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Density estimation

I Classical statistical problem:
1. We have a sample X1, . . . ,Xn 2 Rd

from a density pdata(x).
2. Aim: estimate pdata(x) and sample from it

I Classical solution: kernel density estimation

⇡(x) =
1

n

nX

j=1

Kh(Xj � x),

where Kh – kernel, h – bandwidth.

I This approach work when d = 1, 2, 3.
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Density estimation

I High dimension d > 3.

I Black and white pictures 1024⇥ 1024 pixels, dim d = 220 > 106.

I Other object of interest: video, protein structure, ...

I We need other methods (e.g. GANs)

I How to sample from ⇡?
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Motivation

I Bayesian inference and learning. Let ✓ 2 ⇥ be an unknown variable
(parameter) and X = (X1, . . . ,XN) 2 X be a data.
1. Posterior distribution: given the prior p0(✓) and likelihood p(Xi |✓)

⇡(✓|X) =
QN

i=1 p(Xi |✓) p0(✓)R

⇥

QN
i=1 p(Xi |✓) p0(✓)d✓

2. Expectation w.r.t. ⇡(✓|X)

E⇡(·|X)[f (✓)] =

Z

⇥

f (✓)⇡(✓|X)d✓

I Statistical mechanics. Here, one needs to compute the partition
function Z of a system with states s and Hamiltonian E (s)

Z =
X

s

exp

⇢
�E (s)

kT

�
,

where k is the Boltzmann’s constant and T denotes the temperature
of the system.
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GANs framework

I Generator G : Rd 7! RD: takes a latent variable z from a prior density
p0(z), z 2 Rd , produces G (z) 2 RD in the observation space;

I Discriminator D : RD 7! [0, 1]: takes a sample in the observation
space, distinguishes between real examples and fake ones;

GAN training objective

L(g ,D) := EX⇠pdata [log(D(X ))] + EZ⇠p0 [log(1� D(g(Z )))] ! min
g2G

max
D2D

.

I Let pd(x) and pg (x) be the densities of real and fake observations;

I
Optimal discriminator: D?(x) =

pd(x)

pd(x) + pg (x)
(1)
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GANs as an energy-based model

I Main drawback: information accumulated by discriminator is not used
during the generation procedure;

I Let d?(x) = logitD?(x), therefore:

pd(x)

pd(x) + pg (x)
=

1

1 + pg (x)
pd (x)

=
1

1 + exp(�d?(x))

Hence, we can express

pd(x) = pg (x)e
d?(x) .

I Let us introduce d(x) = logitD(x) and consider the corresponding
energy-based model

p̂d(x) = pg (x)e
d(x)/Z0 ,

where Z0 is the normalizing constant. If D(x) ⇡ D
?(x), p̂d(x) is close

to pd(x);

I Sample from p̂d(x) using MCMC.
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GANs as an energy-based model

I Similar idea considered in Turner et al. [2019]; main issue: MCMC in
pixel space is highly ine�cient;

I Che et al. [2020] suggested latent-space sampling from the model

p̂d(x) = p0(z) exp
�
logit

�
D(G (z))

 
, z 2 Rd ,

where p0(z) is the generator’s prior distribution in the latent space;

I Sampling using Langevin-based algorithms, as suggested in Che et al.
[2020], can be ine�cient, especially if d is large.
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Introduction

This Course

We aim at sampling from ⇡ and computing expectation

⇡(f ) := E [f (X )] =

Z

X
f (x)⇡(x) dx , f 2 L2(⇡)

We discuss,

I Monte-Carlo method

I Rejection sampling

I Importance sampling

I MCMC

I Mixture of techniques
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Monte-Carlo method

I Get an i.i.d. sample (Xk)1k=0 from ⇡, estimate ⇡(f ) by

⇡n(f ) :=
1

n

n�1X

k=0

f (Xk),

I Kolmogorov’s strong law of large numbers: with probability 1

lim
n!1

⇡n(f ) = E[f (X0)] = ⇡(f )

I Advantage over deterministic integration: MC positions the
integration grid (samples) in regions of high probability.

I Disadvantage: when ⇡(x) has standard form, e.g. Gaussian, it is
straightforward to sample from it using easily available routines.
However, when this is not the case, we need to introduce more
sophisticated techniques.
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Monte-Carlo method

I Variance:

Var[⇡n(f )] =
1

n2

n�1X

k=0

Var[f (Xk)] =
�2
⇡(f )

n

where �2
⇡(f ) = Var[f (X0] = ⇡(f 2)� ⇡2(f ).

