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Convex optimization problem

Problem:
min

x∈X⊆Rd
{F (x) := Ef(x, ξ)}.

Let

function f(x, ξ) is available via a black-box

the objective function is noisy

derivative information is unavailable or too expensive

Goal: solve problem with ϵ-precision

E[F (x̂N )]−min
x∈X

F (x) ≤ ϵ,

where x̂N = 1
N

∑N
k=1 x

k is the output of an algorithm
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Black-box zero-order oracle model

Available: only noisy zero-order black-box oracle

Input: x.
Output: φ(x, ξ) = f(x, ξ) + δ(x), where

δ(x) = φ(x, ξ)− f(x, ξ)

is the noise (or accuracy).
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Application to non-convex problem

Red function means the target function (non-convex): it can be seen
as convex blue function with some noise
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Contribution and related works
Goal: design an optimal algorithm in terms of its total complexity.
Thus, minimize

1 number of oracle calls

2 maximum value of the noise (accuracy): maxx∈X δ(x)

Paper Problem Oracle Calls Maximum Noise

[Bayandina et al., 2018] convex d/ϵ2 ϵ2/d3/2

[Beznosikov et al., 2020] saddle point d/ϵ2 ϵ2/d
[Vasin et al., 2021] convex Poly (d, 1/ϵ) ϵ2/

√
d

[Risteski and Li, 2016] convex Poly (d, 1/ϵ) max {ϵ2/√d, ϵ/d}(1)

(1) ϵ/d ≲ ϵ2/
√
d, in the large-dimension regime as ϵ−2 ≲ d

Color ’green‘ means optimal due to lower bounds
[Risteski and Li, 2016]

1 number of oracle calls: d/ϵ2

2 maximum value of the noise: ϵ2/
√
d
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Setup for Mirror Descent Algorithm

The setup

the lp-norm;

prox-function ω(x), that is 1-strongly convex w.r.t. the lp-norm;

Bregman divergence associated with ω(x):

Vx(y) = ω(x)− ω(y)− ⟨∇ω(y), x− y⟩;

ω-diameter of X :

D = max
x,y∈X

√
2Vx(y);

prox-mapping

Proxx(β) = argmin
y∈X

(Vx(y) + ⟨β, y⟩) .
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Examples

Example (Euclidean setup)

the ℓ2-norm in prox-setup

prox-function w(x) = 1
2∥x∥

2
2

Bregman divergence Vx(y) =
1
2∥x− y∥22

D2 = max
x,y∈X

∥x− y∥22

Proxxk(γg(xk, ξk)) = πX
(
xk − γg(xk, ξk)

)
← subgradient

descent

Example (Probability simplex)

X = {x ∈ Rd
+ : ∥x∥1 = 1}, the ℓ1-norm in prox-setup

prox-function w(x) = ⟨x, log x⟩
Bregman divergence Vx(y) = KL(x, y) = ⟨x, log(x/y)⟩

D2 = O
(
log d max

x,y∈X
∥y − x∥21

)
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Algorithm: Gradient-free stochastic mirror descent

Stochastic mirror descent (SMD) [Nemirovski et al., 2009]:

Input: iteration number N , starting point x1, step size γ
for k = 1, . . . , N do

1 Sample ξk

2 Calculate g(xk, ξk)

3 Calculate xk+1 = Proxxk(γg(xk, ξk))

end

Output: x̂N = 1
N

∑N
k=1 x

k

Goal: estimate g(xk, ξk) by zero-order gradient approximation.
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Stochastic mirror descent: convergence rates

Theorem ([Nemirovski et al., 2009])

Let E[∥g(·)∥2p] ≤M2. Let N be the number of iterations of SMD
and step size be

γ =
D

M
√
N

.

Then it holds

E
[
F (x̂N )

]
−min

x∈X
F (x) = O

(
MD√
N

)
.

Corollary

To fulfill E
[
F (x̂N )

]
−minx∈X F (x) ≤ ϵ, the number of oracle calls is

N = O
(
M2D2

ϵ2

)
.
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Randomized smoothing of non-smooth function f(x).
Euclidean case.

Let us consider deterministic convex problem (for simplicity)

min
x∈X

f(x),

where f(x) is M-Lipschitz continuous w.r.t. the ℓ2-norm.

Def.
Function f(x, ξ) is M-Lipschitz continuous w.r.t. the ℓ2-norm, i .e.,
for all x1, x2 ∈ X :

|f(x1)− f(x2)| ≤M∥x1 − x2∥2.

