
Posterior sampling and Bayesian bootstrap:
sample complexity and regret bounds

Alexey Naumov, Daniil Tiapkin

HDI Lab

HSE University

November 1, 2022

1 / 63

1. Lecture 1: Introduction to stochastic multi-armed bandits
regret
Exploration-exploitation dilemma
Explore-First Algorithm
Optimism in the Face of Uncertainty

2. MDP Basics. Policy Evaluation
Markov Decision Process
Policy’s quality
Value iteration
TD learning
Stochastic approximation

3. Learning a (near-) optimal policy
SARSA
Q-learning

4. From Dirichlet to Rubin: Optimistic Exploration in RL without
Bonuses

2 / 63

References

▶ A book for reading on the plane, on the beach, on the train etc:

Richard Sutton and Andrew Barto, Reinforcement Learning: An
Introduction. Second edition. MIT (Sutton and Barto [2018]);

▶ For strong people:

Csaba Szepesvári, Algorithms for reinforcement learning (Szepesvári
[2010]);

▶ For very strong people:

Martin Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, Wiley (Puterman [2014]);

Vivek Borkar, Stochastic Approximation. A Dynamical Systems
Viewpoint, Cambridge University Press, 2008 (Borkar [2008]).

2 / 63

Lecture 1: Introduction to stochastic multi-armed bandits

▶ Stochastic Multi-armed bandits: basic concepts.

▶ Concept of regret bounds.

▶ Exploration-exploitation trade-off.

▶ Recap: Hoeffding inequality.

▶ Exploration first algorithm.

▶ Optimism in face of uncertainty: Upper confidence bound algorithm
(UCB).

3 / 63

Stochastic Multi-Armed Bandit Problem

Stochastic Multi-Armed Bandit Problem

Given K possible actions A (a.k.a. arms), each arm a has its underlying
distribution of rewards Da. The goal of the algorithm (a.k.a. agent) is to
find an arm a that maximizes expectation of an observed reward
µ(a) = E[Da] during T rounds of interaction.

In each round t ∈ [T]:

▶ Agent picks arm at ∈ A;
▶ Agent receives reward rt ∼ Dat for a chosen arm at .

All rewards generated by a single arm assumed to be independent and
identically distributed (IID). For simplicity we assume bounded reward
rt ∈ [0, 1].

4 / 63

Regret

Set of notations:

▶ The mean reward is µ(a) := E[Da];

▶ The best reward is µ⋆ := maxa∈A µ(a);

▶ The difference ∆(a) := µ⋆ − µ(a) describes how worse the arm a
compared to µ⋆; we call ∆(a) as a gap of arm a;

▶ An optimal arm a⋆ is an arm with µ(a⋆) = µ⋆ or, equivalently,
∆(a⋆) = 0. It may not be unique!

We define a performance measure as a cumulative regret (or just regret)
at round T 1

RT :=
T∑
t=1

µ⋆ − µ(at) = Tµ⋆ −
T∑
t=1

µ(at).

1In the literature this quantity is often called pseudo-regret.
5 / 63

Exploration-exploitation dilemma
On each round t there is a choice: we need to search an information on
rarely used arms (exploration) or just act according to the arm with best
estimated mean (exploitation).

Figure: Image source: UC Berkeley Intro to AI course

6 / 63

http://ai.berkeley.edu/lecture_slides.html

Explore-First Algorithm

▶ Exploration phase: Try each arm N times;

▶ Select arm â with the highest average reward;

▶ Exploitation phase: play arm â in all remaining T − NK rounds.

Theorem

For N = O(T
√
log(T)/K)2/3 Explore-First Algorithm achieves

E[RT] ≤ O
(
T 2/3(K log(T))1/3

)
.

7 / 63

Proof

Theorem (Hoeffding bound)

Let X1, . . . ,Xn be a sequence of IID random variables supported in [a, b].
Then

P

[∣∣∣∣∣
n∑

i=1

Xi − nE[X1]

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−2t2

n(b − a)2

)
ML friendly: For any δ ∈ (0, 1) with probability at least 1− δ the
following bound holds∣∣∣∣∣1n

n∑
i=1

Xi − E[X1]

∣∣∣∣∣ ≤ (b − a)

√
log(2/δ)

2n

See Vershynin [2019] for intro to concentration of measure.

8 / 63

Proof (1)

▶ Define an average reward after exploration phase for action a as µ̂(a).
Let us define so-called clean event E as follows

E = {∀a ∈ A : |µ̂(a)− µ(a)| ≤ β}

for β =
√

log(T 4)/(2N) =
√
2 log(T)/N.

▶ By the Hoeffding inequality for any fixed a

P[|µ̂(a)− µ(a)| > β] ≤ 2

T 4
.

▶ Note that E =
⋃

a∈A{|µ̂(a)− µ(a)| > β}, therefore we may apply
union bound

P[E] ≤
∑
a∈A

P[|µ̂(a)− µ(a)| > β] ≤ 2K

T 4
. (1)

9 / 63

Proof (2)

▶ Define â = argmaxa∈A µ̂(a). Assume that â ̸= a⋆. In this case we
have that under the clean event E

µ(â) + β ≥ µ̂(â) ≥ µ̂(a⋆) ≥ µ⋆ − β.