I Central limit theorem (CLT)

p
n(⇡n(f )� ⇡(f ))

Law��! N(0,�2
⇡(f)) n ! 1

Indeed,

p
n(⇡n(f )� ⇡(f )) =

Pn�1
k=0(f (Xk)� E[f (Xk)])p

n

I Length of confidence interval for ⇡n(f ) proportional to
�⇡(f )p

n
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Rejection sampling

I Sample from a distribution ⇡, which is known up to a proportionality
constant, by sampling from another easy-to-sample proposal
distribution g that satisfies ⇡(x)  Mg(x),M < 1.

I Algorithm:
Set k = 0;
Repeat until k = n � 1
1. Sample Xi ⇠ q and independent U ⇠ Uniform[0, 1];
2. Accept Xi and set i := i + 1, if

U <
⇡(Xi )

Mg(Xi )
.

Otherwise, reject.
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Rejection sampling

I Advantage: simple

I Disadvantage: impractical in high-dimensional scenarios.
It is not always possible to bound ⇡(x)/g(x) with a reasonable
constant M over the whole space X. If M is too large,

P(Xi accepted) = P

✓
U <

⇡(Xi )

Mg(Xi )

◆
= E


P

✓
U <

⇡(Xi )

Mg(Xi )

◆����Xi

�

= E


⇡(Xi )

Mg(Xi )

�
=

Z

X

⇡(x)

Mg(x)
g(x)dx =

1

M

will be too small (here we also assume g(x) > 0, x 2 X)

13 / 59



Rejection sampling

We show that

P

✓
Xi  x |U <

⇡(Xi )

Mg(Xi )

◆
= ⇡{(�1, x ]}

Indeed, let A = {Xi  x},B =

⇢
U < ⇡(Xi )

Mg(Xi )

�
. Then

P(A|B) = P(B |A) P(A)/P(B).

We may check that

P(B |A) = P(A \ B)

G (x)
=

1

G (x)
E[ A\B ]

=
1

G (x)
EXi [ A]EU [ B ] =

1

MG (x)
EXi


A
⇡(Xi )

g(Xi )

�

=
⇡{(�1, x ]}

MG (x)
.
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Importance sampling

I Make change of measure: replace ⇡(x) by another easy-to-sample
proposal distribution �(x):

⇡(f ) =

Z

X
f (x)⇡(x)dx =

Z

X
f (x)w(x)�(x)dx ,

where w(x) – importance weight (Radon-Nikodym derivative)

w(x) :=
⇡(x)

�(x)

I Replace ⇡n(f ) by ⇡̄n(f ),

⇡̄n(f ) :=
1

n

n�1X

k=0

f (Xi )w(Xi ),

where Xi ⇠ �.
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Importance sampling

I Variance

Var�[f (X0)w(X0)] = E�[f
2(X0)w

2(X0)]� ⇡2(f )

I By Jensen’s inequality

E�[f
2(X0)w

2(X0)] � (E�[|f (X0)|w(X0)])
2 =

✓Z

X
|f (x)|⇡(x)dx

◆2

I Lower bound is attained for

�⇤(x) =
|f (x)|⇡(x)R

X |f (x)|⇡(x)dx

I High sampling e�ciency is achieved when we focus on sampling from
⇡ in the importance regions where |f (x)|⇡(x) is relatively large.
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Self-Normalized Importance Sampling

I ⇡ is known up to a normalizing factor Z⇡, ⇡(dx) = ⇡̃(dx)/Z⇧;

I Define importance weights as w̃(x) = ⇡̃(x)/�(x);

I Then

⇡(f ) =

Z
f (x)⇡(x)dx = Z�1

⇡

Z
f (x)w̃(x)�(x)dx

= Z�1
⇡

Z
f (x)w̃(x)�(x)dx/

⇢
Z�1
⇡

Z
w̃(x)�(x)dx

�

I The self-normalized importance sampling (SNIS) estimator of ⇡(f ) is
then given by

b⇡N(f ) =
NX

i=1

!i
N f (Xi ) ,

where

Xi ⇠ � ,!i
N =

w̃(Xi )PN
j=1 w̃(Xj)

, i 2 {1, . . . ,N} .
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MCMC

I What can be done if drawing i.i.d. samples from ⇡ is not an option?

