) − (� (H) − � (G)) = A 〈b, H − G〉

has N
(
0, A2f2‖H − G‖22

)
-distribution. Therefore _2 = A2f2 in (1.27).

https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
https://cpn-us-w2.wpmucdn.com/sites.gatech.edu/dist/4/1470/files/2021/03/SPbook.pdf
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Note also that
�̄ (G) = ‖G‖A2 − A 〈b̄# , G〉,

where b̄# ∈ N (0, f2#−1�=). For this problem we can explicitly find the minimizer
of the empirical loss

Ĝ# ∈ argmin
G∈&

�̄ (G) = b̄#

‖b̄# ‖12
,

where

1 =

{
1, if ‖b̄# ‖2 > 1
A−2
A−1 , else.

Since � (G) = ‖G‖A2 , it follows that

� (Ĝ# ) − � (G∗) ≤ Y

is equivalent to
‖b̄# ‖

A
A−1
2 ≤ Y

for sufficiently small Y. Combining this with b̄# ∈ N (0, f2#−1�=) we can get that
for

P
(
�

(
Ĝ#

)
− � (G∗) ≤ Y

)
= P b̄#∼N(0,f2# −1�=)

(

b̄# 

 A
A−1
2 ≤ Y

)
≥ 0.7

it is required that

# >
=f2

Y2(A−1)/A . (1.30)

The lower bound (1.30) corresponds to (1.31) when `2,A = 1 and A is finite. Note
that when A = 2 and `2,2 = `2 ≠ 1 (1.30) can be clarified as follows

# ≥ =f
2

`2Y
.

The last lower bound seems to be strange enough (=-factor in the lower bound looks
wrong) due to the upper bound from (1.23). But there is no contradiction here even
with the strengthened upper bound from (1.23)

# = Õ
(
"̃2

2
`2Y

)
,

since "̃2
2 := Eb

[
"2 (b)2

]
= =A2f2, where "2 (b) was defined in (1.29).13

13 In (1.23) it is assumed that there exists such "2 that "2 ( b ) ≤ "2. Here we relax the notion of
"2 to "̃2.
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Theorem 1.10 Assume that 5 (G, b) is convex in G in Q, � (G) := Eb 5 (G, b) satisfies
A-growth condition in & and (1.20) holds true. Then for Ḡ#

(
{b: }#

:=1

)
generated by

the proper (restarted Mirror Descent) modification of (1.14):

# = Õ
(

"2
?

`
2/A
?,AY

2(A−1)/A

)
, ? ∈ [1, 2] . (1.31)

This bound is optimal up to logarithmic factor in the wide class of all reasonable
ways to generate Ḡ#

(
{b: }#

:=1

)
.

Proof For clarity we consider only the euclidean case ? = 2. Since � (G) :=
Eb 5 (G, b) satisfies A-growth condition in &, it follows from (1.17) that with proba-
bility at least 1 − V/^

`2,A ‖Ḡ# − G∗‖A2 ≤ � (Ḡ
# ) − � (G∗) = O

(
"2‖G1 − G∗‖2 log (^/V)

√
#

)
,

where Ḡ# is calculated according to (1.18) based on (1.14). If we choose

# = O ©­«
"2

2 log2 (^/V)
`2

2,A ‖G1 − G∗‖2(A−1)
2

ª®¬ ,
then

‖Ḡ# − G∗‖A2 =
1
2
‖G1 − G∗‖A2 .

The idea of the restart technique is to put

G1 := Ḡ#

and to restart algorithm (1.14). By denoting '2,; the distance between the starting
point and the solution G∗ at ;-th restart, we could guarantee that 'A2,;+1 = 'A2,12−; .
Similarly, #; is a number of iteration at ;-th restart. Since we would like to solve
the problem with probability at least 1 − V and with accuracy Y, the number of the
restarts ^ is determined from

"2'2,^+1 log (^/V)
√
#^+1

' `2,A'
A
2,^+1 = `2,A'

A
2,12−(^+1) ' Y.

Therefore the total number of samples (iterations) is
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;=1
O ©­«

"2
2 log2 (^/V)
`2

2,A'
2(A−1)
2,;

ª®¬ =
"2

2 log2 (^/V)
`2

2,A'
2(A−1)
2,1

∑̂
;=1
O

(
2

2(A−1)
A

;
)
=

= O ©­«
"2

2 log2 (^/V)
`2

2,A'
2(A−1)
2,1

2
2(A−1)
A
(^+1)ª®¬ = O ©­«

"2
2 log2 (^/V)
`2

2,A'
2(A−1)
2,1

(
`2,A'

A
2,1

Y

) 2(A−1)
A ª®¬ =

= O ©­«
"2

2 log2 (^/V)
`

2/A
2,A Y

2(A−1)/A
ª®¬ .
�

1.3 Concluding remarks

For a better structure of this chapter we have collected various comments that clarify
the results given above (but have not a primal interest) in this (separate) section at the
end of the chapter. In more details most of this comments will be further developed
in the next chapters.

1.3.1 Weakening of uniform Lipschitz condition in online approach

An important remark concerns online approach is that we can significantly relax
uniform Lipschitz continuity property (1.20), assuming that "? (b) in (1.29) has
a finite second moment Eb

[
"? (b)2

]
< ∞. In this case, all the bound remain the

same up to a logarithmic factor, see [78, 44] for ? = 2, and [80, 54] for ? ≥ 1, but
for the convergence in expectation. If we have only Eb

[
"? (b)1+U

]
< ∞, where

U > 0 then in the dimension-free case (# . =) the expected # ∼ Y−max{2, ?} will
get worse # ∼ Y−(1+U?)/U? , where U? = min

{
1, U, (? − 1)−1} [82, 123]. Similarly,

in the strongly convex case (A-growth condition) and in the case # & =. Note that
high-probability bound analysis has been developed in this generality mainly for
euclidean proximal setup with Eb

[
"2 (b)2

]
< ∞.

