
Tensors
and their applications

Ivan Oseledets, work by Gleb Ryzhakov, Andrey Chertkov,
Konstantin Sozykin, Roman Schutsky, Andrej Cichocki,

Anh-Huy Phan

Skoltech

The task of this part

Our main result is the algorithm of building exact Tensor Train
(TT) representation to the multidimensional function knowing its
analytical expression.
Existing methods:
▶ Constructive TT for a restricted number of functions;
▶ Cross approximation;
▶ Alternation Least Squares (ALS) method for

TT-approximation;
▶ Gradient Decent methods à la machine learning;
▶ etc.

Most of them require many iterations and they are approximate
methods, well suited for black box.

2 / 29

Background
Notations

K(i1, i2, . . . , id) = G1(i1)G2(i2) · · · Gd(id) =
R1∑

α1=1

R2∑
α2=1

· · ·
Rd−1∑
αd =1

G1(1, i1, α1)G2(α1, i2, α2) · · · Gd(αd−1, id , 1).

By {Ri}d
i=0 we denote ranks of the TT-decomposition (we let

R0 = Rd = 1), and Gi ∈ CRi−1×Ni ×Ri are TT-cores.

3 / 29

Background
constructive TT

In 1 the cores of the TT decomposition for functions H of the following
form were explicitly constructed

H(x1, x2, . . . , xd) = F (x1 + x2 + . . . + xd)

for several functions F . The correspondence between the tensor integer
indices and the complex values of x is as follows:
K(i1, i2, . . . , id) = H(x1[i1], x2[i2], . . . , xd [id]).
In this case, all the cores are of the same form:

Gk(:, ik , :) = G(xk [ik]), with G(x) · G(y) = G(x + y),

where G(x) is some matrix function. But we multiply cores in TT, how
to make sum from a product?

1I. V. Oseledets. Constructive representation of functions in low-rank tensor
formats. Constructive Approximation, 37(1):1–18, December 2012.

4 / 29

Background
constructive TT

exp(x1A) · exp(x2A) · exp(xnA) = exp
(
(x1 + x2 + · · · xn)A

)
.

exp
(

x
(

0 1
0 0

))
=
(

1 x
0 1

)
⇐⇒ F = x1 + x2 + · · · + xd ,

exp
(

x
(

0 −1
1 0

))
=
(

cos(x) − sin(x)
sin(x) cos(x)

)
⇐⇒ F = sin(x1+· · · xd), (or cos),

exp

(
x

(0 1 0
0 0 2
0 0 0

))
=

(1 x x2

0 1 2x
0 0 1

)
⇐⇒ F = (x1 + · · · xd)2,

etc.

5 / 29

Background
constructive TT

exp(x1A) · exp(x2A) · exp(xnA) = exp
(
(x1 + x2 + · · · xn)A

)
.

exp
(

x
(

0 1
0 0

))
=
(

1 x
0 1

)
⇐⇒ F = x1 + x2 + · · · + xd ,

exp
(

x
(

0 −1
1 0

))
=
(

cos(x) − sin(x)
sin(x) cos(x)

)
⇐⇒ F = sin(x1+· · · xd), (or cos),

exp

(
x

(0 1 0
0 0 2
0 0 0

))
=

(1 x x2

0 1 2x
0 0 1

)
⇐⇒ F = (x1 + · · · xd)2,

etc.

5 / 29

Background
constructive TT

exp(x1A) · exp(x2A) · exp(xnA) = exp
(
(x1 + x2 + · · · xn)A

)
.

exp
(

x
(

0 1
0 0

))
=
(

1 x
0 1

)
⇐⇒ F = x1 + x2 + · · · + xd ,

exp
(

x
(

0 −1
1 0

))
=
(

cos(x) − sin(x)
sin(x) cos(x)

)
⇐⇒ F = sin(x1+· · · xd), (or cos),

exp

(
x

(0 1 0
0 0 2
0 0 0

))
=

(1 x x2

0 1 2x
0 0 1

)
⇐⇒ F = (x1 + · · · xd)2,

etc.

5 / 29

Background
constructive TT

exp(x1A) · exp(x2A) · exp(xnA) = exp
(
(x1 + x2 + · · · xn)A

)
.

exp
(

x
(

0 1
0 0

))
=
(

1 x
0 1

)
⇐⇒ F = x1 + x2 + · · · + xd ,

exp
(

x
(

0 −1
1 0

))
=
(

cos(x) − sin(x)
sin(x) cos(x)

)
⇐⇒ F = sin(x1+· · · xd), (or cos),

exp

(
x

(0 1 0
0 0 2
0 0 0

))
=

(1 x x2

0 1 2x
0 0 1

)
⇐⇒ F = (x1 + · · · xd)2,

etc.

5 / 29

Main result

Is it possible to obtain the cores of the TT decomposition
directly, given any analytical dependence of tensor values on
its indices?

Yes, if this dependency is given as a sequence of functions of
two argument, each of which has as its argument the output
of the previous function and the current index (and if the
images of these functions are not large).

Functional dependence in the form of a sequence of pairwise
functions may seem rather narrow, however, this assignment covers
quite a large range of functional dependencies of tensor value on
its indices if such a set of functions is chosen skillfully.

6 / 29

Main result
Pair-wise functions

To define these pairwise functions, recall what a Reverse Polish
Notation is. In this notation, the function arguments are written
first, followed by the functions themselves. There are no
parentheses or other separating characters.
For example, the expression

sin(x · y) + ln 5

in this notation looks like

x y ∗ sin 5 ln +

7 / 29

Main result
Pair-wise functions

In Reverse Polish Notation our condition on the type of analytical dependence
is as follows

K(i1, i2, . . . , id) =

(0i1f (1)i2f (2) · · · il−1f (l−1))(0id f (d)id−1f (d−1) · · · il+1f (l+1))il f (l).