▶ Therefore
∆(â) = µ⋆ − µ(â) ≤ 2β. (2)

▶ Let us derive a regret bound

E[RT] = E

[
T∑
t=1

∆(at)

]
= E

[
NK∑
t=1

∆(at)

]
︸ ︷︷ ︸
exploration phase

+E

[
T∑

t=NK+1

∆(â)

]
︸ ︷︷ ︸

exploitation phase

.

10 / 63

Proof (3)

▶ In the first phase we have only a trivial regret bound NK . For the
second phase we divide our expectation into two parts: with and
without clean event.

E

[
T∑

t=NK+1

∆(â)

]
= E

[
T∑

t=NK+1

∆(â) | E

]
︸ ︷︷ ︸

≤2Tβ

P[E]︸︷︷︸
≤1

+E

[
T∑

t=NK+1

∆(â) | E

]
︸ ︷︷ ︸

≤T

P[E]︸︷︷︸
≤2K/T 4

.

▶ Therefore, we have

E[RT] ≤ NK + 2T

√
2 log(T)

N
+

2K

T 3
.

Let us optimize the upper bound over N. The optimal value is
N⋆ = (T

√
log(2T)/K)2/3 and in this case we derive claimed regret

bound (assuming that K ≤ T)

E[RT] ≤ 3T 2/3(K log(2T))1/3 + T−2 = O(T 2/3(K log(T))1/3).

11 / 63

Optimism in the Face of Uncertainty (OFU)
Define µt(a) as a so-called upper-confidence bound for arm a that means
that with high probability we have µt(a) ≥ µ(a). Hoeffding inequality
tells us that this upper confidence bound could be defined in the form

µt(a) = µ̂t(a) + βt(a)︸ ︷︷ ︸
Exploration bonus

≜
1

nt(a)

∑
t:at=a

rt +

√
2 log(T)

nt(a)
,

where nt(a) is a number of times when the arm a was picked up to a
timestamp t.
Define algorithm UCB-1 as follows

▶ In each round t pick at = argmaxa∈A µt(a).

Why does it make sense? There is basically two reasons to choose arm a
on the round t:

▶ Arm a has a high mean reward µ̂t(a) that means that it is likely to
have a high mean reward µ(a);

▶ Arm a has a large confidence interval βt(a) that means that this arms
is not explored properly.

12 / 63

Optimism in the Face of Uncertainty (OFU)

Theorem

Algorithm UCB-1 achieves E[RT] = Õ(
√
KT), where Õ(f (x)) is an

upper bound on f (x) up to constant and poly-logarithmic factors for
sufficiently large x .

13 / 63

Proof (1)

▶ Let us define an optimistic event

Eopt = {∀t ∈ [T],∀a ∈ A : |µ̂t(a)− µ(a)| ≤ βt(a)}.

▶ Unfortunately, it is rather hard to get guarantees for this event directly
due to the random number of arm pulls inside the definition of µ̂t(a).

▶ To overcome this issue, let us imagine a reward tape: an 1× T table
filled with IID sampled reward from Da. Then for j-th choice of arm a
we will think not as about a new sample from Da but as about a
selecting j-th element on this tape. Let us call vj(a) as a mean reward
over first j elements of this tape.

▶ It is clear that

E ≜

{
∀j ∈ [T],∀a ∈ A : |vj(a)− µ(a)| ≤

√
log(2T)

j

}
⊆ Eopt.

14 / 63

Proof (2)

For each separate j , a we have

P

[
|vj(a)− µ(a)| >

√
2 log(T)

j

]
≤ 2

T 4

thus, by union the bound argument (similar as in Explore-First algorithm)
and assuming that K ≤ T

P[Eopt] ≥ P[E] ≥ 1− 2K

T 3
≥ 1− 2

T 2
.

15 / 63

Proof (3)

Decompose regret depending on the event Eopt

E[RT] = E[RT |Eopt]P[Eopt]+E
[
RT |Eopt

]
P
[
Eopt

]
≤ E[RT |Eopt]+2T−1.

Thus, again it is sufficient to analyze the regret only under Eopt. Let us
start to provide bound on ∆(at). In this case we have

µ⋆ ≤︸︷︷︸
since µt is UCB

µt(a
⋆) ≤︸︷︷︸

by greedy choice

µt(at) ≤︸︷︷︸
by overestimation of UCB

µ(at)+2βt(at).

Thus, we have

∆(at) = µ⋆ − µ(at) ≤ 2

√
2 log(T)

nt(a)
.

16 / 63

Proof (4)
▶ On the event Eopt:

RT = Õ

(
T∑
t=1

1√
nt(at)

)
= Õ

∑
a∈A

nT (a)∑
k=1

1√
k

 .

where we used
∑

a∈A nT (a) = T .
▶ By the integral bound we have

nT (a)∑
k=1

1√
k
≤
∫ nT (a)

1

1√
x
dx ≤ 2

√
nT (a).