For offline approach some particular results in this direction are also known, see
the references in [109].

1.3.2 Weakening of the convexity condition

The principal difference between online and offline approach is that for optimal
results in offline approach the convexity of 5 (G, b) in G for all b is typically required. It
was shown in [105] that for any regularizer there is a stochastic optimization problem
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with convex � (G) such that regularized empirical loss minimization approach fails
to learn. But for online approach the convexity of � (G) is enough for the same rates
of convergences in terms of convergence in expectation [80, 54].

In Section 1.2.1 we have observed that offline approach in non-convex case
required # ∝ =Y−2 samples despite the fact that online approach in non-convex case
required # ∝ Y−(=+1) samples. Moreover, under different additional assumptions
[106, 97, 8] (finite VC-dimension e.t.c.) the dependence of = in offline approach
# ∝ =Y−2 can be relaxed.14 So it seems that offline approach is much better than
online. In terms of the sample complexity (number of different samples of b) it
really is. But at the end in offline approach we should solve empirical loss (risk)
minimization problem that would be non-convex. To solve this problem we required
# ∝ =Y−(=+1) stochastic gradient oracle calls15 that corresponds (up to a factor =) to
online approach.

Some results that werementioned in the previous sections can be generalized if we
replace (strong) convexity assumption by quasi-convexity or some growth condition
[79] or Polyak–Lojasiewicz(–Lezansky) condition [57, 11]. For example, online and
offline approaches under Polyak–Lojasiewicz condition are considered in [3] and
[70].

1.3.3 How to make online approach adaptive?

To answer for this question we goes back to SGD (1.14)

G:+1 = c&
(
G: − ℎ:∇G 5 (G: , b: )

)
,

with
ℎ: ≡

'

"
√
#
.

The problem is that the stepsize policy requires the knowledge of ' and " param-
eters. And this stepsize policy in not adaptive in # . We should know the desired #
in advance. The last problem was solved in [80] by changing

ℎ: ≡
'

"
√
:
.

This stepsize policy leads to the same convergence rate up to a logarithmic factor.
This factor can be eliminated by the Nesterov’s dual extrapolations scheme [85].
The problem of unknown "-parameter was further solved in [23, 24], where it was
proved that for

14 Factor = is replaced by the «efficient» dimension, which could be much smaller.
15 This bound can be improved a little bit by using the fact that all the terms in the sum (the empirical
loss) have the same distribution. But this improvement will have a minor effect on the total oracle
complexity.
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ℎ: ≡
'√∑:

9=1 ‖∇G 5 (G 9 , b 9 )‖22
the rate convergence does not change up to a numerical constant factor. SGD with
this stepsize policy is known as AdaGrad. The works [80, 23] largely determined the
development of modern stochastic optimization. For example, one of the most cited
stochastic optimization algorithm after SGD is Adam [58, 98], which is based on
AdaGrad. This algorithm and its variations are one of the main tools to train Deep
Neural Networks [67, 118].

Although in practice different adaptive algorithms show themselves well in the
theory typically they converge in the worst case not better than non-adaptive ana-
logues [9, 33].

1.3.4 Overparametrization

In practice for the strongly convex problems (� (G) is `-strongly convex in 2-norm):

min
G∈R=

� (G) := Eb 5 (G, b)

with uniformly Lipschitz continuous gradient: for all G, H ∈ R=:16

‖∇G 5 (H, b) − ∇G 5 (G, b)‖2 ≤ !‖H − G‖2 (1.32)

it was observed that simple stochastic gradient method (SGD):

G:+1 = G: − ℎ∇G 5 (G: , b: )

converges with linear rate in the vicinity of the solution G∗ [76]. That was also
confirmed in the theory

E{b :}#:=1

[
|G#+1 − G∗‖22

]
≤ ‖G1 − G∗‖22 (1 − ℎ`)

# + 2ℎf2
∗

`
, (1.33)

where the stepsize ℎ ≤ 1/(2!) and

f2
∗ = Eb

[
‖∇G 5 (G∗, b) − ∇� (G∗)‖22

]
= Eb

[
‖∇G 5 (G∗, b)‖22

]
,

since ∇� (G∗) = 0.
Indeed, from Section 1.1.2:

‖G:+1 − G∗‖22 ≤ ‖G
: − G∗‖22 − 2ℎ〈∇G 5 (G: , b: ), G: − G∗〉 + ℎ2‖∇G 5 (G: , b: )‖22.

16 As we will see in the next chapters it sufficiently to consider Lipschitz-type conditions only
in some balls centered at starting point and radius determined (up to a logarithmic factor) by the
distance between starting point and the closest to this point solution.
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Taking the conditional expectation on b: under fixed G: and using that

Eb
[
‖∇G 5 (G, b)‖22

]
≤ 2Eb

[
‖∇G 5 (G, b) − ∇G 5 (G∗, b)‖22

]
+ 2Eb

[
‖∇G 5 (G∗, b)‖22

]
≤

≤ 4!Eb [ 5 (G, b) − 5 (G∗, b) − 〈∇G 5 (G∗, b), G − G∗〉] + 2f2
∗ =

= 4! (� (G) − � (G∗)) + 2f2
∗ ,

we obtain17

Eb :
[
‖G:+1 − G∗‖22 |G

:
]
≤ ‖G: − G∗‖22 − 2ℎ〈∇� (G: ), G: − G∗〉+

+ℎ2
(
4! (� (G) − � (G∗)) + 2f2

∗

)
≤ ‖G: − G∗‖22−

−2ℎ
(
� (G: ) − � (G∗) +

`

2
‖G: − G∗‖22

)
+

+4!ℎ2 (� (G) − � (G∗)) + 2ℎ2f2
∗ .

