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Background on GBDT

Gradient Boosting is one of the most powerful methods for solving prediction
problems in both classification and regression domains.

It is a dominant tool today in application domains where tabular data is
abundant, for example, in e-commerce, financial, and retail industries.

It has contributed countless top solutions in Kaggle competitions.

Leonid Iosipoi 3/45



Background on GBDT

• Dataset D = {(xk, yk)}nk=1, where xi ∈ Rm and yi ∈ Rd

• (xk, yk) are i.i.d. according to unknown P (·, ·)
• L(y, ŷ) is a given loss function

The goal is to construct a model F (x) to minimize the aggregation of loss L,

Ln(F ) =
n∑
k=1

L
(
yk, F (xk)

)
.
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Background on GBDT

Gradient Boosting is an algorithm which combines weak learners into a single
strong learner in an iterative and greedy fashion.

• Choose a set of weak learners F ⊂ {f : Rm → Rd}
• At each step t ∈ N

1. Compute derivatives:

gti = ∇aL(yi, a)
∣∣
a=F t−1(xi)

and Ht
i = ∇2

aaL(yi, x)
∣∣
a=F t−1(xi)

.

2. Find an approximate minimizer f t ∈ F using the Newton method:

f t ≈ argmin
f∈F

{
n∑
i=1

((
gti
)>

f(xi) +
1

2

(
f(xi)

)>
Ht
if(xi)

)
+ Ω(f)

}
,

where Ω(f) is a regularization term.

3. Update the model: F t+1 = F t + εf t (ε > 0 is a learning rate).
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Background on GBDT

Gradient Boosted Decision Tree (GBDT) uses decision trees as weak learners.
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Based on the construction mechanism, any decision tree can be expressed as

f(x) =
J∑
j=1

vj · [x ∈ Rj],

where J is the number of leaves, Rj is a j-th leaf, vj is the value of j-th leaf.
Here [predicate] denotes the indicator function.
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Background on GBDT

The problem of learning f t can be divided into two separate problems:

1. Finding the tree structure — division of a feature space into J leaves.

2. Finding the leaf values — finding leaf values which minimize the loss
function for a tree with a given structure.
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Background on GBDT

Fitting a decision tree

Since decision trees take constant values at each leaf, we can optimize the
objective function from for each leaf Rj separately,

vj = argmin
v∈Rd

{∑
xi∈Rj

(
g>i v +

1

2
v>Hiv

)
+
λ

2
‖v‖2

}
,

where we employ l2 regularization on leaf values with λ > 0.

(we don’t indicate the dependence of J , vj, Rj, gi, and Hi on the step t)
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Background on GBDT

If the loss function L is separable w.r.t. different outputs, all Hessians
H1, . . . , Hn are diagonal. If it is not the case, it is a common practice to
purposely simplify them to this extent in order to avoid matrix inversion.

For diagonal Hessians, the optimal leaf values are given by

vj = −
∑

i∈R g
j
i∑

i∈R h
j
i + λ

, where gi =

g
1
i
...
gdi

 and Hi =

h
1
i . . . 0
... . . . ...
0 . . . hdi

 .
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Background on GBDT

Substituting these leaf values back into the objective function, and omitting
insignificant terms, we obtain

Loss(ft) = −1

2

J∑
j=1

S(Rj), where S(R) =
d∑
j=1

(∑
xi∈R g

j
i

)2∑
xi∈R h

j
i + λ

.

The function S(·) will be referred to as the scoring function.
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Background on GBDT

Finding the tree structure

• Commonly, a greedy algorithm that starts from a single leaf and
iteratively adds branches to the tree is used.

• At a general step, to split one of existing leaves, we iterate through all
leaves, features, and thresholds for each feature.

• The split of leaf R is based on a feature and threshold for this feature
Rleft = {xi ∈ R | xji ≤ threshold} and Rright = {xi ∈ R | xji > threshold}.
To evaluate split candidates, we maximize the impurity score given by

S(Rleft) + S(Rright).

This is equivalent to maximization of the information gain

Gain = −1

2

(
S(R)−

(
S(Rleft) + S(Rright)

))
.
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Background on GBDT

Similar to the previous step, some simplifications to the scoring function are
made to speed up its computation done a tremendous number of times.

For instance, in CatBoost, the second-order derivatives are totally ignored
during the split search and are used only to compute leaf values.

We will develop this idea further in our work.
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Sampling in GBDT

A key problem

Weak learners f t are highly correlated since they are trained on the
same dataset. This leads to a limited generalization ability of GBDT.

