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Background on stochastic gradient boosting

ML setting

I Dataset D = {(xk , yk)}k=1..n, xk ∈ Rm, yk ∈ R
I (xk , yk) i.i.d. according to unknown P(·, ·)
I L(ŷ , y) is a given loss function

Problem:
Find F ∗ : Rm → R, a good predictor of y : F ∗ = arg minF EP(L(F (x), y))
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Background on stochastic gradient boosting

Gradient boosting (GB)

I Choose a set of “weak” hypotheses F ⊂ {f : Rm → R}

I At each step:

1. Compute derivatives:

g t(xk , yk) = ∂L(s,yk )
∂s |s=F t(xk ), h

t(xk , yk) = ∂2L(s,yk )
∂s2 |s=F t(xk )

2. Approximate negative gradient / Newton step by f t ∈ F :

f t = arg min
f∈F

1

n

n∑
k=1

ht(xk , yk)

(
−g t(xk , yk)

ht(xk , yk)
− f (xk)

)2

3. Make a step: F t+1 = F t + δ · f t

I After T steps, obtain a “strong” model FT
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Background on stochastic gradient boosting

A key problem

I weak models f t are highly correlated, since they are trained on the same dataset

I This leads to high variance wrt. data randomness

I what mean a limited generalization ability of GB

From GB to Stochastic GB
A common approach is to use random subsampling of the data at each gradient step



Background on stochastic gradient boosting

A key problem

I weak models f t are highly correlated, since they are trained on the same dataset

I This leads to high variance wrt. data randomness

I what mean a limited generalization ability of GB

From GB to Stochastic GB
A common approach is to use random subsampling of the data at each gradient step



Background on stochastic gradient boosting

Stochastic Gradient Boosting (SGB)1

I A randomized version of gradient boosting algorithm proposed by Friedman

I At each iteration t, random fraction s of the dataset is used to fit the model f t .

I SGB selects random s · n observations Dt ⊂ D uniformly and without replacement

I SGB improves the quality of the learned model and reduces training complexity

1J. H. Friedman, Stochastic gradient boosting. Computational Statistics & Data Analysis 38(4),
2002



Background on stochastic gradient boosting

Non-uniform sampling

Importance sampling shows its superiority over uniform sampling2:

Some non-uniform sampling methods were proposed for AdaBoost algorithm, but they
are not applicable to SGB with decision trees

2Tyler B. Johnson, Carlos Guestrin, Training Deep Models Faster with Robust, Approximate
Importance Sampling, NeurIPS, 2018



Background on stochastic gradient boosting

Gradient-based one-side sampling (GOSS)3

I GOSS samples:
I αn objects with largest absolute gradients with probability 1
I (s − α)n other objects at random

I For unbiased estimation, GOSS uses weights:
I αn samples with largest gradients are used with weight 1
I other samples are used with weight 1−α

s−α .

3G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, LightGBM: A highly
efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems, 2017
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A formalisation of sampling problem & theoretical analysis

Example of a decision tree model

N Y

Pulse < 90

Age > 14 Age < 4

N YNY



A formalisation of sampling problem & theoretical analysis

Choosing a split

I At each step of building a tree, we take some candidate splits and choose the best
one among them

I S(f , v) is a score of a split based on feature f and threshold value v

I S(f , v) =
∑

l∈L

(
min
cl

∑
i∈l h

t(xi , yi )
(
−g t(xi ,yi )

ht(xi ,yi )
− cl

)2)
=
∑
l∈L

(
∑

i∈l gi)
2∑

i∈l
hi

+ Const.

Hint: cl =
∑

i∈l gi∑
i∈l

hi
.



A formalisation of sampling problem & theoretical analysis

Minimal Variance Sampling in Stochastic Gradient Boosting4

I Let ξi := Id((xi , yi ) ∈ Dt) be independent Bernoulli variables, ξi ∼ Bernoulli(pi ).

I Sampling ratio is s = 1
nE

n∑
i=1

ξi = 1
n

n∑
i=1

pi .

I Inverse probability weighting estimation: wi = 1
pi

for instance i

I Score is approximated by Ŝ(f , v) :=
∑
l∈L

(∑
i∈l

1
pi
ξigi

)2

∑
i∈l

1
pi
ξihi

I Goal: choose pi that minimize E∆2 = E
(
Ŝ(f , v)− S(f , v)

)2

4B. Ibragimov, G. Gusev, NeurIPS, 2019.
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A formalisation of sampling problem & theoretical analysis

Theorem

Denote Al :=
∑
i∈l

1
pi
ξigi , Bl :=

∑
i∈l

1
pi
ξihi , cl :=

∑
i∈l

gi∑
i∈l

hi

We have E∆2 ≈
∑
l∈L

c2l (4Var(Al)− 4clCov(Al ,Bl) + c2l Var(Bl))



A formalisation of sampling problem & theoretical analysis

Sketch of proof

I Estimate the expectation by representing Ŝ(f , v) as the value of function

F (a1, b1, . . . , a|L|, b|L|) :=
|L|∑
l=1

a2l
bl

at point (A1,B1, . . . ,A|L|,B|L|).