I If we run the (ergodic) Markov chain (Zk)k�0 for a long time (started
from anywhere), then for large N the distribution of ZN will be
approximately invariant: Law(ZN) ⇡ ⇡. We can then set X1 = ZN ,
and then restart and rerun the Markov chain to obtain X2,X3, . . ., and
then do estimates as in MC,

⇡n(f ) =
1

n

Xn�1

k=0
f (Xk)

Important question

How to construct P(x ,A) such that the distribution of Xn converges to
invariant distribution ⇡ as quickly as possible for arbitrary initial
distribution ⇠?
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Markov chains

What to read?

For more details see Douc et al. [2018]

Define a Markov chain (i.e., discrete time).

Ingredients of the definition:

I X – state space (e.g. X ⇢ Rd), X – �-algebra of X

I Initial distribution X0 ⇠ ⇠;

I Transition kernel P(x ,A), where x 2 X,A 2 X :

P(Xn+1 2 A|Xn = x) = P(x ,A)

I Markov property: Xn+1 depends only on Xn;

Example: Model X0 ⇠ ⇠ and for n � 1

Xn = F (Xn�1, "n)

where ("n)n�1 is an i.i.d. sequence independent of �{Xk , 0  k  n � 1}
and F is some function, F : X⇥ Rd0 ! X
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Markov chains: gym

I More about MK kernels

I Ergodicity (finite case)

I Ergodicity (not in this course:( )

I Ready for MCMC
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Markov chains

Action on measures

Let µ be a probability measure on X

µP(A) =

Z

X
µ(dx) P(x ,A)

Action on functions

P f (x) =

Z

X
f (y) P(x , dy)

Composition of kernels

Pn(x ,A) =

Z

X
P(x , dy) Pn�1(y ,A)

(Kolmogorov-Chapman equation)
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Markov chains

Tensor product (kernel ⌦ kernel)

P⌦P f (x) =

Z

X
P(x , dy)

Z

X
f (y , z) P(y , dz)

=

Z

X⇥X
f (y , z) P(x , dy) P(y , dz)

Take f (y , z) = 1(y 2 A, z 2 B). Then

P⌦P f (x) = P(X1 2 A,X2 2 B |X0 = x) = P⌦2(x ,A⇥ B)

Tensor product (measure ⌦ kernel)

⇠ ⌦ P f =

Z

X
⇠(dy)

Z

X
f (y , z) P(y , dz)

=

Z

X⇥X
f (y , z)⇠(dy) P(y , dz)
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Markov chains

Invariant distribution

Distrbution ⇡ is invariant w.r.t. P if

⇡P = ⇡

Theorem

Let (Xk)1k=0 be a MC with initial distribution ⇡ and kernel P. (Xk)1k=0 is

stationary i↵ ⇡ is invariant.

Proof.

Let (Xk)1k=0 be stationary. Then Law(X1) = Law(X0). Hence,
⇡ P(A) = P⇡(X1 2 A) = P(X0 2 A) = ⇡(A).
If ⇡ is invariant, then the distribution of (Xn, . . . ,Xn+k) is
⇡ Pn ⌦P⌦k = ⇡ ⌦ P⌦k is independent of n
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Markov chains

Reversibility

Distribution ⇠ is reversible w.r.t. P if

⇠ ⌦ P(A⇥ B) = ⇠ ⌦ P(B ⇥ A)

I If X is countable,

⇠(x) P(x , x 0) = ⇠(x 0) P(x 0, x)

Detailed balance equation.

I

E⇠[f (X0,X1)] =

Z

X⇥X
⇠(dx0) P(x0, dx1)f (x0, x1)

=

Z

X⇥X
⇠(dx0) P(x0, dx1)f (x1, x0) = E⇠[f (X1,X0)]

Hence, Law(X0,X1) = Law(X1,X0)
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Markov chains

Theorem

Let P be a MK. If ⇠ is reversible w.r.t. P then ⇠ is invariant.

Proof.

⇠ P(A) = ⇠ ⌦ P(X⇥ A) = ⇠ ⌦ P(A⇥ X)

=

Z

X
⇠(dx) P(x ,X)1A(x) = ⇠(A)
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Ergodicity, finite case

Let X be finite, X = [1, . . . , r]

Total variation distance (finite case)

Let µ, ⇠ be probability measures on X. Define

dTV(⇠, µ) :=
1

2

rX

i=1

|µ(i)� ⇠(i)| =
X

i:µ(i)>⇠(i)

(µ(i)� ⇠(i))

Clearly, dTV  1.