A common approach is to use random subsampling of the training data
at each boosting iteration.
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Sampling in GBDT

Stochastic Gradient Boosting (SGB)

• A randomized version of gradient boosting algorithm proposed by
Friedman (Computational Statistics & Data Analysis 38(4), 2002).

• At each iteration, random fraction s of objects is used to fit the model

• SGB selects random s · n objects uniformly and without replacement

• SGB improves the ensemble quality and reduces its training complexity
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Sampling in GBDT

Gradient-based one-side sampling (GOSS)

• GOSS keeps the data instances with large gradients and randomly drops
the instances with small gradients (LightGBM paper, NeurIPS, 2017).

• GOSS samples:
– αn objects with largest absolute gradients with probability 1

– s(1− α)n other objects at random

• For unbiased estimation, GOSS uses weights:
– αn samples with largest gradients are used with weight 1

– other samples are used with weight (1− α)/s
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Sampling in GBDT

Minimal Variance Sampling (MVS)

• A nearly optimal non-uniform sampling method for sample instances was
proposed by Bulat Ibragimov and Gleb Gusev (NeurIPS, 2019).

• MVS randomly chooses objects to maximize the estimation accuracy of
split scoring used to train decision trees at each iteration.
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Fast Split Scoring
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Fast Split Scoring

Our main focus will be the scalability of GBDT to multioutput problems:

• multiclass classification

• multilabel classification

• multioutput regression

These problems arise in various areas such as Finance, Multivariate Time
Series Forecasting, Recommender Systems, and others.
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Fast Split Scoring

There are several extremely efficient, open-source, and production-ready
implementations of GBDT such as

• XGBoost

• LightGBM

• CatBoost

Even for them, fitting a GBDT model for moderately large datasets with
high-dimensional output can easily encounter near-forever running time.
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Motivation

XGBoost and CatBoost training time on a synthetic dataset
(2000k instances, 100 features) for multiclass classification.
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Motivation

There are two possible strategies on how to handle a multioutput problem.

• One-versus-all strategy assumes that each output is handled separately,
(at each boosting step, a single decision tree is built for every output).
Examples: XGBoost and LightGBM.

• Single-tree strategy assumes that all outputs are handled together
(at each boosting step, a single multivariate tree is built for all outputs).
Example: CatBoost.

Leonid Iosipoi 22/45



Motivation

There are two possible strategies on how to handle a multioutput problem.

• One-versus-all strategy assumes that each output is handled separately,
(at each boosting step, a single decision tree is built for every output).
Examples: XGBoost and LightGBM.

• Single-tree strategy assumes that all outputs are handled together
(at each boosting step, a single multivariate tree is built for all outputs).
Example: CatBoost.

Leonid Iosipoi 22/45



Motivation

There are two possible strategies on how to handle a multioutput problem.

• One-versus-all strategy assumes that each output is handled separately,
(at each boosting step, a single decision tree is built for every output).
Examples: XGBoost and LightGBM.

• Single-tree strategy assumes that all outputs are handled together
(at each boosting step, a single multivariate tree is built for all outputs).
Example: CatBoost.

Leonid Iosipoi 22/45



Fast Split Scoring

The computational complexity of both strategies is proportional to the
number of outputs. Specifically,

• One-versus-all strategy requires fitting a separate decision tree for each
single output at each boosting step.

• Single-tree strategy requires scanning all the output dimensions
(a) to estimate the information gain during the split search
(b) to compute leaf values of a decision tree with a given structure
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Fast Split Scoring

Key idea: To exclude some of the output dimensions during the split search
(the most time-consuming step) for single-tree GBDT.

The methods we are going to discuss are very similar to SGB, GOSS, MVS
with the only difference that they are applied to output dimensions.
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Fast Split Scoring

For split search, we simplify the scoring function to

SG(R) =

∥∥G>vR∥∥2
|R|+ λ

,

where

G =

g
1
1 . . . gd1
... . . . ...
g1n . . . gdn

 and vR =

[x1 ∈ R]
...

[xn ∈ R]

 .
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Fast Split Scoring

Sketching

To reduce the complexity of computing SG(R) in d, we will approximate
SG(R) with SGk

(R) for some other matrix Gk ∈ Rn×k with k � d.

We will refer to Gk as the sketch matrix.