I Use the first-order Taylor series expansion of F at point (µa1 , µb1 , . . . , µa|L| , µb|L|),
where µal = EAl =

∑
i∈l

gi and µbl = EBl =
∑
i∈l

hi .

I Without loss of generality, we further provide calculations for the case |L| = 1.

I We have F (a1, b1) ≈ F (µa1 , µb1) + 2
µa1
µb1

(a1 − µa1)− µ2a1
µ2b1

(b1 − µb1), and, therefore,

∆ = F (a1, b1)− F (µa1 , µb1) ≈ 2
µa1
µb1

(a1 − µa1)− µ2a1
µ2b1

(b1 − µb1).

I Further, we have

E∆2 ≈ E(2
µa1
µb1

(a1−µa1)−
µ2a1
µ2b1

(b1−µb1))2 = c21 (4Var(a1)−4c1Cov(a1, b1)+c21Var(b1)).
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Minimal Variance Sampling (MVS)

Further simplifications towards an optimization problem

I Note that −4clCov(Al ,Bl) ≤ 4Var(Al) + c2l Var(Bl)

I so
∑
l∈L

c2l
(
4Var(Al) + c2l Var(Bl)) is an upper bound for E∆2

I Replacing cl by a constant upper bound and bounding (1− pi ) by 1:

n∑
i=1

1

pi
g2
i +λ

n∑
i=1

1

pi
h2i → min

pi
w.r.t.

n∑
i=1

pi = n·s and pi ∈ [0, 1], i = 1, . . . , n.
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Minimal Variance Sampling (MVS)

Theorem

There exists a value µ such that pi = min

(
1,

√
g2
i +λh

2
i

µ

)
is a solution for the

above problem

Remark
I for λ = 0 we have importance sampling

I for λ→∞ and hi = 1 we have SGB.
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Minimal Variance Sampling (MVS)

MVS algorithm

I Sort the data by ascending g2
i + λh2i

I Compute cumsum[k] =
k∑

i=1

√
g2
i + λh2i

I Sample rate s[i ] =
n−i+ cumsum[i ]√

g2
i
+λh2

i

n

I Use binary search to find the threshold

I It is possible to reduce complexity from O(n log n) to O(n)
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Experimental results

Datasets

Dataset # Examples # Features

KDD Internet 10108 69

Adult 48842 15

Amazon 32769 10

KDD Upselling 50000 231

Kick prediction 72983 36

KDD Churn 50000 231

Click prediction 399482 12



Experimental results
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Experimental results

Performance comparison

KDD Internet Adult Amazon KDD Upselling Kick KDD Churn Click Average

Baseline 0.0408 0.0688 0.1517 0.1345 0.2265 0.2532 0.2655 -0.0%

SGB -1.13% +0.81% -1.14% +0.03% -0.14% +0.14% -0.14% -0.22%

GOSS -0.64% -0.11% -1.23% +0.07% -0.10% +0.16% -0.09% -0.28%

MVS -3.03% -0.24% -1.78% -0.07% -0.19% +0.17% -0.04% -0.74%
MVS Adaptive -2.79% -0.13% -1.57% -0.28% -0.19% +0.07% -0.03% -0.70%

Table: Baseline scores / relative error change



Experimental results

Different sample rates

Sample rate 0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5

SGB +19.92% +11.35% +6.83% +4.99% +3.84% +3.03% +2.17% +1.57% +1.10% +0.42%

GOSS +22.37% +12.75% +8.00% +5.32% +3.39% +2.25% +1.41% +0.75% +0.23% -0.16%

MVS +13.93% +7.76% +3.69% +1.91% +0.74% +0.14% -0.21% -0.43% -0.41% -0.45%

MVS Adaptive +13.72% +7.47% +3.71% +1.70% +0.55% -0.03% -0.07% -0.28% -0.32% -0.51%

Table: Relative error change, average over datasets



Conclusion

1. MVS: a theoretically grounded sampling method for SGB

2. Improves generalization ability / training time

3. Used as a dafault setting in Catboost at Yandex

4. Replaced ordered boosting5, a highly complex and expensive option

5Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin,
”CatBoost: unbiased boosting with categorical features”, NeurIPS, 2018.
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2.2 Náıve approaches
2.3 Main idea
2.4 Two-level cross-validation algorithm
2.5 Experiments



Outline

1. Minimal Variance Sampling in stochastic gradient boosting
1.1 Background on stochastic gradient boosting
1.2 A formalisation of sampling problem & theoretical analysis
1.3 Minimal Variance Sampling
1.4 Experimental results

2. Instance-wise early stopping

2.1 Cross-validation scheme
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Background on stochastic gradient boosting

Gradient boosting (GB)

I Choose a set of “weak” hypotheses F ⊂ {f : Rm → R}
I At each step:

1. Compute derivatives: g t(xk , yk) = ∂L(s,yk )
∂s |s=F t(xk ), h

t(xk , yk) = ∂2L(s,yk )
∂s2 |s=F t(xk )

2. Approximate negative gradient / Newton step by f t ∈ F :

f t = arg min
f∈F

1

n

n∑
k=1

ht(xk , yk)

(
−g t(xk , yk)

ht(xk , yk)
− f (xk)

)2

3. Make a step: F t+1 = F t + δ · f t

I After T steps, obtain a “strong” model FT



Background on stochastic gradient boosting

Key problem

I How to select the number of steps T?