Rearranging the terms in RHS and taking mathematical expectation on G: we come
to the following:

E{b 9}:9=1

[
‖G:+1 − G∗‖22

]
≤ (1 − ℎ`) E{b 9}:−1

9=1

[
‖G: − G∗‖22

]
+

+2ℎ (1 − 2!ℎ)
(
E{b 9}:−1

9=1

[
� (G: )

]
− � (G∗)

)
+ 2ℎ2f2

∗ ≤

≤ (1 − ℎ`) E{b 9}:−1
9=1

[
‖G: − G∗‖22

]
+ 2ℎ2f2

∗ ,

if ℎ ≤ 1/(2!). So we come to (1.33) by induction.
The overparametrization effect appears if f2

∗ is small, that is ∇G 5 (G∗, b) ' 0 for
almost all b.

For example if we consider offline approach

min
G∈R=

�̄ (G) :=
1
#

#∑
:=1

5 (G, b: )

and reformulate this problems as

min
G∈R=

�̄ (G) := E: 5 (G, b: ), (1.34)

where P (: = ;) = 1/# for ; = 1, ..., # . In this case ! = max;=1,...,# !; , where !; is
Lipschitz gradient constant of 5 (G, b;) in G. The variance is

17 The last inequality uses the weaker variant of `-strong convexity assumption of � (G): for all
G ∈ R=

� (G∗) ≥ � (G) + 〈∇� (G) , G∗ − G 〉 +
`

2
‖G∗ − G ‖22.
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f2
∗ =

1
#

#∑
:=1
‖∇G 5 (G∗, b: )‖22.

If ∇G 5 (G∗, b: ) ' 0, which could be possible due to the same stochastic nature of all
the terms 5 (G, b: ), then for all : = 1, ..., # we have overparametrization and effect
of linear convergence of SGD to a small vicinity of the solution.

Although overparameterized problems have attracted considerable attention in
recent years, the results available here are still far away from the theory we have
described in the previous sections. For example, in offline approach with f2

∗ ' 0 we
have only [70]:

E{b :}#:=1

[
|Ĝ# − G∗‖22

]
∝ 1
`2#2 ,

rather than we have in online approach with proper stepsize policy ℎ = 1/(2!):

E{b :}#:=1

[
|G#+1 − G∗‖22

]
∝

(
1 − `

2!

)#
.

Little is known about overparameterization in a non-euclidean proximal setup.

1.3.5 Acceleration and batching for smooth convex optimization
problems in online approach

Consider smooth convex optimization problem

min
G∈&

� (G), (1.35)

where for all G, H ∈ &:

‖∇� (G) − ∇� (H)‖2 ≤ !‖H − G‖2. (1.36)

Accelerated method [86, 66, 73] allows to solve smooth convex optimization prob-
lems with the rate

� (G# ) − � (G∗) .
!'2

#2 ,

where '2 = ‖G1−G∗‖22 and G∗ is the closest solution (in 2-norm) to G1 if the set of the
solutions contains more than one point. Below we describe how to build accelerated
batch-parallelized algorithm that significantly outperform SGD in the number of
subsequent iterations.

First of all, following [21, 30, 28] we introduce the notion of (X1, X2, !)-oracle.
We say that for the problem (1.35) we have an access to (X1, X2, !)-oracle at a point
G if we can evaluate a vector ∇X� (G) such that, for all G, H ∈ &,

−X1 ≤ � (H) − � (G) − 〈∇X� (G), H − G〉 ≤
!

2
‖H − G‖22 + X2,
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where EX1 = 0 (X1 is independently taken at each oracle call), EX2 ≤ X. Note
that the left inequality corresponds to the definition of X1-(sub)gradient [92] and
reduces to the convexity property in the case X1 = 0. In this case the LHS holds with
∇X� (G) = ∇� (G). The right inequality in the case when X2 = 0 is a consequence18
of (1.36). Let us consider an algorithm A(!, X1, X2) that converges with the rate19

E� (G# ) − � (G∗) = O
(
!'2

#U
+ #VX

)
. (1.37)

The batching technique, applied to the problem (1.35) with !-Lipschitz gradient
(in 2-norm), is based on the use of the mini-batch stochastic approximation of the
gradient

∇X� (G) =
1
�

�∑
9=1
∇G 5 (G, b 9 )

in A(!, X1, X2), where {b 9 }�9=1 are sampled independently and � is an appropriate
batch size. The choice of � is based on the following relations

〈∇X� (G) − ∇� (G), H − G〉 ≤
1

2!
‖∇X� (G) − ∇� (G)‖22 +

!

2
‖H − G‖22,

E{b 9 }�
9=1

[
‖∇X� (G) − ∇� (G)‖22

]
≤ f

2

�
,

where f2 is the variance of unbiased stochastic gradient ∇G 5 (G, b), which is avail-
able. Hence, if

X ≤ 1
2!

max
G∈&
E{b 9 }�

9=1

[
‖∇X� (G) − ∇� (G)‖22

]
,

i.e. X = f2/(2!�), we have thatA(2!, X1, X2) converges with the rate given in (1.37).
From (1.37) we see that to obtain

E� (G# ) − � (G∗) ≤ Y

it suffices to take

# = O
((
!'2

Y

)1/U)
and � = O

(
f2#V

!Y

)
.