▶ Note that f (x) =
√
x is concave function for positive x thus by

Jensen’s inequality∑
a∈A

√
nT (a) = K

∑
a∈A

√
nT (a)

K
≤ K

√∑
a∈A

nT (a)

K
=

√
TK .

▶ Combining all estimates

E[RT] ≤ E[RT |Eopt] + 2T−1 = Õ

(
T∑
t=1

1√
nt(at)

)
= Õ(

√
TK).

17 / 63

Lecture 2: MDP Basics. Policy Evaluation

▶ Markov Decision process formalism.

▶ Definitions of value- and action-value functions, optimal policy and
optimal value functions.

▶ Bellman optimality and Bellman expectation equations, existence of
the optimal value function.

▶ Finite and infinite horizon.

▶ Policy and value iteration algorithms.

▶ Policy evaluation problem: TD(0) and Monte-Carlo algorithms.

18 / 63

Markov Decision Process

We start from the case when H is finite (in this case γ = 1).

MDP

Tuple (S,A,P,R,H) is called Markov Decision Process:

▶ S - state space. By (Sk)k≥0 we denote a sequence of random states.

▶ A - action space. Let (Ak)k≥0 be a sequence of random actions.

▶ Agent’s policy πh(·|s) is the distribution on A.

▶ Family of Markov transition kernels (Ph(s
′|s, a))a∈A:

Ph(s
′|s, a) := P(Sh+1 = s ′|Sh = s,Ah = a) .

(For simplicity we assume that P doesn’t depend on h).

▶ the reward distribution R(·|s, a) as a set of measures over R for any
(s, a) ∈ S× A and the immediate reward function r(s, a) = E[R(s, a)].
The role of immediate reward function is similar to mean reward in
bandits. (For simplicity we assume that r(s, a) is bounded in [0, 1]).

19 / 63

MDP

Environment

Agent
Action atReward rtState st

rt+1

st+1

20 / 63

Markov Decision Process (MDP)

▶ Note that (Sk)k≥0 is a Markov chain (MC) with Markov kernels

Pπ
h (s

′|s) =
∑
a∈A

P(s ′|s, a)πh(a|s)

▶ Path distribution: for some T ∈ N

P(A0 = a0,S1 = s1, . . . , , ST = sT ,AT = aT |S0 = s0)

= π0(a0|s0)
T∏

k=1

P(sk |sk−1, ak−1)πk(ak |sk)

21 / 63

OpenAI Gym: classical control
(https://gym.openai.com)

22 / 63

https://gym.openai.com

How to measure policy’s quality?

Value Function

Value function, associated with the policy π = (π1, . . . , πH), is defined as

V π
h (s) := E

[H∑
k=h

rk |Sh = s

]
Here for all k ≥ h rk ∼ R(·|sk , ak),Sk+1 ∼ Pk(·|sk , ak),Ak ∼ πk(·|sk).

Optimal value function

The optimal value function at step h and state s ∈ S

V ⋆
h (s) = sup

π
V π
h (s).

23 / 63

Action-value function

Action-value function
The action-value function Qπ

h : S → R is an expectation of return of
agent then it start at step h, state sh and selects a prescribed action ah.
In other words, for all h ≥ 1 and s ∈ S and a ∈ A

Qπ
h (s, a) = E

[
H∑

t=h

rt | Sh = s,Ah = a

]
,

where for all t ≥ h rt ∼ R(·|st , at),St+1 ∼ P(·|st , at),At+1 ∼ πt(·|st+1)

Optimal action-value function

The optimal action-value function at step h and state s ∈ S

Q⋆
h (s, a) = sup

π
Qπ

h (s, a).

24 / 63

MC notations

For a kernel P(·|s, a) we may define its action on any (measurable)
function f : S → R as follows

P f (s, a) =

∫
S

f (s ′) P(ds ′|s, a).

In the case of finite MDP this formula simplifies to

P f (s, a) =
∑
s′∈S

f (s ′) · P(s ′|s, a).

In the case then distribution P(·|s, a) has a density p(s ′|s, a) we have

P f (s, a) =

∫
S

f (s ′)p(s ′|s, a)ds ′.

25 / 63

Bellman equations

Theorem (Bellman equations)

Fix a finite-horizon MDP M = (S,A,P,R,H) and policy π. Let r be the
immediate reward function of M. Then V π

h and Qπ
h satisfy Bellman

equations

Qπ
h (s, a) = r(s, a) + PV π

h+1(s, a), ∀(s, a, h) ∈ S× A× [H]

V π
h (s) =

∑
a∈A

Qπ
h (s, a)πh(a|s) ∀(s, h) ∈ S× [H]

V π
H+1(s) = 0 ∀s ∈ S

In the case of deterministic policies πh Bellman equation on V π
h could be

simplified as follows
V π
h (s) = Qπ

h (s, πh(s)).

