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Motivation of the title

E.Wigner, “The Unreasonable Effectiveness of Mathematics in
Natural Sciences”, Richard Courant lecture, Communications on Pure
and Applied Mathematics. v.13, No 1, 114, 1960.
Examples: Newton gravitational law, Maxwell equation, quantum
mechanics etc. Page in Wiki.
Inspired many responses: in biology, economics, data minining etc.
Contra:
I.Gelfand : There is only one thing which is more unreasonable than
the unreasonable effectiveness of mathematics in physics, and this is
the unreasonable ineffectiveness of mathematics in biology.
D.Abbott “The Reasonable Ineffectiveness of Mathematics”, V.101,
No.10,2013, Proc. IEEE.
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Effectiveness of optimization

Key point: Many classes of optimization problems and many methods
were invented ”purely theoretically” without orientation on real-life
problems. However later practical applications appear where the
methods happen to be highly effective and well fitted for.
My goal is to illustrate this point with several personal stories.
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Story 1: Alternating projections

Feasibility problem: find x ∈ ∩mi=1Fi , FI ∈ H are convex closed sets.
Alternating projections xk+1 = Pi(k)xk , i(k) – cyclic or the remotest.
[1] J. von Neumann, 1933, m = 2,F1,F2 are affine subspaces.
[2] Cheney W., Goldstein A. Proximity maps for convex sets. Proc.
AMS. 10, 3, 448 - 450, 1959.
[3] Eremin I. Generalization of the Motzkin-Agmon relaxation
method, Usp. mat. Nauk, 20. 2, 183 - 188, 1965.
[4] Bregman L. Finding the common point of convex sets by the
method of successive projection. DAN USSR, 162, 3, 487 -490, 1965.
[5] Gubin L., Polyak B., Raik E. The method of projections for
finding the common point of convex sets. USSR Comp. Math. and
Math. Phys. 7 (6): 124, 1967 (2–5 citations/year until 1982).
[6] Bauschke H., Borwein J. On projection algorithms for solving
convex feasibility problems. SIAM Review. 38 (3): 367-426, 1996.
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Story 1: Blow-up

1979 – Nobel prize for Computer Tomography
1982 – D.Youla, H.Webb, Image Restoration by the Method of
Convex Projections Part I, Theory;
M.Sezan, H.Stark, Part 2, Applications and Numerical Results. IEEE

Transactions on Medical Imaging, V.1, No 1, 2.
There was a reference on [5]. Since then the number of citations of
[5] grew dramatically. Soon it became my most cited paper.
Of course at 1967 I had no idea on image reconstruction!
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Story 2: Nonsmooth optimization

min f (x), x ∈ Q ⊂ H , f (x) is convex nondifferentiable, Q is convex
closed.
Subgradient method xk+1 = PQ(xk − γk∂f (xk))

γk → 0,
∑∞

k=0 γk =∞ or γk = f (xk )−f ∗
||∂f (xk )||2

.

[1] N.Shor 1962; Ermol’ev Yu., N.Shor, On the Minimization of
Non-Differentiable Functions, Kibern., 3, 1, 1967.
[2] B.Polyak, A General Method of Solving Extremum Problems,
Soviet Math. Dokl., 1967, 8, 593–597.
[3] B.Polyak, Minimization of Nonsmooth Functionals, USSR Comp.
Math. and Math. Phys., 1969, 9, No. 3, 14–29.
No serious response till 1974.
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Story 2. Applications

Travelling salesman: Held M., Karp R., 1970.
Held M., Wolfe P., Crowder, H.P. Validation of subgradient
optimization. Math. Progr. 6, 62-88, 1974.
IIASA Workshop on Nondifferentiable Minimization, Viena, 1977.

Sparse solutions, l1 regularization, Lasso min f (x) + α||x ||1
1986 – geophysics; 1996 – statistics.
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Story 3. Heavy ball

B.Polyak, Some Methods of Speeding up the Convergence of
Iteration Methods, USSR Comp. Math. and Math. Phys., 1964, 4,
No. 5, 1–17.
min f (x), xk+1 = xk − α∇f (xk) + β(xk − xk−1)
Acceleration via momentum, motivated by physical analogy with
heavy ball movement in potential field. Global convergence for
quadratic case, local convergence for strongly convex case. Optimal
parameters:

α∗ = 4
(
√
L+
√
l)2
, β∗ = q2, q =

√
L+
√
l√

L+
√
l
, ||xk − x∗|| = O(qk)

for f being L-smooth and l-strongly convex.
Comparison with optimal gradient descent: acceleration

√
κ times;

condition number κ = L
l

is typically large.
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Story 3. 50 years later

Citations of 1964 paper:

Around 2010 — breakthrough in application of accelerated first-order
optimization methods for training of deep learning networks.
Nesterov’s accelerated gradient (1983) is the champion, but heavy
ball is also exploited.
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Story 4: Gradient domination condition

B.Polyak, Gradient Methods for the Minimization of Functionals,
USSR Comp. Math. and Math. Phys., 1963, 3, No. 4, 643–653.
Theorem If f (x) is L-smooth, f (x) ≥ f ∗ and
||∇f (x)||2 ≥ 2µ(f (x)− f ∗), µ > 0, (!)
then gradient method converges linearly to x∗.
Condition (!) holds for nonconvex functions! Similar conditions
S. Lojasiewicz (1963), T. Ležanski, Über das Minimumproblem für
Funktionale in Banachschen Räumen, Math. Ann., 152 (1963),
271–274.
(!) is now known as Gradient-dominated condition or
Polyak-Lojasiewicz (PL) condition.
It was completely forgotten for many years.
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Story 4: 50 years later

H. Karimi, J. Nutini, M. Schmidt, Linear Convergence of Gradient
and Proximal-Gradient Methods under the Polyak-Lojasiewicz
Condition. JEC on Machine Learning, 2016.
Citations of 1963 paper:

Machine learning optimization problems are mostly nonconvex.
M.Belkin, Fit without fear: remarkable mathematical phenomena
of deep learning through the prism of interpolation, 2021

Feedback optimization problems in control are nonconvex.
I. Fatkhullin, B.Polyak, Optimizing Static Linear Feedback:

Gradient Method, SIAM J. on Control and Optimization, 2021.
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Conclusions

Many classes of optimization problems and many methods were
invented ”purely theoretically” without orientation on real-life
problems. However later practical applications appear where the
methods happen to be highly effective and well fitted for.

But to wait you have to live long
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THANK YOU!
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