18 Note, that the right inequality in the case when X2 = 0 is not equivalent to (1.36), but is typically
sufficient to obtain optimal (up to constant factors) bounds on the rate of convergence of different
methods [121].
19 # is a number of iterations which up to a constant factor is equal to the number of (X1, X2, !)-
oracle calls. We can consider more specific rates of convergence for problems with additional
structure and develop batching technique in a similar way.
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In particular, for all known Accelerated gradient methods we have that U = 2, V = 1
[21, 30]. In this case, we obtain the complexity bounds for batched Accelerated
gradient methods (assume that f2 is such that ) ≥ # , otherwise we put ) := #):

# = O
(√
!'2/Y

)
, � = O

(
f2'/

(√
!Y3/2

))
, ) = # · � = O

(
f2'2/Y2) .

It is obvious that we can calculate batch in a parallel manner. This reduces
the number of subsequent iterations from # ∝ Y−2 for standard SGD with small
stepsize (see Section 1.1.2) and # ∝ Y−1 for SGD with special stepsize policy
ℎ ' min {1/!, 1/(`#)} [119] (see Section 1.3.4) to the optimal rate # ∝ Y−1/2

[82, 128]. Recently [126] this result was generalized to overparametrized problems,
see Section 1.3.4.

The described above batching technique is very important and universal tech-
nique, which allows to build (optimal) stochastic algorithms based on the (optimal)
deterministic algorithms and their analysis of convergence with inexact oracle. We
mention here only the two most recent examples. In [39] batching technique was
successfully applied in gradient-free optimization. In [74] batching technique was
successfully applied for distributed strongly convex-concave saddle-point problems
with different constants of strong convexity and strong concavity.

Note that the described technique can be further generalized to strongly convex
problems (problems with A-growth condition) and non-euclidean proximal setup
[31, 43].

1.3.6 Sum-type problems and offline approach

At the very end offline approach we should solve the empirical loss (risk) minimiza-
tion problem

min
G∈&

[
�̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]
. (1.38)

For clarity, we assume that 5 (G, b) is `-strongly convex and "-Lipscitz continuous
in G in 2-norm, see (1.22), (1.20). According to Theorem 1.7 # = Õ

(
"2/(`Y)

)
and we should solve (1.38) with the accuracy X ' Y2`/"2. Unfortunately, without
additional assumptions on the smoothness of 5 (G, b) the complexity of this problem
(the number of ∇G 5 (G, b: ) calculations) is Õ

(
"2/(`X)

)
[82]. That is much worse

than # . If we additionally assume that 5 (G, b) has !-Lipscitz continuous gradient in
G in 2-norm, see (1.32), then we can apply batch-parallelization and acceleration in
the number of subsequent iterations, see Section 1.3.5. But this trick does not solve
the problem of oracle complexity. We still required in Õ

(
"2/(`X)

)
calculations of

∇G 5 (G, b: ). It seems that we come to some contradiction. Offline approach seems to
be worse everytime than online one in terms of the oracle complexity. Fortunately,
this is not the case. There exist randomized Variance Reduced (VR) algorithms (see,
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e.g. [127, 66, 73]) that allow to solve (1.38) (with accuracy X) with the complexity:20

Õ
((
# +

√
#
!

`

)
log

(
Δ 5

X

))
. (1.39)

Under the natural assumption !/` . # ' "2/(`Y), i.e.21 ! . "2/Y this complex-
ity coincide with # up to a logarithmic factor.

Moreover, for many concrete problems (e.g. Soft-SVM, see Section 1.1.1) we can
efficiently reduce originally non-smooth problems to smooth one [5] and apply the
VR algorithms.

The modern theory of VR methods is well developed, see e.g. [66]. For example,
it include non-euclidean proximal setup.

In the core of VR methods lies a very simple idea, which goes back to Monte
Carlo theory. Instead of stochastic gradient ∇G 5 (G, b) it is proposed to consider the
reduced one

∇̃G 5 (G, b) = ∇G 5 (G, b) − ∇G 5 (Ĝ# , b),

where Ĝ# is the solution of (1.38). Note that with stochastic gradient we have
overparametization effect ∇̃G 5 (Ĝ# , b) = 0 (for all b) and therefore we can expect
a linear convergence. Unfortunately in this form VR trick is not practical, since
it is required to know Ĝ# . The proper correction of the trick consist in replacing
∇G 5 (G: , bC (:) ) (where C (:) is an index that equally likely and independently selected
among 1, ..., # at :-th iteration) with

∇̃G 5 (G: , bC (:) ) := ∇G 5 (G: , bC (:) ) − ∇G 5 (Ḡ: , bC (:) ) + ∇�̄ (Ḡ: ),

where Ḡ: periodically updated as Ḡ: := G: according to the different policies [66, 64].
With this stochastic gradient we may also expect overparametrization along with the
convergence G: → Ĝ# . Indeed,

Eb C (:)
[
‖∇̃G 5 (G: , bC (:) )‖22

]
. !

(
�̄ (Ḡ: ) − �̄ (Ĝ# )

)
→ 0 (1.40)

along with Ḡ: → Ĝ# .