26 / 63

Proof (1)

Without loss of generality assume that rewards rt ∼ R(·|st , at) are
deterministic and equal to r(st , at). Then by definition and tower
property of conditional expectation

Qπ
h (s, a) = E

[
H∑

t=h

r(St ,At)

∣∣∣∣Sh = s,Ah = a

]

= r(s, a) + E

[
H∑

t=h+1

r(St ,At)

∣∣∣∣Sh = s,Ah = a

]

= r(s, a) + E

[
E

[
H∑

t=h+1

r(St ,At)

∣∣∣∣Sh+1

] ∣∣∣∣Sh = s,Ah = a

]

= r(s, a) + E
[
V π
h+1(Sh+1)

∣∣∣∣Sh = s,Ah = a

]
= r(s, a) + PV π

h+1(s, a).

27 / 63

Proof (2)

Next we provide second Bellman equation

V π
h (s, a) = E

[
H∑

t=h

r(St ,At)

∣∣∣∣Sh = s

]
(tower property)

= E

[
E

[
H∑

t=h

r(St ,At)

∣∣∣∣Sh,Ah

] ∣∣∣∣Sh = s

]
(definition of Qπ

h)

= E
[
Qπ

h (s,Ah)

∣∣∣∣Sh = s

]
(Ah ∼ πh(·|s))

=
∑
a∈A

Qπ
h (s, a)πh(a|s).

28 / 63

Policy improvement

Theorem (Policy improvement theorem)

Let M = (S,A,P,R,H) be a finite-horizon MDP and π be a fixed policy.
Define π̂ as a discrete greedy policy to Qπ(s, a), i.e.

π̂h(s) := argmax
a∈A

Qπ
h (s, a).

Then for any (s, h) ∈ S× [H] we have V π̂
h (s) ≥ V π

h (s).

29 / 63

Proof

Backward induction over h = H + 1, . . . , 1.

▶ For h = H = 1 value functions of all policies are equal to zero, thus we
are done.

▶ Step of induction: First we show that Qπ
h (s, a) ≤ Q π̂

h (s, a) for all
(s, a) ∈ S× A. By Bellman equations and induction hypothesis

Qπ
h (s, a) = r(s, a) + PV π

h+1(s, a) ≤ r(s, a) + PV π̂
h+1(s, a) = Q π̂

h (s, a).

▶ Then since πh(da|s) is a probability measure then

V π
h (s) =

∫
A
Qπ

h (s, a)πh(da|s) ≤ max
a∈A

Qπ
h (s, a) ≤ max

a∈A
Q π̂

h (s, a) = V π̂
h (s).

30 / 63

Policy Iteration

Greedy policies

This theorem tell us that it is enough to consider only greedy policies
Πgreedy when we are taking supremum over all policies Π in the definition
of optimal value and action-value functions.

Algorithm 1: Policy Iteration for finite-horizon MDPs

Input: MDP M = (S,A,P,R,H) and the immediate reward function
r , iterations budget T
Initialize: π0 as some set of policies;
for t ∈ [T] do

Compute Qπt

h by solving Bellman equations (see Theorem 8);

Find πt+1 as a greedy policy to Qπt

h .
end for
Output: estimate of optimal policy πT .

Convergence

What about T → ∞?

31 / 63

Optimal Bellman equations

Theorem (Optimal Bellman equations)

Fix a finite-horizon MDP M = (S,A,P,R,H). Let r be the immediate
reward function of M and assume that r is bounded. Then optimal value
and action-value functions satisfies a similar optimal Bellman equations

Q⋆
h (s, a) = r(s, a) + PV ⋆

h+1(s, a) ∀(s, a, h) ∈ S× A× [H]

V ⋆
h (s) = max

a∈A
Q⋆

h (s, a) ∀(s, h) ∈ S× [H]

Q⋆
H+1(s, a) = V ⋆

H+1(s) = 0.

32 / 63

Proof

By Bellman equations we have

Q⋆
h (s, a) = sup

π∈Πgreedy

Qπ
h (s, a) = r(s, a) + sup

π∈Πgreedy

PV π
h+1(s, a).

Since V π are bounded for any π, then by Beppo-Levi theorem

sup
π∈Πgreedy

PV π
h+1(s, a) = P

[
sup

π∈Πgreedy

V π
h+1

]
(s, a) = PV ⋆(s, a).

To prove the second statement we use Bellman equations and greedy
policies

V ⋆
h (s) = sup

π∈Πgreedy

V π
h (s) = sup

π∈Πgreedy

max
a∈A

Qπ
h (s, a) = max

a∈A
sup

π∈Πgreedy

Qπ
h (s, a)

= max
a∈A

Q⋆
h (s, a).

33 / 63

Value Iteration

How to compute optimal value and action-value functions

Optimal Bellman equations gives us an alternative way to compute
optimal value-function and optimal policy using dynamic programming
directly.

Algorithm 2: Value Iteration for finite-horizon MDPs

Input: MDP M = (S,A,P,R,H) and the immediate reward function r ;
Initialize: QH+1(s, a) = 0, VH+1(s) = 0;
for h = H,H − 1, . . . , 1 do

Qh(s, a) := r(s, a) + PVh+1(s, a) ∀(s, a) ∈ S× A;

Vh(s) = max
a∈A

Qh(s, a) ∀s ∈ S;

πh(s) = argmax
a∈A

Qh(s, a) ∀s ∈ S.

end for
Output: optimal policy π.