I Denote J := {i : µQ(i) > ⇠Q(i)}. Let Q be an arbitrary MK. Then for
any µ, ⇠

dTV(µQ, ⇠Q) =
X

j2J

(µQ(j)� ⇠Q(j))

=
X

j2J

X

i2X

(µ(i)Q(i, j)� ⇠(i)Q(i, j))


X

i :µ(i)>⇠(i)

(µ(i)� ⇠(i))
X

j2J

Q(i, j)  dTV(µ, ⇠)

(2)
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Ergodicity, finite case

I Let Q(i, j) � a > 0 for any i , j 2 X. Then 9 j 0 /2 J and hence for any
i 2 X X

j2J

Q(i, j) < 1� a

Eq. (2) my be improved:

dTV(µQ, ⇠Q) < (1� a)dTV(µ, ⇠)

I Assume
9 s : Ps(x , x 0) > 0 for any x , x 0 2 X (3)

I Let us fix arbitrary distribution µ0 and denote µn = µ0 P
n. Then

dTV(µn, µn+k) = dTV(µ0 P
n, µ0 P

n+k)

 (1� a)dTV(µ0 P
n�s, µ0 P

n+k�s)

 (1� a)mdTV(µ0 P
n�ms, µ0 P

n+k�ms),

(4)

where m : 0 < n �ms  s. Take n large such that (1� a)m < ".
Then {µn}n�1 is a Cauchy sequence.
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Ergodicity, finite case

I Set
⇡ := lim

n!1
µn.

Then
⇡ P = lim

n!1
µn P = lim

n!1
µ0 P

n+1 = ⇡

I Uniqueness: Assume ⇡1 6= ⇡2 such that ⇡1 P = ⇡1,⇡2 P = ⇡2. Then
⇡i = ⇡i P

s , i = 1, 2 and

dTV(⇡1,⇡2)  (1� a)dTV(⇡1,⇡2)

Hence, ⇡1 = ⇡2.

I

dTV(µ0 P
n,⇡) = dTV(µ0 P

n,⇡ Pn)  (1� a)mdTV(µ0 P
n�ms,⇡ Pn�ms)

 (1� a)m  (1� a)n/s�1 = (1� a)�1�n,
(5)

where � = (1� a)1/s < 1.
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Ergodicity, finite case

Theorem

Assume (3) and let ⇡ be an invariant distribution. Then for any

f : X ! R, with probability 1:

lim
n!1

1

n

n�1X

k=0

f (Xk) = ⇡(f )

I Compare with SLLN for i.i.d. sequence.
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MCMC

I What can be done if drawing i.i.d. samples from ⇡ is not an option?

I If we run the (ergodic) Markov chain (Zk)k�0 for a long time (started
from anywhere), then for large N the distribution of ZN will be
approximately invariant: Law(ZN) ⇡ ⇡. We can then set X1 = ZN ,
and then restart and rerun the Markov chain to obtain X2,X3, . . ., and
then do estimates as in MC,

⇡n(f ) =
1

n

Xn�1

k=0
f (Xk)

Important question

How to construct P(x ,A) such that the distribution of Xn converges to
invariant distribution ⇡ as quickly as possible for arbitrary initial
distribution ⇠?
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Example: Metropolis-Hastings algorithm

Let Q(x ,A) =
R
A q(x , y)dy be some MK (e.g. Gaussian)

1. Choose X0.

2. Given Xk , a candidate move Yk+1 is sampled from Q(Xk , ·)
3. Xk+1 = Yk+1 with probability ↵(Xk ,Yk+1), otherwise Xk+1 = Xk ,

where acceptance ratio

↵(x , y) = min

⇢
1,

⇡(y)q(y , x)

⇡(x)q(x , y)

�

Example: Random walk MH
Take q(x , y) = q(y � x), where q(x) = q(�x). Then

Yk+1 = Xk + Zk+1, Zk+1 ⇠ q

In this case

↵(x , y) = min

⇢
1,

⇡(y)

⇡(x)

�
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Example: Langevin Dynamics

Langevin Dynamics Itô SDE:

d✓t = �rU(✓t) dt +
p
2dWt ,

Invariant measure: ⇡(✓) = e
�U(✓) and Law(✓t) ! ⇡ as t ! 1.