Since there might be several good splits with almost equal impurity scores,
replacing SG with SGk

might result in completely different tree structures.
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Fast Split Scoring

We want the proposed approximation to be universal and uniformly accurate
for all splits we will possibly iterate over. Our approximation error is given by

Error(SG, SGk
) = sup

R

∣∣SG(R)− SGk
(R)
∣∣.

Given the two matrices G and Gk, this optimization problem is an instance of
Integer Programming problem and hence is NP-complete.

Since the brute force is not an option in our case, we will replace this problem
with a relaxed one and will look for nearly-optimal solutions.
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Fast Split Scoring

We show that reasonably good upper bounds on the error are obtained when
GG> is well approximated with GkG

>
k in the operator norm.

This observation reduces our problem to Approximate Matrix Multiplication
(AMM) which is extensively studied.
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Fast Split Scoring

Truncated SVD

Key Idea: To replace the gradient matrix G with its Truncated SVD version.

We start with Truncated SVD since, by the matrix approximation lemma,
it provides the optimal deterministic solution to AMM.
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Fast Split Scoring

Proposition. Let G ∈ Rn×d be any matrix. Let also Gk ∈ Rn×k be the
best k-rank approximation of G provided by the Truncated SVD. Then

Error(SG, SGk
) ≤ σ2

k+1(G),

where σ2
k+1(G) is (k + 1) largest singular value of G.
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Fast Split Scoring

Top Outputs

Key Idea: To choose k columns of G with the largest Euclidian norm.

Specifically, let us denote the columns of G by g1, . . . , gd and let i1, . . . , id be
the indexes which sort the columns of G in descending order by their norm,
‖gi1‖ ≥ ‖gi2‖ ≥ . . . ≥ ‖gid‖. We consider the following sketch

G =

 | | |
g1 g2 . . . gd
| | |

 , Gk =

 | | |
gi1 gi2 . . . gik
| | |

 .
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Fast Split Scoring

Proposition. Let G ∈ Rn×d be any matrix. Let also Gk ∈ Rn×k be the sketch
of G given by Top Outputs. Then

Error(SG, SGk
) ≤

d∑
j=k+1

‖gij‖2.
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Fast Split Scoring

Random Sampling

Key Idea: To sample k columns of G with optimal (non-uniform) probabilities.

Namely, we define the non-uniform sampling probabilities by

pi =
‖gi‖2∑d
j=1 ‖gj‖2

, i = 1, . . . , d.
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Fast Split Scoring

Now we consider the following sketch

Gk =

 | | |
ĝ1 ĝ2 . . . ĝk
| | |

 ,

where the columns ĝ1, . . . , ĝk are independent copies of the random vector ĝ
such that

ĝ =
1√
kpi

gi with probability pi.
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Fast Split Scoring

Proposition. Let G ∈ Rn×d be any matrix. Let also Gk ∈ Rn×k be a sketch
given by Random Sampling. Then for any δ ∈ (0, 1), with probability at least
1− δ,

Error(SG, SGk
) ≤ CG,δ

‖G‖2√
k
,

where CG,δ is a constant depending on G and δ and is given by

CG,δ = 2

√
sr(G) log

(
4 sr(G)

δ

)
.
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Fast Split Scoring

Random Projections

Key Idea: To sample k random linear combinations of columns of G.

Previously, the sketch Gk was formed by sampling columns from G according
to some probability distribution. This process can be viewed as multiplication
of G by a matrix Π,

Gk = GΠ,

where Π ∈ Rd×k has independent columns, and each column is all zero except
for a 1 in a random location.
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Fast Split Scoring

Now we consider sampling matrices Π, every entry of which is an
independently sampled random variable. Namely, we consider the sketch

Gk = GΠ,

where Π ∈ Rd×k is a random matrix filled with independent N (0, k−1) entries.

This approach is based on the Johnson-Lindenstrauss lemma. In fact, this
lemma is true for many other distributions, but there was no significant
difference between them in our numerical experiments.
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Fast Split Scoring

Proposition. Let G ∈ Rn×d be any matrix. Let also Π ∈ Rd×k be a random
matrix filled with independently sampled N (0, k−1) entries. Set Gk = GΠ.
Then for any δ ∈ (0, 1), with probability at least 1− δ,

Error(SG, SGk
) ≤ CG,δ

‖G‖2√
k
,

where CG,δ is a constant depending on G and δ and is given by

CG,δ = c

√
sr(G) + ln

(
1

δ

)
.

for some absolute constant c > 0.
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Numerical Results

The goal of out numerical study is to compare

• proposed methods for fast split scoring in GBDT

• existing state-of-art boosting toolkits supporting multioutput tasks

We implemented a version of the GBDT algorithm in Python – SketchBoost.
It follows the classic scheme as XGBoost does, works only on GPU, and uses
Python GPU libraries such as CuPy and Numba.
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Numerical Results

The experiments were conducted on datasets from Kaggle, OpenML, and
Mulan website for multiclass/multilabel classification and multitask regression.