34 / 63

Frame Title

Corollary

Let M = (S,A,P,R,H) be a finite-horizon MDP with |A| <∞. Then an
optimal policy πstar exists and could be computed using Value Iteration
algorithm. Moreover, the policy computed by Value Iteration is greedy.

Here we may observe the main difficulties with this algorithm.

Problems
▶ It requires full knowledge of the model P and immediate reward

function r ;

▶ It computes value and action-value functions for all states that is
impossible for |S| = ∞.

This is a reason why finite MDPs are called tabular : for them it is
possible to handle full table of Q-values.

35 / 63

MDP: infinite case

MDP: infinite case

Let γ ∈ (0, 1] be the discount factor. Tuple (S,A,P,R, γ) is called
Markov Decision Process:

▶ S - state space. By (Sk)k≥0 we denote a sequence of random states.

▶ A - action space. Let (Ak)k≥0 be a sequence of random actions.

▶ Agent’s policy π(·|s) is the distribution on A.

▶ Family of Markov transition kernels (P(s ′|s, a))a∈A:

P(s ′|s, a) := P(Sk = s ′|Sk−1 = s,Ak−1 = a) .

▶ the reward distribution R(·|s, a) as a set of measures over R for any
(s, a) ∈ S× A and the immediate reward function r(s, a) = E[R(s, a)].
The role of immediate reward function is similar to mean reward in
bandits. (For simplicity we assume that r(s, a) is bounded in [0, 1]).

36 / 63

Value and action-value functions

Value function
The value function V π : S → R is an expectation of discounted return of
agent then it start at state s0. In other words, for all h ≥ 1 and s ∈ S

V π(s) = E

[∞∑
t=0

γtrt | S0 = s

]
,

where for all t ≥ 0 rt ∼ R(·|st , at),St+1 ∼ P(·|st , at),At ∼ π(·|st).

Action-value function
The action-value function Qπ

h : S → R is an expectation of discounted
return of agent then it start at state s0 and selects a prescribed action a0.
In other words, for all s ∈ S and a ∈ A

Qπ(s, a) = E

[∞∑
t=0

γtrt | S0 = s,A0 = a

]
,

where for all t ≥ h rt ∼ R(·|st , at),St+1 ∼ P(·|st , at), at+1 ∼ πt(·|st+1).

37 / 63

Optimal value and action-value functions

Optimal value and action-value functions

The optimal value function at state s ∈ S:

V ⋆(s) = sup
π

V π(s).

The optimal action-value function at state s ∈ S and action a ∈ A:

Q⋆(s, a) = sup
π

Qπ(s, a).

38 / 63

Frame Title

Theorem (Bellman equations: discounted MDP)

Fix a discounted MDP M = (S,A,P,R, γ) and policy π. Let r be the
immediate reward function of M. Then V π and Qπ satisfies Bellman
equations

Qπ(s, a) = r(s, a) + γ PV π(s, a), ∀(s, a) ∈ S× A

V π(s) =
∑
a∈A

Qπ(s, a)π(a|s) ∀s ∈ S

39 / 63

Optimal policy and optimal value function

The following result holds (see, e.g., Puterman [2014]):

Theorem
When the reward function is bounded, one can always find a
deterministic Markov policy that is optimal. Moreover, the optimal value
function V ⋆ := V π⋆

satisfies the Bellman optimality equation:

Q⋆(s, a) = r(s, a) + PV ⋆(s, a) ∀(s, a) ∈ S× A

V ⋆(s) = max
a∈A

Q⋆(s, a) ∀s ∈ S

Take greedy policy
π⋆(s) = argmax

a∈A
Q⋆(s, a)

40 / 63

Two Problems for MDPs

▶ Policy evaluation: compute V π given fixed policy π ∈ Π.

▶ Policy improvement: compute or approximate some optimal policy π⋆,
solve control problem.

Both could be solved with Bellman equations using fixed point iteration...

BUT

Even if transition model P(·|s, a) is known, the expectation in the right
part is often intractable!

41 / 63

Policy iteration and improvement in the tabular case

Assume that we know transition matrix P(·|s, a). The value function can
be represented as a vector V π ∈ R|S|.

Algorithm 3: Value iteration

Input: MDP M = (S,A,P,R,H), immediate reward function r , policy
π and number of steps T
Initialize: V π

0 ;
for k ∈ [T] do
Qπ

k (s, a) = r(s, a) + γ PV π
k−1(s, a)

V π
k (s) =

∑
a∈A Qπ

k (s, a)π(a|s)
end for
Output: estimate V π

T ,Q
π
T .

Due to the Banach’s fixed point theorem,
∥Vπ,k − Vπ∥∞ ≤ γk∥Vπ,0 − Vπ∥∞, provided that ∥Vπ,0∥∞ <∞.

42 / 63

Policy improvement

Algorithm 4: Policy improvement

Input: MDP M = (S,A,P,R,H), immediate reward function r , policy
π and number of steps T
Initialize: π0,V

π0
0 ;

for k ∈ [T] do
Qπk−1(s, a) = Value Iteration(πk−1);
πk(s) = argmaxa∈A Q

πk−1(s, a)
end for
Output: estimate πT .