1.3.7 Composite optimization

From the previous sections we have known that regularizers in the empirical loss
(risk) minimization approach play an important role. Sometimes this regularizers
spoil the properties of the problem, e.g. ‖G‖1-regularizer in LASSO makes the

20 This bound is optimal [127, 66], i.e. there are no algorithms that work only with ∇G 5 (G, b : )
and has a better complexity.
21 One can always achieve this condition by smoothing a non-smooth problem. In this case ! '
" 2/Y [84, 127].
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problem non-smooth, see Section 1.1.1. We can solve this issue by using composite
optimization approach. Let us remind that standard SGD (1.14) has a following
structure:

G:+1 = c&
(
G: − ℎ:∇G 5 (G: , b: )

)
=

= arg min
G∈&

{
〈∇G 5 (G: , b: ), G − G:〉 +

1
2ℎ
‖G − G: ‖22

}
.

If the stochastic optimization problem is regularized (i.e. has composite term):

min
G∈&

[
Eb [ 5 (G, b)] + A (G)

]
.

we could correct the described procedure as follows [131]:

G:+1 = arg min
G∈&

{
〈∇G 5 (G: , b: ), G − G:〉 +

1
2ℎ
‖G − G: ‖22 + A (G)

}
.

The iteration complexity does not change. But the auxiliary (projection) problem
becomes more difficult. Fortunately, for some concrete examples (e.g. LASSO) the
auxiliary problem almost retains its complexity. In this case composite term is called
«proximal-friendly». The same holds true for Accelerated batched algorithms [22]
and VR algorithms [66].

In the case of non proximal-friendly composite terms it happens that we can split
the oracle complexities for two terms [66, 61], see also Section 1.3.9. This turned
out to be an extremely useful option in distributed optimization [66, 45, 103, 61].

Composite optimization was firstly developed in deterministic setup [10, 25, 83].
Moreover, in [81, 120] it was considered more general «model setup» with � (G) :=
min {�1 (G), ..., �< (G)} and composite optimization as particular cases. Under some
assumptions this model setup can be further developed on stochastic optimization
problems [30].

1.3.8 Overfitting and early stopping for offline approach

Let us return to the empirical problem (1.38):

min
G∈&

[
�̄ (G) :=

1
#

#∑
:=1

5 (G, b: )
]
.

In Section 1.2.2we describe regularization trick, that allows to align sample complex-
ities for offline and online approaches for convex, but non-strongly convex problems.
Another (a little artificial) way to align sample complexities in both of the approaches
is to change the way of obtaining Ḡ#

X,V/2

(
{b: }#

:=1

)
, which is based on sufficiently

accurate solution of (1.38) (or its regularized version). The idea is trivial: to «solve»
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(1.38) by using SGD with samples {b: }#
:=1 without repeating. So the first # itera-

tion of this algorithm is completely coincide with standard SGD iterations (1.14). An
interesting phenomena is that further iterations of SGD based on the same sample
set {b: }#

:=1 not only improve the quality of the solution (this quality is measured
in terms of initial stochastic optimization problem!), but can also provably lead to a
decrease in quality (overfitting).

This idea was further developed in seminal work [47], where it was shown that for
the standard SGD (with output Ḡ) after ) iterations, see (1.18)) applied to smooth
convex (but not strongly convex!) empirical problem (without any regularization!)
in the expectation form (1.34):

� (Ḡ) ) − � (G∗) ∝ #−1/2 if ) ∝ # .

This phenomenon sometimes called «early stopping» [40]. The work [47] initiated a
lot of activity around overfitting properties of SGDapplied to the empirical problems,
see the survey in [70]. In particular, for smooth convex (but not strongly convex!)
problems in [72] it was shown that

� (Ḡ) ) − � (G∗) ∝ #−[/(1+[) if ) ∝ #2/(1+[) , [ ∈ (0, 1].

It means that too many iteration lead to overfitting. For smooth strongly convex
problems it was shown [70] that

� (Ḡ) ) − � (G∗) ∝ (`#)−1 if ) ∝ (#/`)2,

which corresponds to (1.12). So in the strongly convex casewe do not expect the early
stopping effect (this effect was described above as an alternative to regularization)
and overfitting effect.

More stronger overfitting effect can be observed if one replace SGDwith Gradient
Descent (GD) [6, 105]:

G:+1 = G: − ℎ∇�̄ (G: ).

In particular, for smooth convex empirical loss minimization problems the better
rate of convergence, than

� (Ḡ) ) − � (G∗) ∝ #−5/12

is impossible (without additional assumptions) independently of what is ) and ℎ
[105]. Remind that at the same assumptions for SGDwe have � (Ḡ) )−� (G∗) ∝ #−1/2

if ) ∝ # . This rate is better, since 1/2 = 6/12 > 5/12.
Despite all this in practice one can oftenmet that (1.38) with proper regularization

is solved by fast deterministic algorithms, say, LBFGS or even by using high-order
schemes, see Section 1.3.10. It works due to proper regularization!

1.3.9 Distributed optimization

In Section 1.3.5 we met with batch-parallelization consist in possibility to parallelize
the batch calculation:
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1
�

�∑
9=1
∇G 5 (G, b 9 ).

If we assume that we have the number of nodes that is a division of �, then we
can fully parallelize on these nodes batch calculation. But at each subsequent itera-
tion of considered accelerated algorithm (after the batch calculation) all the nodes
are required to share theirs sub-batches. In distributed optimization this is called
– communication. So one iteration assume one communication. The natural ques-
tion appears: does such number of communications is also optimal like the number
of subsequent iterations? In general the answer is affirmative [125]. It means that
without additional assumptions batched accelerated methods are the best ones in
Federated Learning (FL) setup from the theoretical point of view [55]. This con-
clusion looks somewhat discouraging since from the practice it is well known that
local steps (the main ingredient of FL) works good. To explain this contradiction
let us consider unconstrained convex quadratic stochastic optimization problem. An
important property of accelerated dynamics is its linearity (on average) in terms of
G. This linearity generates superposition principle: instead of communication at each
iteration we can to run independently at each node accelerated algorithm with re-
duced (to the number of nodes) batch-size and we communicate only one time at the
very end (at the last iteration) by calculating an average of the outputs at all the nodes
(this procedure is called «one shoot»). The total output of this approach will have the
same quality as the approach we started with [124] (with many communications).

