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Convex optimization problem

Problem:

min {F(z) :=Ef(z,€)}.
reXCR

Let
m function f(z,§) is available via a black-box
m the objective function is noisy

m derivative information is unavailable or too expensive

Goal: solve problem with e-precision

E[F(2™)] - ;rél? F(z) <e,

where 2V = L S™N 2k is the output of an algorithm
N 2uk=1 p g

Darina Dvinskikh Derivative-Free Optimization under Noise June 24, 2022 3/39



Black-box zero-order oracle model

Available: only noisy zero-order black-box oracle

X f(x, &) + noise

Input: x.
Output: ¢(x,&) = f(z,£) + é(x), where

5($) = (,0(33,5) - f(x,f)

is the noise (or accuracy).
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Application to non-convex problem

Red function means the target function (non-convex): it can be seen
as convex blue function with some noise

f(x) A

H"
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Contribution and related works

Goal: design an optimal algorithm in terms of its total complexity.
Thus, minimize

number of oracle calls

maximum value of the noise (accuracy): max;cx d(x)

‘ PAPER ‘ PROBLEM ‘ ORACLE CALLS ‘ MaxiMuM NOISE ‘
[Bayandina et al., 2018] convex d/62 62/d3/2
[Beznosikov et al., 2020] | saddle point dfe2 62/d

[Vasin et al., 2021] convex Poly (d, 1/6) 62/\/3
[Risteski and Li, 2016] convex Poly (d, 1/6) max {52/\/3, f/d}(l)

(W e/d < €2/4/d, in the large-dimension regime as =2 < d
Color 'green’ means optimal due to lower bounds
[Risteski and Li, 2016]
number of oracle calls: d/e>
maximum value of the noise: €2/v/d
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Setup for Mirror Descent Algorithm

The setup
m the [,-norm;
m prox-function w(x), that is 1-strongly convex w.r.t. the l,-norm;
m Bregman divergence associated with w(x):

Va(y) = w(z) — w(y) — (Vw(y),z — y);
m w-diameter of X:

D= 2V, (y):
Jnax, =(Y);

B prox-mapping

Prox, () = arg min (Va(y) + (6,9))

yeX
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Examples

Example (Euclidean setup)
m the /5-norm in prox-setup
= prox-function w(z) = | z||3
= Bregman divergence V,(y) = 3|z — |13
n

D2 — _ 2
Dnax [|lz —yll2

Prox,« (yg(z*, &%) = mx (2% — yg(z*,€%)) + subgradient
descent
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Examples

Example (Euclidean setup)
m the /5-norm in prox-setup
= prox-function w(z) = | z||3
= Bregman divergence V,(y) = 3|z — |13
n

D2 — _ 2
Dnax [|lz —yll2

Prox,« (yg(z*, &%) = mx (2% — yg(z*,€%)) + subgradient
descent

Example (Probability simplex)
m X ={zeRd:|z|; =1}, the £1-norm in prox-setup
m prox-function w(z) = (z,log x)

m Bregman divergence V,(y) = KL(z,y) = (z,log(x/y))

D? =0 (logd — z||?
C (og ;};}gg(lly wlll)

= = o
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Algorithm: Gradient-free stochastic mirror descent

Stochastic mirror descent (SMD) [Nemirovski et al., 2009]:

Input: iteration number N, starting point z!, step size
fork=1,...,N do
Sample &F
Calculate g(z*, £¥)
Calculate zFt1 = Prox « (vg(z¥, £F))
end
Output: iV = LSV oF

Darina Dvinskikh Derivative-Free Optimization under Noise June 24, 2022 10 /39



Algorithm: Gradient-free stochastic mirror descent

Stochastic mirror descent (SMD) [Nemirovski et al., 2009]:

Input: iteration number N, starting point z!, step size
fork=1,...,N do
Sample &F
Calculate g(z*, £¥)
Calculate zFt1 = Prox « (vg(z¥, £F))
end
Output: iV = LSV oF

Goal: estimate g(z*, £¥) by zero-order gradient approximation.
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Stochastic mirror descent: convergence rates

Theorem ([Nemirovski et al., 2009])

Let E[|lg(-)||2] < M?. Let N be the number of iterations of SMD
and step size be

Then it holds

Corollary

To fulfill E [F(2")] — mingex F(x) < €, the number of oracle calls is
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Randomized smoothing of non-smooth function f(z).