43 / 63

Policy iteration and improvement in the tabular case

Problems
▶ Computational problems: Even in tabular case |S| <∞ may be

extremely large (see chess,...);

▶ Algorithmic problems: In infinite case the iterative procedure is
intractable or cannot be correctly built.

44 / 63

TD(0) in the tabular case
Fix π and recall:

V π(s) =
∑
a∈A

π(a|s)
{
r(s, a) + γ

∑
s′∈S

V π(s ′) P(s ′|s, a)
}
.

Suppose that we observe a sequence of states (Sk)k≥0 (generated
according to Pπ) and let r(s) =

∑
a∈A r(s, a)π(a|s).

Algorithm 5: Policy iteration

Input: MDP M = (S,A,P,R,H), immediate reward function r , policy
π and number of steps T
Initialize: V0, s0;
for k ∈ [T] do

Simulate Sk+1 ∼ Pπ(·|Sk);
δk+1 = r(Sk) + γVk(Sk+1)− Vk(Sk) temporal difference error;
Vk+1(s) = Vk(s) + αk+1δk+11s=Sk

end for
Output: estimate V π

T .

Step-size sequence (αk , k ≥ 0) are chosen by the user.
This algorithm converges to V̂ :
FV̂ (s) := r(s) + γ E[V̂ (S1)|S0 = s]− V̂ (s) = 0. Clearly, V̂ = Vπ.

45 / 63

Stochastic Approximation
▶ Consider the problem of finding θ⋆ ∈ Rd such that

f (θ⋆) = 0 .

▶ Only stochastic samples of f (θ) are revealed, e.g., F (θ;Zn), such that

E[F (θ;Zn)] = f (θ) or, at least, lim
n→∞

E[F (θ;Zn)] = f (θ).

▶ Such algorithms are called stochastic approximation (SA) schemes to a
fixed point equation:

θn+1 = θn + αnF (θn;Zn).

Robbins and Monro [1951]

▶ The simplest instance of the problem corresponds to the Linear
Stochastic Approximation (LSA)

▶ Compare with the standard ‘Euler scheme’ for numerically
approximating a trajectory of the o.d.e. θ̇(t) = f (θ(t))

θt+1 = θt + αf (θt)

46 / 63

TD(0) with function approximation

▶ We consider approximation of the value function V π : S → R using a
parameterized function V : S× Rd → R, (s, θ) 7→ V (s, θ) where θ is a
vector of parameters.

▶ Minimize the mean-squared error (MSE):

MSE(θ) =
∑
s∈S

(V π(s)− V (s, θ))2.

▶ Suppose that we observe a sequence of states (Sk)k≥0 (generated
according to Pπ), and that at time k , the vector of parameters is
denoted as θk .

▶ Use gradient descent

θk+1 = θk −
α

2
∇(V π(Sk)− V (Sk , θk))

2

= θk + α(V π(Sk)− V (Sk , θk))∇V (Sk , θk). (3)

47 / 63

TD(0) with function approximation
▶ Recall that

V π(s) =
∑
a∈A

π(a|s)
{
r(s, a) + γ

∑
s′∈S

V π(s ′) P(s ′|s, a)
}
.

▶ Replace V π(Sk) by its estimator:

V π(Sk) ≈ r(Sk) + γV (Sk+1, θk).

▶ Rewrite (3) in the following way

θk+1 = θk + α{r(Sk) + γV (Sk+1, θk)− V (Sk , θk)}∇V (Sk , θk). (4)

▶ Linear function approximation:

V (s, θ) = θ⊤ψ(s),

where ψ(s) = [ψ1(s), . . . , ψd(s)]⊤. The vector ψ(s) is referred to as
the feature vector associated to the state s ∈ S.

▶ The gradient of the approximate value function in such case is

∇V (s, θ) = ψ(s).

48 / 63

TD(0) with function approximation

▶ Define for k ≥ 0, Zk = [Sk−1,Sk]
⊤. We may rewrite (4) as

θk+1 = {I−αA(Zk+1)} θk + αb(Zk+1),

where A(z) is a d × d matrix given for z = [s, s ′]⊤ ∈ S2 by

A(z) = ψ(s){ψ(s)− γψ(s ′)}⊤, (5)

and b(z) is a d × 1 vector given by

b(z) = R(s)ψ(s). (6)

49 / 63

▶ Note that {Zk}k≥0 is a Markov chain on the state-space

Z = {z = (s0, s1) ∈ S2,Pπ(s0, s1) > 0}. (7)

▶ The transition matrix of this Markov chain is given, for any
(s0, s1), (s

′
0, s

′
1) ∈ Z, by

P(s0, s1; s
′
0, s

′
1) = δs1,s′0 P

π(s1, s
′
1),

where δu,v is the Kronecker symbol.