1. Take ⇡(✓) = (2⇡)�1/2e�✓2/2.

2. SDE: d✓t = ✓t dt +
p
2dWt , ✓0 is independent of W . This is

Ornstein–Uhlenbeck process

3. Apply Ito’s formula to obtain

✓t = ✓0e
�t +

p
2

Z t

0
e
�(t�s)dWs

4. Since the Itô integral of deterministic integrand is normally
distributed, we readily have

Law(✓t) = N (✓0e
�t , 1� e�2t) ! N (0, 1)
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Example: Langevin Dynamics

Itô SDE:

d✓t = �rU(✓t) dt +
p
2dWt ,

Invariant measure: ⇡(✓) = e
�U(✓)

1. First-order discretization (Unadjusted Langevin Algorithm, ULA):

Yk+1 = Yk � �rU(Yk) +
p

2�Zk+1, i .i .d . Zk ⇠ N(0, Id)

Equivalently, Yk+1 ⇠ N (Yk � �rU(Yk), 2� I)

2. Metropolis-adjusted Langevin Algorithm (MALA):
ULA + Metropolis-Hastings correction;

3. Demo: https://chi-feng.github.io/mcmc-demo

4. If we can’t calculate rU replace it by its estimate over batch (SGLD,
SGLD-FP, SAGA etc)

33 / 59



SGLD

1. Posterior distribution:

⇡(✓|X) =
QN

i=1 p(Xi |✓)⇡0(✓)R

Rd

QN
i=1 p(Xi |✓)⇡0(✓) d✓

/ e�U(✓),

where U = log ⇡0(✓) +
PN

i=1 log p(Xi |✓);
2. A computational bottleneck: calculating the full gradient rU scaling

proportionally to N can be very time consuming in the ”big data”
limit;

3. Replace rU(✓) by an unbiased estimate. This gives rise to the SGLD
algorithm, where the parameters are updated according to

✓k+1 = ✓k � �G (✓k , Sk+1) +
p
2� ⇠k+1,

G (✓, S) = rU0(✓) + KM
�1

X
i2S

rUi (✓),
(6)

where each Sk+1 is a random batch taking values in SM (here SM is
the set of all subsets S of {1, . . . ,N} with |S | = M) which is sampled
from a uniform distribution over SM independently of Fk (here
(Fk)k�0 is the filtration generated by {(✓`, S`)}`�0).

4. Note that E[G (✓k , Sk+1)|Fk ] = rU(✓k) and therefore G (✓k , Sk+1) is
an unbiased estimate of rU(✓k). 34 / 59



Transition kernel of MH algorithm

Let Q(x ,A) =
R
A q(x , y)dy be some MK (e.g. Gaussian)

1. Choose X0.

2. Given Xk , a candidate move Yk+1 is sampled from Q(Xk , ·)
3. Xk+1 = Yk+1 with probability ↵(Xk ,Yk+1), otherwise Xk+1 = Xk ,

where acceptance ratio

↵(x , y) = min

⇢
1,

⇡(y)q(y , x)

⇡(x)q(x , y)

�

MH transition kernel

P(x ,A) =

Z

A
↵(x , y)q(x , y)dy + ↵(x)�x(A),

where

↵(x) =

Z

X
(1� ↵(x , y))q(x , y)dy .
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Invariance of ⇡
Theorem

Distribution ⇡ is reversible w.r.t. P.

Proof.

We need to show that for any C 2 X ⇥ X
Z

X⇥X
⇡(x)dx P(x , dy)1C (x , y) =

Z

X⇥X
⇡(y)dy P(y , dx)1C (x , y)

For any x , y 2 X

⇡(x)↵(x , y)q(x , y) = {⇡(x)q(x , y)}_{⇡(y)q(y , x)} = ⇡(y)↵(y , x)q(y , x)

Moreover,
Z

X⇥X
⇡(x)dx�x(dy)↵(x)1C (x , y) =

Z

X
⇡(x)dx↵(x)1C (x , x)

=

Z

X
⇡(y)dy↵(y)1C (y , y) =

Z

X⇥X
⇡(y)dy�y (dx)↵(y)1C (x , y)
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Analysis of ULA

I Let ⇡(x) = Z
�1
d e�U(x);

L–smooth potential

U is L–smooth is U 2 C
2(Rd) and there exists L > 0 such that

krU(x)�rU(y)k  Lkx � yk

for any x , y 2 Rd .