It means that for quadratic stochastic optimization problems (and close to
quadratic ones) local steps give tangible benefits. Since quadratic problems are
naturally appears as a local approximation of real problem in the vicinity of the
solution or at each iteration as an inner problem (for example, iteration of Newton
method [16]) we can still exploit local steps. One such example we consider at the
very end of this section.

It is interesting to note, that rather than for deterministic distributed convex opti-
mization problems for stochastic convex optimization problems there is a significant
difference between the class of quadratic problems and convex ones [82, 125].

More naturally distributed setup appears when dealing with offline approach. For
example, if we have < nodes (such that # = < · B for some natural B) we can rewrite
the empirical loss minimization problem (1.38) as follows:

min
G∈&

�̄ (G) :=
1
<

<∑
:=1

5̄: (G) :=
1
<

<∑
:=1

1
B

B∑
9=1

5 (G, b:, 9 )
 .

If we apply standard accelerated method [86] assuming that �̄ (G) is `-strongly
convex in 2-norm and has !-Lipscitz gradient, then the number of iterations (com-
munications) will be Õ

(√
!/`

)
(here and below in this section we skip all the

logarithmic for for a better visibility) and the number of incremental gradient oracle
calls at each node will be Õ

(
B
√
!/`

)
(the number of ∇G 5 (G, b:, 9 ) calculation).
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Section 1.3.6 gives a hope that this bound can be further improved due to the
sum-type structure of the functions stored at each node. Indeed, there exist a dis-
tributed accelerated VR scheme [69] with Õ

(√
!/`

)
communication complexity

and Õ
(
B +

√
B!/`

)
oracle complexity in each node, where ! in the last formula is

a maximal Lipschitz gradient constant in G in 2-norm of functions 5 (G, b:, 9 ). This
bound is optimal [49] if we do not use that

{
b:, 9

}
are i.i.d. or do not use that among

5̄: (G) there exists some kind of similarity. In more details, if Lipschitz gradient
constants of �̄ (G) − 5̄: (G) are bounded in 2-norm by ; (; � !) than we may expect
better communication complexity Õ

(√
;/`

)
, which corresponds to the lower bound

under similarity [7].
To use similarity we describe Accelerated gradient sliding for unconstrained

composite optimization problem:

min
G∈R=

[
�̄ (G) := 6(G) + A (G)

]
,

where 6(G) has !6-Lipschitz continuous gradient, A (G) is convex and has !A -
Lipschitz continuous gradient (!6 ≤ !A ); �̄ (G) is `-strongly convex function in
2-norm. Note that we do not assume 6(G) to be convex! The algorithm looks as
follows [61]:

G̃C = gGC + (1 − g)GC5 ,

GC+15 ≈ argmin
G∈R=

[
�C (G) := 6(G̃C ) + 〈∇6(G̃C ), G − G̃C 〉 + !6‖G − G̃C ‖22 + A (G)

]
, (1.41)

which means

‖∇�C (GC+15 )‖
2
2 ≤

!2
6

3





G̃C − arg min
G∈R=

�C (G)




2

2
, (1.42)

GC+1 = GC + [`(GC+15 − G
C ) − [∇�̄ (GC+15 ),

where

g = min

{
1,
√
`

2
√
!6

}
, [ = min

{
1

2`
,

1
2
√
`!6

}
.

This algorithm (with output point G# ) has an iteration complexity

Õ ©­«
√
!6

`

ª®¬
and solves several tasks at once:

• (simple acceleration) If A (G) ≡ 0 this algorithm becomes an ordinary acceler-
ated method with

GC+15 = G̃C − 1
2!?
∇6(G̃C );
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• (Catalyst) If 6(G) ≡ 0 this algorithm becomes a Catalyst-type proximal envelop
[71], but less sensitive to the accuracy of the solution of (1.41);22

• (Sliding) If we apply to (1.41) Accelerated gradient sliding with 6(G) := A (G)
then obtain the total complexity of ∇A (G) oracle as

Õ ©­«
√
!6

`

ª®¬ · O
(√

!6 + !A
!6

)
= Õ

(√
!A

`

)
.

That is, we have split the complexity of considered composite problem to the
complexities correspond to the separate problems:

Õ ©­«
√
!6

`

ª®¬ for #∇6(G) and Õ
(√

!A

`

)
for #∇A (G).