▶ It is easily seen that this P has a unique invariant distribution given by

π̄(s0, s1) = π̄0(s0) P
π(s0, s1),

where π̄0 is stationary distribution of Pπ (we assume that π̄0 exists)

50 / 63

Linear Stochastic Approximation

▶ Given Ā ∈ Rd×d and b̄ ∈ Rd , we aim at finding θ⋆ ∈ Rd , which is a
solution of Āθ⋆ = b̄

▶ Our analysis is based on noisy observations {(A(Zn),b(Zn))}n∈N.
Here A : Z → Rd×d , b : Z → Rd are measurable functions, and
(Zk)k∈N is
▶ either an i.i.d. sequence taking values in a state space (Z,Z) with

distribution π satisfying E[A(Z1)] = Ā and E[b(Z1)] = b̄;
▶ or a Z-valued ergodic Markov chain with unique invariant distribution

π, such that limn→+∞ E[A(Zn)] = Ā and limn→+∞ E[b(Zn)] = b̄.

For a fixed step size α > 0, burn-in period n0 ∈ N, and initialization θ0,
consider the sequences of estimates {θn}n∈N, {θ̄n0,n}n≥n0+1 given by

θk = θk−1 − α{A(Zk)θk−1 − b(Zk)} , k ≥ 1,

θ̄n0,n = (n − n0)
−1
∑n−1

k=n0
θk , n ≥ n0 + 1 .

(8)

51 / 63

Linear Stochastic Approximation
Set

Ã(z) = A(z)− Ā , b̃(z) = b(z)− b̄ , ε(z) = Ã(z)θ⋆ − b̃(z) ,

and denote by Γ
(α)
1:n the product of random matrices

Γ
(α)
m:n =

∏n
i=m(I−αA(Zi)) , m, n ∈ N∗, m ≤ n .

(8) implies the following decomposition

θn − θ⋆ = θ̃(tr)n + θ̃(fl)n ,

where θ̃
(tr)
n is a transient term (reflecting the forgetting of initial

condition) and θ̃
(fl)
n is a fluctuation term (reflecting misadjustement noise)

θ̃(tr)n = Γ
(α)
1:n {θ0 − θ⋆} , θ̃(fl)n = −α

n∑
j=1

Γ
(α)
j+1:nε(Zj) .

A cornerstone of the theoretical analysis is a tight bound for

E1/p[∥Γ(α)m:n∥p] under some assumptions on the matrix Ā.
52 / 63

Exponential stability

Exponential stability of {A(Zi)}i∈N∗ (see Guo and Ljung
[1995], Ljung [2002])

For q ≥ 1, there exist aq,Cq > 0 and α∞,q <∞ such that, for any step
size α ≤ α∞,q, m, n ∈ N, m < n,

E[∥Γ(α)m:n∥q] ≤ Cq exp (−aqα(n −m)) .

Intuitively, Γ
(α)
m:n ≈ (I−αĀ)n−m, for m, n ∈ N, m ≤ n, under the

assumption that −Ā is Hurwitz, i.e., for any eigenvalue λ of Ā, we have
Re(λ) > 0.

Theorem

Assume that −Ā is Hurwitz. There exists a unique symmetric positive
definite matrix Q satisfying the Lyapunov equation Ā⊤Q + QĀ = I. In
addition, setting

a = ∥Q∥−1/2 , and α∞ = (1/2)∥Ā∥−2
Q ∥Q∥−1 ∧ ∥Q∥ ,

for any α ∈ [0, α∞], it holds that ∥I−αĀ∥2Q ≤ 1− aα, and αa ≤ 1/2.
53 / 63

Technical assumptions

Assumption A1

1. {Zk}k∈N is a sequence of i.i.d. random variables defined on a
probability space (Ω,F,P) with distribution π.

2. CA = supz∈Z ∥A(z)∥ ∨ supz∈Z ∥Ã(z)∥ <∞ and the matrix −Ā is
Hurwitz

3. There exists Cε < +∞, such that for any z ∈ Z, ∥ε(z)∥ ≤ Cε

√
TrΣε,

where
Σε =

∫
Z
ε(z)ε(z)⊤dπ(z) .

54 / 63

A1 and exponential bounds

▶ We show that under only A1, for fixed α > 0,
limn→+∞ E[∥θn − θ⋆∥p] = ∞ for p ≥ p̄(α);

▶ Exponential high probability bounds for ∥θn − θ⋆∥ are not possible.

▶ Consider the one-dimensional instance of LSA problem
(2q − 1)θ⋆ = 0, q > 1/2;

▶ Let θ0 > 0, bn = 0, and

An =

{
1 with probability q ,

−1 with probability 1− q .

▶ θ⋆ = 0, and LSA recursion is simply

θn =
n∏

k=1

(1− αAk)θ0 .

▶ If α ∈ (0, 1) is fixed, for any p > p̄(q, α), we have

limn→+∞ E [|θn|p] = ∞, while θn
W−→ 0.

55 / 63

Exponential stability, IID case

Let

κQ = λmax(Q)/λmin(Q) , bQ =
√
κQ CA ,

αq,∞ = α∞ ∧ cA /q , cA = a/{2b2Q} .

Theorem

Assume A1. For any p, q ∈ N, 2 ≤ p ≤ q, α ∈ (0, αq,∞] and n ∈ N∗, it
holds

E1/p
[
∥Γ(α)1:n ∥

p
]
≤ √

κQd
1/q(1− aα+ (q − 1)b2Qα

2)n/2 .