I Unadjusted Langevin Algorithm, ULA:

Xk+1 = Xk � �rU(Yk) +
p

2�Zk+1, i .i .d . Zk ⇠ N(0, Id)

I Denote P�(x , ·) = N (x � �rU(x), 2� I).
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Kantorovich–Wasserstein distance

Kantorovich–Wasserstein distance

For �, ⌫, we denote their coupling set by ⇧(�, ⌫), i.e. ⇠ 2 ⇧(�, ⌫) is the
measure on X⇥ X satisfying for all A 2 B(X), ⇠(A,X) = �(A) and
⇠(X,A) = ⌫(A). For p � 1 and �, ⌫, let

Wp,d(�, ⌫) := inf
⇧(�,⌫)

⇢Z

X⇥X
dp(x , y) ⇠(dx , dy)

�1/p

be the Kantorovich–Wasserstein distance of order p between � and ⌫.
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Analysis of ULA

A1

U is L–smooth and m–strongly convex:

hrU(x)�rU(y), x � yi � mkx � yk2.

Theorem

For any � 2 (0,m/L2) there exists invariant distribution ⇡� :

W
2
2 (�x P

k
� ,⇡�)  (1�m�)k

Z
kx � yk2⇡�(dy)
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Analysis of ULA

I Fix x , x̃ 2 Rd . Synchronous coupling:

Xk+1 = Xk � �rU(Xk) +
p
2�Zk+1,

X̃k+1 = X̃k � �rU(X̃k) +
p
2�Zk+1

I Then

kXk+1 � X̃k+1k2 = kXk � X̃kk2

�2krU(Xk)�rU(X̃k)k2

� 2�hXk � X̃k ,rU(Xk)�rU(X̃k)[]

I Use A1:

kXk+1 � X̃k+1k2  (1 + �2
L
2 � 2�m)kXk � X̃kk2

 (1� �m)kXk � X̃kk2.
I Hence

W
2
2 (�x P

k
� , �x̃ P

k
�)  (1�m�)kW 2

2 (�x , �x̃)

I We may show that (�Pk
�)k2N is a Cauchy sequence and there exists

⇡�
� = ⇡� , moreover ⇡� P� = ⇡� .

40 / 59



Variance of MCMC estimate

Let ⇡ be an invariant distribution. Assume X0 ⇠ ⇡, i.e. we start from the
invariant distribution. Then

Var⇡

"
n
�1

n�1X

k=0

f (Xk)

#
=

Var⇡[f ]

n
+

1

n2

X

i 6=j

E⇡ [(f (Xi )� ⇡(f ))(f (Xj)� ⇡(f ))] =

=
⇢(f )(0)

n
+

2

n

n�1X

k=1

✓
1� k

n

◆
⇢(f )(k) 6= Var⇡[f ]

n

where
⇢(f )(k) = E⇡ [(f (X0)� ⇡(f ))(f (Xk)� ⇡(f ))]
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Variance of MCMC estimate

I Under appropriate conditions (e.g. �-irreducibility + apereodicity +
existence of solution of Poisson eq.) CLT holds:

1p
n

n�1X

i=0

[f (Xi )� ⇡(f )]
Law��! N (0,V1(f )),

where V1(f ) := lim
n!1

Var⇡
h

1p
n

Pn�1
i=0 (f (Xi )� ⇡(f ))

i

I Length of confidence interval for ⇡n(f ) proportional to
p

V1(f )p
n
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Ex2MCMC: Sampling through Exploration Exploitation
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Importance Sampling procedure

I Aim: sample from ⇡ and estimate ⇡(f ) =
R
RD f (x)⇡(dx);

I ⇡ is known up to a normalizing factor Z⇧, ⇡(dx) = ⇡̃(dx)/Z⇧;

I Importance Sampling (IS) consists of re-weighting samples from a
proposal distribution �.

I Define importance weights as w̃(x) = ⇡̃(x)/�(x);

I The self-normalized importance sampling (SNIS) estimator of ⇡(f ) is
then given by

b⇡N(f ) =
NX

i=1

!i
N f (X

i ) ,

where

X
1:N ⇠ � ,!i

N =
w̃(X i )

PN
j=1 w̃(X j)

, i 2 {1, . . . ,N} .
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From IS to SIR

I Sampling counterpart of the IS procedure is known as Sampling
Importance Resampling (SIR; Rubin [1987]);

I Sample X
1, . . . ,XN - i.i.d. from � and compute the importance

weights !1
N , . . . ,!