Let us rewrite the empirical problem as follows

min
G∈R=

[
�̄ (G) :=

(
�̄ (G) − 5̄1 (G)

)
+ 5̄1 (G)

]
. (1.43)

Denoting the first sum as 6(G) and the second one as A (G) we can use Sliding trick
to split the complexities. Note that we significantly use the fact that in this scheme
6(G) is not necessarily convex! So it remains only to notice that described Accel-
erated gradient sliding under this choice of 6(G) and A (G) has a natural distributed
interpretation.23 It gives at the end a distributed algorithm that works according to
the lower bounds for communications and oracle calls per node complexities under
similarity [7]. Due to the statistical (i.i.d.) nature of

{
b:, 9

}
(statistical similarity) one

may expect that [50]: !6 ∝ B−1/2.
Thus, the number of communications for the developed algorithm is proportional

to ∝
√

1/
√
B` and the number of incremental gradient oracle calls at each node

remains the same as for ordinary accelerated method Õ
(
B
√
!/`

)
. It means that we

indeed improve the communication complexity by using statistical similarity. But
at the same time we have worsened the oracle complexity per node in comparison
with VR accelerated method, which uses sum-type structure of the terms stored in
each nodes. An open question is to build an «intermediate» algorithm – some kind
of convex combination of VR and Sliding with statistical similarity. The parameter

22 From Catalyst technique one can obtain (1.39) based on (1.40), restarts (see the proof of
Theorem 1.10) and accelerated batched algorithm, see Section 1.3.5. Note also the paper [18],
where the authors independently proposed stable version (to the accuracy of the solution of (1.41))
of Catalyst. Both of these versions are «logarithmic-free» (do not introduce additional logarithmic
multipliers compared to direct acceleration), rather than initial one [71].
23 Indeed, we can assign the node number 1 to be a master node that minimize at each iteration
(1.41) with 6 (G) := �̄ (G) − 5̄1 (G) and A (G) := 5̄1 (G) . It is obvious, that A (G) is available to the
master node and ∇6 ( G̃C ) can be available due to communications of the master node with the other
ones. At each round of communications :-th node sends ∇ 5̄: ( G̃C ) to the master node and receive
in return GC+1

5
, which is calculated at the master node.
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of this convex combination is determined in practice by the ratio of arithmetic
complexities of one oracle call to one communication.

Note that in (1.43) instead of 5̄1 (G) we can take an arbitrary smooth convex
functions. In particular we can take Taylor series expansion

5̃1 (G) := 5̄1 (G̃C ) + 〈∇ 5̄1 (G̃C ), G − GC 〉 +
1
2!
〈∇2 5̄1 (G̃C ) (G − G̃C ), G − GC 〉.

Note that 5̃1 (G) – convex function, rather than �̄ (G) − 5̃1 (G). Under the third-order
smoothness assumption one may expect that 5̃1 (G) has a close hessian to the hessian
of 5̄1 (G) in the vicinity of G̃C . Thus we may expect this method to be required only
few communication steps when the number of iteration C is large. Note that in this
approach we not only have similarity on higher iterations, but also have a quadratic
structure for auxiliary problem (1.41). In case of stochastic (randomized) oracle
this structure allows to use accelerated one-shoot local methods for (1.41), which
strength the effect of communications saving.

In this section we consider distributed centralized algorithms. Some of the results
mentioned above have analogues also in decentralized setup, see [45] and references
there in.

1.3.10 Accelerated tensor methods

Starting with the work [88] the interest in tensor methods (i.e. the methods that used
high-order derivatives) in convex optimization began to grow steadily. In particu-
lar, an optimal24 (up to a logarithmic complexity factor for line-search procedure)
second-order method was proposed in [75] and an optimal (also, up to a logarithmic
factor) high-order method was proposed in [38]. In [87] it was shown that second
and third-order tensor methods are implementable – complexity of each iteration is
roughly the same as for Newton method. Optimal methods without line-search (that
work according to the lower bounds up to a constant factor) were recently proposed in
[63, 17]. Thus the deterministic theory of tensor methods for convex (unconstrained)
problems seems to be close to the final point. In Section 1.3.5 we have demonstrated
the profit of acceleration in online approach for smooth problems. Fortunately, we
can additionally improve the results of Section 1.3.5 by using accelerated tensor
methods. For that we need to develop sensitivity analysis of these methods. Such an
analysis was made in [1] for accelerated tensor methods according to Nesterov-type
of acceleration under high-order smoothness assumption [87]. This acceleration is
a little bit worse than the best one Monteiro–Svaiter acceleration [75, 38, 63]. By
using the results of [1] and batching technique one can improve the number of sub-
sequent iterations in online approach from Section 1.3.5. If = is not too big then such
improvement can be valuable also in terms of arithmetic complexity.

24 See [60, 37] and references there in for lower bounds.
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For offline approach the main motivation to use tensor methods is coming from
the similarity approach, see Section 1.3.9. Where the reduced auxiliary problem
(1.41)

min
G∈R=

〈∇�̄ (G̃C ) − ∇ 5̄1 (G̃C ), G − G̃C 〉 + ;‖G − G̃C ‖22 +
1
B

B∑
9=1

5 (G, b1, 9 )


is a sum type problem with the reduced number of terms B (B � #). If B ' = we have
that for Newton-type methods the complexity of one iteration is upper bounded by
the Hessian-matrix inversion, rather than the complexity of Hessian calculation by
itself. In other words, in this case second and third-order tensormethods do not «feel»
the sum-type structure of the problem and work with almost the same complexities
as if B = 1. This idea reduces the number of subsequent iterations of second and
third-order methods for inner (auxiliary) problems and simultaneously alleviates the
main drawback of tensor methods related with expansive iterations [32].25

1.3.11 Saddle-point problems and Variational inequalities

Offline approach to the stochastic Saddle-point problems (SPP) developed in [68,
132, 29, 90], see also [62] for distributed approach. Online approach to the stochastic
Variational Inequalities (VI) – and as a consequence for saddle-point problems –
developed in [53, 41, 42].

Roughly speaking, all the results for both of the approaches look very similar
to the results mentioned in the previous sections for the stochastic optimization
problems except absence of acceleration. But there still exist open problems for SPP
and VI that were closed for optimization problems. For example, randomized VR
algorithms for (strongly) convex problems match the lower complexity bound (see
Section 1.3.6), rather than its SPP and VI analogues [4, 46].