56 / 63

HP bound for the LSA error ∥θn − θ⋆∥ in IID case

Theorem

Assume A1 and fix δ ∈ (0, 1). Then, for any θ0 ∈ Rd , sample size n ∈ N
satisfying

n/ log n ≥ (a/4)
{
α−1
∞ ∨ a−1(1 + log d) log (2e/δ)

}
,

and step size α = 4 log n/(an), it holds with probability at least 1− δ,
that

∥θn − θ⋆∥ ≤ 4eD2

√
{TrΣε} log n log(2e/δ)

n
+

2eκ
1/2
Q ∥θ0 − θ⋆∥

n
.

Here α∞, a, κQ are some constants and Σε =
∫
Z
ε(z)ε(z)⊤dπ(z)

See papers: Durmus et al. [2021a,b]. For Polyak-Ruppert averaging see
Durmus et al. [2022].

57 / 63

Learning a (near-) optimal policy

58 / 63

SARSA-Algorithm

Recall the Bellman expectation equation for Q-function:

Qπ(s, a) = r(s, a) + γ E
[
Qπ(S1,A1)|S0 = s,A0 = a

]
.

Idea: the best immediate action is a = argmaxa′∈A Qπ(s, a
′)

(Exploitation).
Now use Robbins-Monro method!

Algorithm 6: SARSA algorithm
Input: Q0

Set π = πQ0
;

for k = 1, 2, . . . do
Sample Sk ,Ak , Sk+1,Ak+1 with Aℓ = π(Sℓ);
Update Q: Qk (Sk ,Ak) =
Qk−1(Sk ,Ak) + αk (r(Sk ,Ak) + γQk−1(Sk+1,Ak+1)− Qk−1(Sk ,Ak));

Update Policy. π = πQk
.

This is an on-policy algorithm: we update πQk
with samples from πQk

.

59 / 63

Expected SARSA

Instead of estimate

r(Sk ,Ak) + γQk−1(Sk+1,Ak+1)

for the right part of the Bellman equation, use another. Exploit another
policy πb

r(Sk ,Ak) + γ
∑
a∈A

πb(a|Sk)Qk−1(Sk+1, a).

where A ∼ πb(·|k). So we get off-policy algorithm: we use another
(fixed) policy πb to update the estimate of greedy πQk

.

60 / 63

Q-Learning

We might recall Bellman’s optimality equation for Q⋆-function:

Q⋆(s, a) = r(s, a) + γ
∑
s′∈S

max
a′∈A

Q⋆(s ′, a′) P(s ′|s, a)

and apply Robbins-Monro algorithm to this equation in Q⋆.

Algorithm 7: Q-learning algorithm
Input: Q0

Set π = πQ0
;

for k = 1, 2, . . . do
Sample Sk ,Ak , Sk+1,Ak+1 with aℓ = π(Sℓ);
Update Q: Qk (Sk ,Ak) =
Qk−1(Sk ,Ak) + αk (r(Sk ,Ak) + γmaxa∈A Qk−1(Sk+1, a)− Qk−1(Sk ,Ak));

Update Policy. π = πQk
.

This is an off-policy algorithm since we update the estimate of Q⋆ with
samples from other policies πQk

.

61 / 63

Thank you!

62 / 63

References I
Vivek S Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge

University Press, 2008.

Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, and Hoi-To Wai.
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. In
NeurIPS, 2021a.

Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, and Hoi-To Wai. On the stability
of random matrix product with markovian noise: Application to linear stochastic approximation
and td learning. In Mikhail Belkin and Samory Kpotufe, editors, Proceedings of Thirty Fourth
Conference on Learning Theory, volume 134 of Proceedings of Machine Learning Research,
pages 1711–1752. PMLR, 15–19 Aug 2021b. URL
https://proceedings.mlr.press/v134/durmus21a.html.

Alain Durmus, Eric Moulines, Alexey Naumov, and Sergey Samsonov. Finite-time High-probability
Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation. arXiv
e-prints, art. arXiv:2207.04475, July 2022.

L. Guo and L. Ljung. Exponential stability of general tracking algorithms. IEEE Transactions on
Automatic Control, 40(8):1376–1387, 1995.

Lennart Ljung. Recursive identification algorithms. Circuits, Systems and Signal Processing, 21(1):
57–68, 2002.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence
and machine learning, 4(1):1–103, 2010.

Roman Vershynin. High-dimensional probability. 2019. URL
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf.

63 / 63

https://proceedings.mlr.press/v134/durmus21a.html
http://incompleteideas.net/book/the-book-2nd.html
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf

	Lecture 1: Introduction to stochastic multi-armed bandits
	regret
	Exploration-exploitation dilemma
	Explore-First Algorithm
	Optimism in the Face of Uncertainty

	MDP Basics. Policy Evaluation
	Markov Decision Process
	Policy's quality
	Value iteration
	TD learning
	Stochastic approximation

	Learning a (near-) optimal policy
	SARSA
	Q-learning

	From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
	References