Randomized smoothing

Let Bd
2 = {u ∈ Rd : ∥u∥2 ≤ 1} be the ℓ2 unit ball and u ∈ Bd

2 be a
random vector. Then a smooth approximation of a non-smooth
function f(x) is

f τ (x) = E [f(x+ τu) | x] ,

where τ > 0, u ∈ Bd
2 .Darina Dvinskikh Derivative-Free Optimization under Noise June 24, 2022 13 / 39



Properties of the smoothed approximation

Lemma (properties of f τ (x)).
function f τ (x) is differentiable with

∇f τ (x) = E
[
d

τ
f(x+ τe)e | x

]
,

where e ∈ Sd
2 and Sd

2 = {e ∈ Rd : ∥e∥2 = 1} is the ℓ2 unit sphere.

Intuition behind the Lemma: Divergence (Ostrogradsky–Gauss)
theorem ∫

Bd
2

∇f(x)dV (x) =

∫
Sd
2

f(x)n(x)dS(x),

where n(x) is the normal vector to Sd
2 .
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Proof of Lemma.

Let e ∈ Sd
2 and u ∈ Bd

2 , and τ > 0. Due to Ostrogradsky–Gauss
theorem and f(x) is convex

∇
∫
Bd

2

f(x+ τu)dV (u) =
1

τ

∫
Sd
2

f(x+ τe)edS(e),

Then we rewrite it as

∇E [f(x+ τu)] =
1

τ

Vol(Sd
2)

Vol(Bd
2)
E [f(x+ τe)e] ,

As Vol(Bd
2) = dVol(Sd

2)

∇f τ (x) = ∇E [f(x+ τu)] =
d

τ
E [f(x+ τe)e]
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Approximation

Lemma
Let function f(x) be M -Lipschitz continuous, then for all x ∈ X the
following holds

|f τ (x)− f(x)| ≤ τM.

Proof. By the definition of f τ (z) it holds

|f τ (x)− f(x)| = |E [f(x+ τu) | x]− f(x)| = E [|f(x+ τu)− f(x)| | x]
≤ E [M∥τu∥2] ≤Mτ as u ∈ Bd

2 .
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Relation to initial problem

Let the smooth problem
min
x∈X

f τ (x).

be solved with ϵ/2-precision:

E
[
f τ (x̂N )

]
−min

x∈X
f τ (x) ≤ ϵ

2
.

Then the initial problem
min
x∈X

f(x).

will be solved with ϵ-precision if τ = ϵ
2M :

E
[
f(x̂N )

]
−min

x∈X
f(x) ≤ ϵ

2
+ τM = ϵ.
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Zero-order gradient estimate.

Zero-order gradient estimator with two-point feedback:

g(x, ξ, e) =
Vol(Sd

q )

Vol(Bd
q )

(φ(x+ τe, ξ)− φ(x− τe, ξ))n(e),

where
e is a vector picked uniformly at random from Sd

q ,

n(e) is the normal vector to Sd
q ,

τ > 0.

Intuition behind the gradient estimate:
Let u ∈ Bd

q and e ∈ Sd
q . Due to Ostrogradsky–Gauss theorem

∇
∫
Bd

q

f(x+ τu)dV (u) =
1

τ

∫
Sd
q

f(x+ τe)edS(e),

Then we rewrite it as

∇E [f(x+ τu)] =
1

τ

Vol(Sd
q )

Vol(Bd
q )
E [f(x+ τe)n(e)] .
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Examples

Gradient estimator (ℓ2-randmization) [Shamir, 2017]

g(x, ξ, e) =
d

2τ
(φ(x+ τe, ξ)− φ(x− τe, ξ)) e,

where e ∈ Sd
2 , τ > 0.

Gradient estimator (ℓ1-randmization) [Gasnikov et al., 2016]

g(x, ξ, ζ) =
d

2τ
(φ(x+ τζ, ξ)− φ(x− τζ, ξ)) sign(ζ),

where ζ ∈ Sd
1 , τ > 0.
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Why did we smooth?

Example with ℓ2-randmization:

Let d = 1 and f(x) = |x|. Then for x ∈ [−τ, τ ] and e is uniform in
{−1, 1}

g(x, e) =
1

2τ
(f(x+ τ)− f(x− τ))e = ± x

2τ
.

However,

∇f(x) = 1, for all x > 0,

∇f(x) = −1 for all x < 0.