1.3.12 Wasserstein barycenter example

Wasserstein barycenter (WB) problem and its dual entropy-smoothing version is
an extremely interesting example in many ways at once. First of all, stochastic
optimization (population) WB problem formulation comes from Statistics, but is
not due to the principle of maximum likelihood [14, 12]. So we may consider this
example to be intermediate in terms of Section 1.1.1 and Section 1.1.2. Secondly,
the empirical WB problem as a convex optimization problem has an efficient saddle-

25 Since we have to calculate the sum the iteration must be expensive independently of the order of
the method we use. This observation opens up the possibility to increase the order of the method
by conserving the complexity of iteration.
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point and dual representations [26]. For example, when WB problem solved on the
space of finite-support measures (on = points) the complexity of primal gradient
oracle is Õ

(
=3) a.o. (arithmetic operations) and the complexity of dual gradient

oracle is O
(
=2) a.o. Moreover, dual gradient oracle has a natural stochastic unbiased

estimation with the complexity O (=) a.o. For some real-world applications = ' 106.
Hence mentioned above computational observations play an important role [26].
Thirdly, the possibility to use dual oracle appears only in offline approach. To make
this approach correct we need proper regularization [27], see also Theorem 1.8 for
euclidean case. This regularization should be non-euclidean, since we have simplex
constraint – barycenter is a measure, that is an element of probability simplex (= (1).
Fourthly, WB problem is non-smooth, but strongly convex in 2-norm on (= (1) if we
consider dual entropy-smoothing version [26]. Since the problem is non-smooth it
is impossible to use batch-parallelization in online approach, see Section 1.3.5. But
due to the strong convexity (comes from regularization or/and from dual entropy-
smoothing) the dual problem (in offline approach) is smooth [100] and we can
apply distributed (batched-parallelized) accelerated methods to solve it [26]. To
conclude, WB problem is an interesting example of the problem for which offline
approach motivated not only the ability to distribute calculations across nodes (what
is typical of the offline approach in general), but also the possibility to solve dual
problem with better properties: cheaper oracle and better iteration-complexities
bounds, since smoothness without strong convexity (for dual problem) is better than
strong convexity without smoothness (for primal problem).

At the end we mentioned that the empirical WB problem is not well suited
for modern distributed Variance Reduced (VR) schemes and algorithms that use
similarity. The reason is a simplex constraint. Although for euclidean proximal setup
distributed VR is well developed [62] as well as similarity [61], but for non-euclidean
proximal setup (generated by the simplex constraint) the results are absent.

With this remark, we wanted to demonstrate that despite the huge progress made
in the last decade in convex stochastic programming, there are still a lot of open
problems that looks like a minor generalization of already solved ones. Apparently,
solving such problems will require the involvement of new ideas.

1.4 Historical Notes

Stochastic optimization has began to take shape in an independent field of knowl-
edge for about 70 years ago starting with the seminal paper of H. Robbins and
S. Monro [99]. This field was actively developed along with the usual optimiza-
tion. In particular, in an outstanding book of A.S. Nemirovski and D.B. Yudin [82]
(original version of the book was dated by 1979) the complexity theory of mod-
ern convex optimization was build. This theory included stochastic gradient oracle.
So we may consider 1979 as a second (theoretical) birth of stochastic optimiza-
tion. The third significant wave of the interest happened for about 20 years ago
in accordance with Data Science applications. It is already impossible to imagine
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modern data analysis without stochastic optimization. For the moment many books
were written around Stochastic optimization [34, 13, 104, 96, 111, 109]. In some
books and surveys one can find Data Science applications of Stochastic Optimization
[77, 115, 116, 106, 97, 129, 24, 15, 8, 130].

The results of Section 1.1.1 are rather standard and can bemainly find in [51, 114].
An example of Vadim V. Mottl was taken from [65]. Non-asymptotic results can be
found in [112, 113]. Polyak–Juditsky–Ruppert averaging was separately proposed in
[102] and [93, 91]. Online analogue of Fisher’s theorem was developed in [94, 95].

The results of Section 1.1.2 were motivated by the papers [56, 117, 107, 108].
Online learning is well presented in [19, 48, 89, 20]. Note that for the convex case
(not strongly convex) the described results can be generalized to non-euclidean
proximal setup. The most interesting applications related with unit simplex & =

(= (1) [19]. Note that in this section we started to use the notion of (unbiased)
stochastic subgradient ∇G 5 (G, b) without accurate definition of this subject in the
non-smooth case. The problems appear when the subgradient is not unique. In this
case we understand under ∇G 5 (G, b) some kind of measurable selector (no matter
what kind of selector).More accurate definitions and properties of stochastic gradient
one can find in [109].

The results of Section 1.2.1 were taken from [110, 80, 109]. The tight lower
bound for online case was obtained in [2]. The tight lower bound for offline case (for
smooth convex problems) was obtained in [35].

Online results of Section 1.2.2 corresponds to [54]. Offline results of Sec-
tion 1.2.2 corresponds to [107, 106]. High-probability bounds investigated in
[36, 59]. Tikhonov’s regularization was accurately developed in [122]. For non-
euclidean case offline results were generalized in [27, 29].

Online results of Section 1.2.3 were taken from [110, 109]. Offline results of
Section 1.2.3 were taken from [54] for the case A = 2. For the case A = 1 this result
was obtained earlier in a different manner [52]. The idea of restarts for strongly
convex problems goes back to [82, 81]. For the stochastic optimization problems it
was developed in [54]. For a sharp minimum and deterministic optimization convex
optimization problems restarts was developed in [101].
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