FT =
T∑
t=1

δ · f t
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Cross-validation scheme

It is standard to use cross-validation protocol to determine an optimal number of steps:

I Randomly split D =
k⊔

j=1
Sj into k disjoint subsets.

I For each j , train an ensemble Fj on S−j and obtain a learning curve on Sj :

l
(t)
j =

1

|Sj |
∑

(x ,y)∈Sj

L
(
F t
j (x), y

)
, ∀t ≤ T

I Average learning curves over all j and select the moment t̂ with the least value:

t̂ := arg min
t

l (t), l (t) =
1

k

∑
j

l
(t)
j .
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Cross-validation scheme

I This scheme aims at the optimization problem

min
t

E(x ,y)∼P [L(F t(x), y)]

.

I However, we could set another problem instead:

E(x ,y)∼P min
t(x)

[L(F t(x)(x), y)]

due to an obvious inequality:

Ex∼P min
t(x)

E(y |x)∼P [L(F t(x), y)] ≤ min
t

E(x ,y)∼P [L(F t(x), y)]

.

I The standard cross-validation scheme ignores heterogeneity of the sample space.
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Náıve approaches

Straightforward regression idea

I calculate an individual optimal moment for each objects by cross–validation

I approximate optimal moment for each object by a separate regression model

I Fails due to large noise: target is clearly an overestimate.



Náıve approaches

Straightforward regression idea

I calculate an individual optimal moment for each objects by cross–validation

I approximate optimal moment for each object by a separate regression model

I Fails due to large noise: target is clearly an overestimate.
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Main idea

I Suppose the input space D is divided into C disjoint regions (D1,D2, ...,DC ) in
such a way that all samples in Di are close to each other in some sense.

I Ensemble size selection based on partition {Di}, where the number of estimators
is chosen individually for each cluster Di , can have better quality compared to one
”universal” common size:

EP min
t

[L(F t(x), y)] ≤ EDi∼Dmin
t

E[L(F t(x), y)|Di ] ≤ min
t

EP [L(F t(x), y)].



Main idea
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Two-level cross-validation algorithm

Problems
I It is still unclear how to estimate the possible effect of cluster-based pruning for a

particular learning task.

I Moreover, the proposed method incorporates some extra hyperparameters which
can be tuned (e.g., clusterization method and number of clusters)

I Obviously, since the validation sets are used to estimate stopping moments for
clusters, we can not use them for tuning. In particular, the error estimated in this
way monotonically decreases with growth of cluster count.



Two-level cross-validation algorithm

To avoid above problems we propose the following framework:

I Let Di ,j = Di ∩ Sj be the set of objects from the j-th fold belonging to the cluster
Di and ni ,j = |Di ,j |.

I Calculate the learning curve for each Di ,j

l
(t)
i ,j =

1

ni ,j

∑
(x ,y)∈Di,j

L
(
F t
j (x), y

)
.

I To obtain less biased estimator, for each fold q we shrink the model size to the
number of steps calculated via learning curves for the remaining folds:

L
(t)
i ,−q =

∑
j 6=q ni ,j · l

(t)
i ,j∑

j 6=q ni ,j
,



Two-level cross-validation algorithm



Two-level cross-validation algorithm

The complexity of this step O(C (T + k) + nT ) is meager compared to the ensemble
training complexity, which is at least Ω(mndT )
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Experiments

I We use one of the most popular implementation of Gradient Boosting –
CatBoost, as it achieves SOTA results on many benchmarks.

I We use divisive clustering via decision tree to obtain data clusters.



Experiments

I We use one of the most popular implementation of Gradient Boosting –
CatBoost, as it achieves SOTA results on many benchmarks.

I We use divisive clustering via decision tree to obtain data clusters.

Table: Quality estimation, 0-1 loss / logloss, relative error change

Adult Amazon KDD Upselling Kick KDD Internet
Baseline 0.1264 / 0.2723 0.0447 / 0.1400 0.0494 / 0.1666 0.0496 / 0.2857 0.1004 / 0.2202

Adaptive pruning -0.24% / -0.24% -1.37% / -0.53% -0.20% / -0.10% +0.11% / -0.19% -2.46% / -0.52%
Click Higgs Marketing Default HEPMASS

Baseline 0.1564 / 0.3916 0.2364 / 0.4810 0.0926 / 0.1937 0.1865 / 0.4327 0.1258 / 0.2768

Adaptive pruning +0.04% / -0.03% -0.14% / -0.14% -2.27% / -0.71% -2.50% / -0.07% -0.17% / -0.16%



Thank you!
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