N
N ;

I Sample Y
1, . . . ,YM from X

1, . . . ,XN with replacement, and with
probabilities proportional to the weights !1

N , . . . ,!
N
N . That is, we

sample from the empirical distribution

⇡̂(dx) =
NX

i=1

!i
N�Xi (dx) ,

where �y (dx) denotes the Dirac mass at y .

I As N ! 1, Y 1, . . . ,YM ⇠ ⇧̂ will be distributed according to ⇡.

I Main drawback: the described procedure is only asymptotically valid.
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Iterated SIR (i-SIR) algorithm

Iterating samples from �, we arrive at iterated SIR algorithm (i-SIR ,
Andrieu et al. [2010], and Andrieu et al. [2018]).

Algorithm 1: Single stage of i-SIR algorithm

Input : Sample Yj from previous iteration
Output: New sample Yj+1

1 Set X 1
j+1 = Yj and draw X

2:N
j+1 ⇠ �.

2 for i 2 [N] do
3 compute the normalized weights

!i,j+1 = w̃(X i
j+1)/

PN
k=1 w̃(X k

j+1).

4 Set Ij+1 = Cat(!1,j+1, . . . ,!N,j+1).

5 Draw Yj+1 = X
Ij+1

j+1 .

The Markov chain {Yk , k 2 N} generated by i-SIR has the following
Markov kernel

PN(x ,A) =

Z
�x(dx

1)
NX

i=1

w̃(x i )
PN

j=1 w̃(x j)
A(x

i )
NY

j=2

�(dx j). (7)
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i-SIR algorithm

I Provided also that |w̃ |1 < 1, it was shown in Andrieu et al. [2018]
that the Markov kernel PN is uniformly geometrically ergodic.
Namely, for any initial distribution ⇠ on (X,X ) and k 2 N,

k⇠Pk
N � ⇡kTV  k

N , (8)

with ✏N = N�1
2L+N�2 ,L = |w̃ |1/�(w̃) and N = 1� ✏N .

I Note that the bound (8) relies significantly on the restrictive
condition that weights are uniformly bounded |w̃ |1 < 1.

I Moreover, even when this condition is satisfied, the rate N can be
close to 1 when the dimension d is large.

I Indeed, consider a simple scenario ⇡(x) =
Qd

i=1 p(xi ) and

�(x) =
Qd

i=1 q(xi ) for some densities p(·) and q(·) on R. Then it is
easy to see that L = (supy2R p(y)/q(y))d grows exponentially with d .
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i-SIR algorithm

To illustrate this phenomenon, we consider a simple problem of sampling
from the standard normal distribution N (0, Id) with the proposal
N (0, 2 Id) in increasing dimensions d up to 300.

0.95

Figure: Sampling from N (0, Id) with the proposal N (0, 2 Id). We display

confidence intervals for i-SIR and Ex
2
MCMC obtained from 100 independent

runs as blue and red regions, respectively. Ex
2
MCMC helps to achieve e�cient

sampling even in high dimensions.
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Ex
2
MCMC algorithm

I Main i-SIR drawback: absence of local exploration moves;

I Idea: apply a local MCMC kernel R (rejuvenation kernel) after each
i-SIR step;

I R has ⇡ as invariant distribution;

I Here comes Ex2MCMC : Exploration steps through i-SIR ,
Exploitation steps through R(x , ·);

I As our default choice we consider MALA as rejuvenation, but other
ones (HMC, NUTS) are also possible.
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Ex
2
MCMC algorithm

Algorithm 2: Single stage of Ex2MCMC algorithm with independent
proposals

1 Procedure Ex2MCMC (Yj ,⇤,R):
Input : Previous sample Yj ;

proposal distribution ⇤;
rejuvenation kernel R;

Output: New sample Yj+1;
2 Set X 1

j+1 = Yj , draw X
2:N
j+1 ⇠ �;

3 for i 2 [N] do
4 compute the normalized weights

!i,j+1 = w̃(X i
j+1)/

PN
k=1 w̃(X k

j+1);