Figure: Smooth approximation
of a non-smooth function
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Unbiased estimator

Canceling noise or noise-free setup

For all x′, x′′ ∈ X , it holds δ(x′) = δ(x′′) = δ almost surely.

g(x, ξ, e) is an unbiased estimation for ∇f τ (x):

E [g(x, ξ, e) | x] = E
[
d

τ
f(x+ τe, ξ) | x

]
= ∇f τ (x)

g(x, ξ, e) has bounded second moment

E
[
∥g(x, ξ, e)∥2p∗ | x

]
= O

(
d
2− 2

p min{p/(p−1), log d}M2
)
,

where 1
p + 1

p∗ = 1 (dual norm)
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Adversarial Noise

Assumption (Boundedness of the noise)

For all x ∈ X , it holds |δ(x)| ≤ ∆.

For all x ∈ X and r ∈ {r ∈ Rd : ∥r∥2 ≤ D}
‘bias’:

E [⟨g(x, ξ, e)−∇f τ (x), r⟩ | x] ≤
√
d∆D
τ

‘variance’

E
[
∥g(x, ξ, e)∥2p∗ | x

]
= O

(
d
2− 2

p min{p/(p−1), log d}
(
M2 + d

∆2

τ2

))
where 1

p + 1
p∗ = 1 (dual norm)
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Adversarial Noise

Assumption (Lipschitz continuity of the noise)

Function δ(x) is Mδ-Lipschitz continuous in x ∈ X w.r.t. the
ℓ2-norm.

Let us consider {r ∈ Rd : ∥r∥2 ≤ D}, then for all x ∈ X

E [⟨g(x, ξ, e)−∇f τ (x), r⟩ | x] ≤
√
dMδD

g(x, ξ, e) has bounded the second moment is

E
[
∥g(x, ξ, e)∥2p∗ | x

]
= O

(
d
2− 2

p min{p/(p−1), log d}
(
M2 +M2

δ

))
.
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ℓ2-randmization in other two points

Let
x1 = x, x2 = x+ τe,

where τ > 0 is some constant and e ∈ Sd
2 . Then

g(x, ξ, e) =
d

τ
(φ(x+ τe, ξ)− φ(x, ξ)) e

Issue (the second moment is quadratic in d) [Duchi et al., 2015]

Let f(x) = ∥x∥2 (non-differentiable function), let x1 = 0 and
x2 = τe, then

E [g(x, e)] =

∥∥∥∥dτ (f(τe)− f(0)) e

∥∥∥∥2
2

= d2E [∥e∥2] = d2.
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Randomized smoothing

Smooth approximation

Let Bd
1 = {v ∈ Rd : ∥v∥1 ≤ 1} be the ℓ2 unit ball and v ∈ Bd

1 be a
random vector. Then a smooth approximation of a non-smooth
function f(x, ξ) is

f τ (x) = E [f(x+ τv, ξ) | x] ,

where τ > 0, v ∈ Bd
1 .

Lemma (properties of f τ (x)).
Function f τ (x) is differentiable with

∇f τ (x) = E
[
d

τ
f(x+ τζ, ξ)sign(ζ) | x

]
,

where e ∈ Sd
1 .
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Approximation
Lemma
It holds for all x ∈ X

|f τ (x)− f(x)| ≤ 2√
d
τM

Proof. By the definition of f τ (z) it holds

|f τ (x)− f(x)| = |E [f(x+ τv) | x]− f(x)| = E [|f(x+ τv)− f(x)| | x]
≤ τME [∥v∥2] .

Then we use the next lemma with p = 2
Lemma[Akhavan et al., 2022]
Let q ∈ [1,∞) and let v be distributed uniformly on Bd

1 . Then

E [∥v∥p] ≤
pd

1
p

d+ 1
.

Darina Dvinskikh Derivative-Free Optimization under Noise June 24, 2022 29 / 39



Relation to initial problem

Let the smooth problem
min
x∈X

f τ (x).

be solved with ϵ/2-precision:

E
[
f τ (x̂N )

]
−min

x∈X
f τ (x) ≤ ϵ

2
.

Then the initial problem
min
x∈X

F (x).

will be solved with ϵ-precision if τ =
√
dϵ

4M :

E
[
F (x̂N )

]
−min

x∈X
F (x) ≤ ϵ

2
+

2√
d
τM = ϵ.
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Unbiased estimator

Canceling noise or noise-free setup

For all x′, x′′ ∈ X , it holds δ(x′) = δ(x′′) = δ almost surely.

g(x, ξ, ζ) is an unbiased estimation for ∇f τ (x):

E [g(x, ξ, ζ) | x] = E
[
d

2τ
f(x+ τζ, ξ)sign(ζ) | x

]
= ∇f τ (x)

g(x, ξ, ζ) has bounded second moment

E
[
∥g(x, ξ, ζ)∥2p∗ | x

]
= O

(
d
2− 2

pM2
)
,

where 1
p + 1

p∗ = 1 (dual norm)
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Adversarial Noise

Assumption (Boundedness of the noise)

For all x ∈ X , it holds |δ(x)| ≤ ∆.