Euclidean case.
Let us consider deterministic convex problem (for simplicity)

min f(x),

zeX
where f(x) is M-Lipschitz continuous w.r.t. the ¢3-norm.

Def.
Function f(z,&) is M-Lipschitz continuous w.r.t. the fo-norm, i .e.,
for all z1,x0 € X

|f(z1) = f(22)| < M||21 — 22]|2.

Randomized smoothing

Let B¢ = {u € R%: |lu||2 < 1} be the £5 unit ball and u € BY be a
random vector. Then a smooth approximation of a non-smooth
function f(z) is

fT(@) =E[f(z+7u) | 2],

L o o Rd
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Properties of the smoothed approximation

Lemma (properties of f7(x)).
function f7(z) is differentiable with

V(@) = E [gf(:v +ree| x] ,

where e € S¢ and S¢ = {e € R? : |le|| = 1} is the {5 unit sphere.

Intuition behind the Lemma: Divergence (Ostrogradsky—Gauss)
theorem

Vf(x)dV(z) = [ flx)n(z)dS(z),
Bd S

where n(x) is the normal vector to S.
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Proof of Lemma.

Let e € S¢ and u € BY, and 7 > 0. Due to Ostrogradsky—Gauss
theorem and f(x) is convex

1

\Y fle+7u)dV(u)=— | flz+7e)edS(e),
5 ™ Jsg

Then we rewrite it as

1 Vol(S9)

VE [f(z + Tu)] = ;VOI(BS)

E [f(.%' + 7'6)6] )
As Vol(Bg) = dVol(Sg)

V() = VE[f(z +7w)] = TE[f(z + 7o)
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Approximation

Lemma
Let function f(x) be M-Lipschitz continuous, then for all x € X’ the
following holds

/7 (@) = flz)] < 7M.
Proof. By the definition of f7(z) it holds

[T (@) = f(@)| = [E[f(z+7u) [2] = f(2)| =E[[f(z+ Tu) = f(z)] | 2]
< E[M|rulls) < M7 asu e BS.
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Relation to initial problem

Let the smooth problem

min f7(x).

TeEX

be solved with ¢/2-precision:

(AN T €
— < -.
E[/7(@%)] - min f7(2) < 3
Then the initial problem
iy @)

. . o
will be solved with e-precision if 7 = 55;:

E [f(&")] - min f(2) < §+TM _—
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Zero-order gradient estimate.
Zero-order gradient estimator with two-point feedback:

Vol(S2)
g<$7 ga 6) = VoI(Bg) (SO(Q" + e, f) - 90(113 ) 5)) n(€)7

where
e is a vector picked uniformly at random from S,

n(e) is the normal vector to S,
T > 0.

Intuition behind the gradient estimate:
Let u € Bg and e € S;l. Due to Ostrogradsky—Gauss theorem

\v flz+71u)dV(u) = = f(z+Te)edS(e),
Bj T Jsg
Then we rewrite it as
1 VoI(Sg)
7 Vol(BY)
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Examples

Gradient estimator ({s-randmization) [Shamir, 2017]

9(0,6:) = - (ol +76,6) — ol — 7¢,)

where e € S¢, 7 > 0.

Gradient estimator (¢;-randmization) [Gasnikov et al., 2016]

0(2,6,0) = o- (ol +7¢,€) — ol — ¢, ) sign((),

where ¢ € S¢, 7> 0.
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Why did we smooth?