5 Set Ij+1 = Cat(!1,j+1, . . . ,!N,j+1);

6 Draw Yj+1 ⇠ R(X
Ij+1

j+1 , ·).
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Ex
2
MCMC algorithm

V -geometric ergodicity

A Markov kernel Q with invariant probability measure ⇡ is
V -geometrically ergodic if there exist constants ⇢ 2 (0, 1) and M < 1
such that, for all x 2 X and k 2 N,

kQk(x , ·)� ⇡kV  M {V (x) + ⇡(V )}⇢k .
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Assumptions

A1

(i) R has ⇡ as its unique invariant distribution;
(ii) There exists a function V : X ! [1,1), such that for all r � rR > 1
there exist �R,r 2 [0, 1), bR,r < 1, such that
RV (x)  �R,rV (x) + bR,r Vr , where Vr = {x : V (x)  r};

A2

(i) For all r � rR, w̃1,r := supx2Vr
{w̃(x)/�(w̃)} < 1;

(ii) Var�[w̃ ]/{�(w̃)}2 < 1.
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Ex
2
MCMC algorithm

Theorem

Let A1 and A2 hold. Then, for all x 2 X and k 2 N,

kKk
N(x , ·)� ⇡kV  cKN{⇡(V ) + V (x)}̃k

KN
, (9)

where cKN , ̃KN 2 [0, 1) are some constants. In addition,

cKN = cK1 + O(N�1) and ̃KN = ̃K1 + O(N�1).
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Toy example

0.8

Figure: Single chain mixing visualization. – Blue color levels represent the

target 2d density. Random chain initialization is noted in black, 100 steps are

plotted per sampler: the size of each red dot corresponds to the number of

consecutive steps the walkers remains at a given location. For MALA, we

generate 300 samples and choose each 3-rd one for comparability. Note that

the variance of the global proposal (dotted countour lines) should be relatively

large to cover well all the modes. The step size of MALA also can not be

increased much to keep reasonable acceptance ratio.
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Adaptive proposals

I Consider family of proposals {�✓}, ✓ 2 RD , chosen to match the
target distribution ⇡̃;

I Let T : Rd ! Rd be smooth and invertible. Denote by T#⇤ the
distribution of Y = T (X ) with X ⇠ �;

I The corresponding density is given by �T (y) = �
�
T

�1(y)
�
JT�1(y),

where JT denotes the Jacobian determinant of T ;
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Adaptive proposals: learning procedure

I Disperancy measure: linear combination of forward and backward KL
divergence (generalizations to [Papamakarios et al., 2021] possible);

I Forward and backward KL:

Lf (✓) =

Z
log

⇡(x)

�✓(x)
⇡(x)dx ,

Lb(✓) =

Z
log

�(x)

⇡
�
T✓(x)

�
JT✓ (x)

�(x)dx .

I Given a sample Yk ⇠ ⇡ and Zk ⇠ � for k 2 [K ], by

drLf (Y 1:K , ✓) = � 1

K

KX

k=1

r log �✓(Yk) ,

drLb(Z 1:K , ✓) = � 1

K

KX

k=1

r log
�
⇡̃(T✓(Zk) JT✓ (Zk)

�
.

I Following Gabrié et al. [2021], we consider

bL(Y 1:K ,Z 1:K , ✓) = ↵cLf (Y 1:K , ✓) + �cLb(Z 1:K , ✓) .
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FlEx
2
MCMC algorithm with adaptive proposals

Algorithm 3: Single stage of FlEx2MCMC. Steps of Ex2MCMC are
done in parallel with common values of proposal parameters ✓j . Step 4
updates the parameters using the gradient estimate obtained from all
the chains.

Input : weights ✓j , batch Y
1:K
j

Output: new weights ✓j+1, batch Y
1:K
j+1

1 for k 2 [K ] do
2 Yj+1,k = Ex2MCMC (Yj,k ,T✓j#⇤,R)

3 Draw Z̄
1:K ⇠ �.

4 Update ✓j+1 = ✓j � �drL(Yj+1, Z̄ , ✓j).

Practical note

In our experiments: T✓ is modelled as a normalizing flow based on
RealNVP architecture (Dinh et al. [2017]).
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Take-home Messages & Future Works

I We know basics of MC, rejection sampling, importance samling,
MCMC, normalizing flows

I To become world expert in Markov chains read Douc et al. [2018]

I We are ready for ’real’ projects (join HDI Lab team)

Thank you!
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