Dataset Task Rows Features Classes/Labels/Targets

Otto multiclass 61 878 93 9
SF-Crime multiclass 878 049 10 39
Helena multiclass 65 196 27 100
Dionis multiclass 416 188 60 355

Mediamill multilabel 43 910 120 101
MoA multilabel 23 814 876 206
Delicious multilabel 16 110 500 983

RF1 multitask 9125 64 8
SCM20D multitask 8966 61 16
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Numerical Results

Training time per fold in seconds.
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Numerical Results

Dependence of test errors on sketch size k ∈ {1, 2, 5, 10, 20}.
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Numerical Results

Test errors (cross-entropy for classification and RMSE for regression) ± their STD.
(XGBoost supports only multiclass classification tasks and hence has missing values.)

SketchBoost Baselines

Dataset Top Outputs Random Sampling Random Projection SketchBoost Full CatBoost XGBoost
(for the best k) (for the best k) (for the best k) (multioutput) (multioutput) (one-vs-all)

Multiclass classification
Otto (9 classes) 0.4715±0.0035 0.4636±0.0026 0.4566±0.0023 0.4697±0.0030 0.4658±0.0033 0.4599±0.0028
SF-Crime (39 classes) 2.2070±0.0005 2.2037±0.0004 2.2038±0.0004 2.2067±0.0003 2.2036±0.0005 2.2208±0.0008
Helena (100 classes) 2.5923±0.0024 2.5693±0.0022 2.5673±0.0026 2.5865±0.0025 2.5698±0.0025 2.5889±0.0032
Dionis (355 classes) 0.3146±0.0011 0.3040±0.0014 0.2848±0.0012 0.3114±0.0009 0.3085±0.0010 0.3502±0.0020

Multilabel classification
Mediamill (101 labels) 0.0745±1.3e-05 0.0745±1.3e-05 0.0743±1.1e-05 0.0747±1.3e-05 0.0754±1.1e-05 –
MoA (206 labels) 0.0163±2.2e-05 0.0160±1e-05 0.0160±6e-06 0.0160±9e-06 0.0161±2.6e-05 –
Delicious (983 labels) 0.0622±6.2e-05 0.0619±5.9e-05 0.0620±6.2e-05 0.0619±5.5e-05 0.0614±5.2e-05 –

Multitask regression
RF1 (8 tasks) 1.1860±0.1366 0.9944±0.1015 0.9056±0.0582 1.1687±0.0835 0.8975±0.0384 –
SCM20D (16 tasks) 88.7442±0.6346 86.2964±0.4398 85.8061±0.5534 91.0142±0.3397 90.9814±0.3652 –
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Numerical Results

Training time per fold in seconds.
(XGBoost supports only multiclass classification tasks and hence has missing values.)

SketchBoost (GPU) Baseline

Dataset Top Outputs Random Sampling Random Projection SketchBoost Full CatBoost XGBoost
(for the best k) (for the best k) (for the best k) (multioutput) (multioutput) (one-vs-all)

Multiclass classification GPU GPU
Otto (9 classes) 113 102 89 131 73 1244
SF-Crime (39 classes) 705 676 612 1146 659 4016
Helena (100 classes) 154 180 113 355 436 1036
Dionis (355 classes) 1889 2038 419 23919 18600 18635

Multilabel classification CPU
Mediamill (101 labels) 251 263 294 1777 10164 –
MoA (206 labels) 103 189 87 696 9398 –
Delicious (983 labels) 575 664 1259 19553 20120 –

Multitask regression CPU
RF1 (8 tasks) 369 396 340 413 804 –
SCM20D (16 tasks) 499 528 479 597 798 –
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Conclusions

• Four different methods to accelerate the training time of GBDT on
multioutput tasks. They are generic and can be easily integrated into
any GBDT realization that uses the single-tree strategy.

• Empirical study shows that these methods achieve comparable or even
better performance compared to the existing state-of-the-art boosting
toolkits but in remarkably less time.
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Thank you for listening!
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