Example with ¢5-randmization:
Let d =1 and f(z) = |z|. Then for x € [—7,7] and e is uniform in

{_17 1}

X

9(2,€) = 5-(fl@+7) = flo =)o =+o

However,
m Vf(zx)=1, forall z >0,
B Vf(x)=—1forall z <0.

Figure: Smooth approximation
of a non-smooth function

xX—7 X X+
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Gradient estimator via /5-randomization
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Unbiased estimator

Canceling noise or noise-free setup
For all 2/,2” € X, it holds 6(z") = §(a”) = § almost surely. J

m g(z,&,e) is an unbiased estimation for V 7 (z):

Ewmﬁ&ﬂwhﬂEVﬂx+m£Hx]=Vf@)

-
m g(x,&, e) has bounded second moment
_2

E[lg(x.& e)l2 | 2] = O (d*» min{s/p-1),log d} M?) |

where % + ]% =1 (dual norm)
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Adversarial Noise

Assumption (Boundedness of the noise)
For all x € X, it holds |§(z)| < A. J
Forallz € X and 7 € {r e R? : ||r||]2 < D}
m ‘bias’”:
Ellaa.6. ) — VI (@)r) | o] < Y22
m ‘variance’

_2 A2
E[llg(@& el | 2] =0 (d2 » min{p/(-1), log d} (M2+dT2))

where % + 1% =1 (dual norm)
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Adversarial Noise

Assumption (Lipschitz continuity of the noise)

Function §(x) is Ms-Lipschitz continuous in x € X w.r.t. the
f5-norm.

Let us consider {r € R?: ||r||2 < D}, then for all x € X
u

E[(9(x.€, e) = VfT(2),r) | 2] < VAM;D

m g(x,&, e) has bounded the second moment is

E [llg(, & )2 | 2] = O (d*» min{s/-1),log d} (M? + M) ).
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lo-randmization in other two points

Let

r1 =T, Ty =T+ Te,

where 7 > 0 is some constant and e € S§. Then

g(x,f, e) = g (@(x + Te,f) - 90(1:75)) €

Issue (the second moment is quadratic in d) [Duchi et al., 2015]

Let f(z) = ||z||2 (non-differentiable function), let z; = 0 and
T9 = Te, then

2
= d’E[|le|l2] = d*.
2

L (f(re) — F(0))e

T

E [g($7 6)] =
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@ Gradient estimator via /1-randomization
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Randomized smoothing

Smooth approximation

Let B¢ = {v € R : |jv||; < 1} be the £5 unit ball and v € B¢ be a
random vector. Then a smooth approximation of a non-smooth
function f(z,€) is

(@) =E[f(z +7v,8) | 2],

where 7 > 0, v € B{.

Lemma (properties of f7(x)).
Function f7(x) is differentiable with

V() =B | % (o + ¢, Osign(0) | |

where e € S¢.
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Approximation

Lemma
It holds for all z € X

2
(x) = f(z)| < —=TM
|f7(@) = f(z)] < 7
Proof. By the definition of f7(z) it holds

[f7(x) = f(@)] = [E[f(z +70) | 2] = f(2)] = E[[f(x + 7v) = f(2)] | 2]
< TME([|[v]2]-

Then we use the next lemma with p = 2
Lemma[Akhavan et al., 2022]
Let ¢ € [1,00) and let v be distributed uniformly on B{. Then

1

Efloly] < 2.
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Relation to initial problem

Let the smooth problem

min f7(x).

reX

be solved with ¢/2-precision:

E[f7(3")] - min f7(x) <

DN
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Relation to initial problem

Let the smooth problem

min f7(z).

zeX
be solved with ¢/2-precision:

E[f7(&")] — min f7(z) <

€
reX 2 '

Then the initial problem
min F'(z).
reX

. . e e
will be solved with e-precision if 7 = J77:

E [F(z™)] - min F(z) <

Y
vz

l\'.)lm
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Unbiased estimator

Canceling noise or noise-free setup
For all 2/,2” € X, it holds 6(z") = §(a”) = § almost surely. J

m g(z,£,() is an unbiased estimation for V f7(x):

Ely(e. 6.0 2] = E | 5o f(o + 76.65imn(0) o] = V1)

m g(x,&,C) has bounded second moment
_2
E [“g(xvgv C)”?)* | JJ] =0 (d2 PMQ) ,

where % + ]% =1 (dual norm)
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Adversarial Noise

Assumption (Boundedness of the noise)
For all x € X, it holds |§(z)| < A. J
Forallz € X andr € {r e R%: ||r||2 < D}
m ‘bias’
Ellg(e., )~V @) 6] =0 (22
m ‘variance’

_2 _2 A?
E (lote & Ol 0] =0 (&30 4035

where % + 1% =1 (dual norm)
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Adversarial Noise

Assumption (Lipschitz continuity of the noise)

Function 6(x) is My-Lipschitz continuous in x € X w.r.t. the
f5-norm.

Forallz € X and r € {r e R¢ : ||r[|2 < D}

m ‘bias’:

E[{g(x,&,¢) — VI (z),r) | 2] = O (\/EM(;D)
m ‘variance’:

E[lg(z, & Ol | 2] = O (&5 (M2 + M) .

where % + I% =1 (dual norm)
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Maximal level of noise and convergence rates
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Convergence rate

Theorem
Let E[[lg(-)II2. | 2] < M2, forall z € X. Let N be the number of

new

zero-order SMD and step size be chosen as

D
y=—
Mnewﬁ
Then it holds
E[F(Y)] —minF(z) <O MuewD + 'bias’+ smooth approx.
reX - \/N N ————

<e <e

Corollary
To fulfill E [F(2")] — mingex F(z) < €, the number of oracle calls is

N=0 (M}

new

2/ .2
D?/€e%).
= md =
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Maximal level of noise

Conditions

7: smooth approx. <e¢ —

reX
A or My: ‘bias’ <¢
A or Ms: N(A) = N(0)

|f7(x) — F(x)| < € for all

= MneW(A) - Mnew(o)
(fulfilled due to ‘bias’ condition)

randomization T A | My |

— 1 1 € e? €
{1—randomization \/&M ‘/3%“7 N

_ H H € € €
f5—randomization . NIYES 75

Table: Maximal level of bounded noise and smoothing parameter up to O(-)
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Comparison under bounded noise

‘ Randomization ‘

Number of iterations NV

41
Lo

d*~ 7 M2D? /e

dQ_%min{P/(p—l), log d} M*D? /¢

Table: Number of iterations depending on the type of
randomization in the ¢,— norm of proximal setup up to O(-)

Norm
in prox. setup

p=1

p=2

N with /1 —randomization

N with ¢5— randomization

M2
L log(d) max ||e — yl?

log(d)M? 14 2
P Log(d) ma o~ o

dM?
2

aM?

€

2
Jnax o — yll3

2
2 £2§||$ yll3

Table: Examples of N
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What is in article but beyond the lecture?

m saddle point problems:

i E
mipmax Eg [f (@, 9,6)],

m infinite noise:
function f(z,&) is M-Lipschitz continuous: for all x € X and
§EE,
|f(2,8) = f(y, O = Mz —yll2,
and there exists a positive constant M :
E [My(€)'*] < My™, k € (0,1].
m restarts
m 7r-growth condition:
there is > 1 and p, > 0 such that for all x € &

Elle ="l < f (@) = £ (),

where x* is problem solution
m large deviations
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For the details

For the details, please, see the paper:

D.Dvinskikh, V.Tominin, Ya.Tominin, and A.Gasnikov ‘Gradient-Free
Optimization for Non-Smooth Saddle Point Problems under
Adversarial Noise' (https://arxiv.org/pdf/2202.06114.pdf)
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