For all x ∈ X and r ∈ {r ∈ Rd : ∥r∥2 ≤ D}
‘bias’

E [⟨g(x, ξ, ζ)−∇f τ (x), r⟩ | x] = O
(
d∆D
τ

)
‘variance’

E
[
∥g(x, ξ, ζ)∥2p∗ | x

]
= O

(
d
2− 2

pM2 + d
4− 2

p
∆2

τ2

)
.

where 1
p + 1

p∗ = 1 (dual norm)
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Adversarial Noise

Assumption (Lipschitz continuity of the noise)

Function δ(x) is Mδ-Lipschitz continuous in x ∈ X w.r.t. the
ℓ2-norm.

For all x ∈ X and r ∈ {r ∈ Rd : ∥r∥2 ≤ D}
‘bias’:

E [⟨g(x, ξ, ζ)−∇f τ (x), r⟩ | x] = O
(√

dMδD
)

‘variance’:

E
[
∥g(x, ξ, ζ)∥2p∗ | x

]
= O

(
d
2− 2

p (M2 +M2
δ )
)
.

where 1
p + 1

p∗ = 1 (dual norm)
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Convergence rate

Theorem

Let E[∥g(·)∥2p∗ | x] ≤M2
new for all x ∈ X. Let N be the number of

zero-order SMD and step size be chosen as

γ =
D

Mnew

√
N

.

Then it holds

E
[
F (x̂N )

]
−min

x∈X
F (x) ≤ O

MnewD√
N

+ ‘bias’︸ ︷︷ ︸
≤ϵ

+ smooth approx.︸ ︷︷ ︸
≤ϵ

 .

Corollary

To fulfill E
[
F (x̂N )

]
−minx∈X F (x) ≤ ϵ, the number of oracle calls is

N = O
(
M2

newD2/ϵ2
)
.
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Maximal level of noise

Conditions

1 τ : smooth approx. ≤ ϵ =⇒ |f τ (x)− F (x)| ≤ ϵ for all
x ∈ X

2 ∆ or Mδ: ‘bias’ ≤ ϵ

3 ∆ or Mδ: N(∆) = N(0) =⇒ Mnew(∆) = Mnew(0)
(fulfilled due to ‘bias’ condition)

randomization τ ∆ Mδ

ℓ1−randomization
√
d ϵ
M

ϵ2√
dMD

ϵ√
dD

ℓ2−randomization ϵ
M

ϵ2√
dMD

ϵ√
dD

Table: Maximal level of bounded noise and smoothing parameter up to O(·)
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Comparison under bounded noise

Randomization Number of iterations N

ℓ1 d
2− 2

pM2D2/ϵ2

ℓ2 d
2− 2

pmin{p/(p−1), log d}M2D2/ϵ2

Table: Number of iterations depending on the type of
randomization in the ℓp− norm of proximal setup up to O(·)

Norm
in prox. setup

p = 1 p = 2

N with ℓ1−randomization M2

ϵ2
log(d) max

x,y∈X
∥x− y∥21 dM2

ϵ2
max
x,y∈X

∥x− y∥22

N with ℓ2− randomization log(d)M2

ϵ2
log(d) max

x,y∈X
∥x− y∥21 dM2

ϵ2
max
x,y∈X

∥x− y∥22

Table: Examples of N
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What is in article but beyond the lecture?
saddle point problems:

min
x∈X

max
y∈Y

Eξ [f(x, y, ξ)] ,

infinite noise:
function f(x, ξ) is M -Lipschitz continuous: for all x ∈ X and
ξ ∈ Ξ,

|f(x, ξ)− f(y, ξ)| ≤M(ξ)∥x− y∥2,
and there exists a positive constant M̃2 :
E
[
M2(ξ)

1+κ
]
≤ M̃1+κ

2 , κ ∈ (0, 1].

restarts

r-growth condition:
there is r ≥ 1 and µr > 0 such that for all x ∈ X

µr

2
∥x− x⋆∥rp ≤ f (x)− f (x∗) ,

where x∗ is problem solution

large deviations
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For the details

For the details, please, see the paper:

D.Dvinskikh, V.Tominin, Ya.Tominin, and A.Gasnikov ‘Gradient-Free
Optimization for Non-Smooth Saddle Point Problems under
Adversarial Noise’ (https://arxiv.org/pdf/2202.06114.pdf)
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