In other words, One, from to the left of the right, is as follows

a1(i1) = f (1)(i1, 0), a2(i1, i2) = f (2)(i2, a1), a3(i1, i2, i3) = f (3)(i3, a2),
· · ·

al−1(i1, i2, · · · , il−1) = f (l−1)(il−1, al−2),

then from right to left

ad (id) = f (d)(id , 0), ad−1(id , id−1) = f (d−1)(id−1, ad),

· · ·

al+1(id , id−1, · · · , il+1) = f (l+1)(il+1, al+2),

and, finally,
K(i1, i2, . . . , id) = f (l)(il , al−1, al+1).

8 / 29

Main result
Pair-wise functions

We call l a middle index, and the corresponding function f (l) and the
core Gl—middle-function and middle-core respectively.

9 / 29

Pair-wise functions
Trivial example

The sum function.

K(i1, i2, . . . , id) = x1[i1] + x2[i2] + . . . + xd [id].

This function naturally evolves into a sequence of pairwise due to

K(i1, i2, . . . , id) =
((

· · ·
(
(x1 + x2) + x3

)
+ . . .

)
+xd

)
.

Thus, each function f (k) is just a sum of two arguments

f (k)(x , y) = x + y , ∀k.

10 / 29

Pair-wise functions
Less trivial example

Consider step function in the so-called Quantized Tensor Train decomposition
(QTT) when the tensor indices are binary ik ∈ {0, 1} and all together represent
a binary representation of some integer from the set {0, 1, . . . , 2d − 1}. The
value of the tensor represents the value of some given function P defined on
this set,

I(i1, i2, . . . , id) = P

(
d−1∑
j=0

id−i 2j

)
.

Function P is equal to the step function Pstep in this example:

Pstep(x) =
{

0, x ≤ t,

1, x > t

for the given integer number t, 0 ≤ t < 2d .

11 / 29

Pair-wise functions
Less trivial example

Let the binary representation of t be t =
d−1∑
j=0

bd−i 2j .

Then the form of the derivative functions for this tensor are depend only on the
value of bk and do not depend on the index k itself. This function are the
following2:

If bk = 0, then f (k)(0, x) = x , f (k)(1, x) = 1;

if bk = 1, then f (k)(0, x) =
{

1, x = 1
None, x = 0.

, f (k)(1, x) = x .

Note that in this example, the original analytic representation for the tensor did not
assume pairwise interaction of the indices. On the contrary, the formula for step
function is quite integral: its value depends on all variables at once.

2the functions f are predefined in the following way. If, in the process of calculating a tensor value, the
function f (k) arguments are not in its domain, we assume that it returns an empty value (we denote this value by
None as in Python language). The next function (f (k−1) or f (k+1)), having received None, returns also None, and
so on, up to the “middle” function f (l), which returns 0 if at least one of its arguments is None.

12 / 29

Practical example
Cooperative games

As an example, consider several so-called cooperative games
Omitting the details of the economic formulation of the problem,
let us briefly consider its mathematical model. In general, in the
theory of cooperative games it is necessary to calculate the
following sum over all subsets of the given set T of players

π(k) :=
∑

S⊆T\{k}
p(|S|)

(
ν(S ∪ {k}) − ν(S)

)
, for all k ∈ T.

Here p is some function of the number of players in a coalition S.
The function of a coalition ν is the function of interest, it depends
on the game under consideration. This function denotes the gain
that a given coalition receives (value of the coalition).

13 / 29

Cooperative games
Set up

We took 4 cooperative games from the article3 where the author
applies tensor methods to fast summation. However, TT-cross is
used in this article, which in the case of these games is both slower
and less accurate.
As an example for the set up, consider so-called Shoe sale game.
In this game, participants are divided into two categories—those
who sell left boots (indices 1 through L) and those who sell right
boots (indices L + 1 through 2L + 1). As shoes can be sold only in
pairs, the value of a coalition is the minimum of the numbers of
”left” and ”right” players in a coalition.

3Rafael Ballester-Ripoll. Tensor approximation of cooperative games and
their semivalues. International Journal of Approximate Reasoning, 142:94–108,
2022.

14 / 29

Cooperative games
Shoe sale game

To find the required value π it is convenient to construct tensors that
have a dimension equal to the number of players. Each index of this
tensor is binary: 1 means a player is a member of a coalition, 0 means he
is not.
To construct the TT decomposition of the tensors p(|S|)ν(S) using our
method, let us take the following derivative functions:

f (k)(i , x) = x + i , 1 ≤ k ≤ d , k ̸= L + 1,

f (L+1)(i , x , y + i) = min(x , y)p(x + y + i), i = 0, 1,

thus middle-core is placed on the position l = L + 1. The derivative
functions for constructing the tensor p(|S| − 1)ν(S) are selected in a
similar way (we let p(−1) = p(2L + 1) = 0).

15 / 29

Results
Cooperative games

20 30 40
Number of players, N = 2L + 1

10 2

10 1

100

101

Ti
m

e
(s

)

Shoes game

Brute force
Cross
Our

16 18 20 22
Number of players, N = 2L + 1

10 14

10 11

10 8

10 5

10 2

Re
l.

er
ro

r

Shoes game

Cross
Our

15 20 25
Number of players, N

10 2

10 1

100

101

Ti
m

e
(s

)

Airport
Brute force
Cross
Our

16 18 20 22
Number of players, N

10 16

10 14

10 12

10 10

10 8

10 6

Re
l.

er
ro

r

Airport

Cross
Our

15 20 25
Number of players, N

10 1

100

101

102

Ti
m

e
(s

)

Weighted majority

Brute force
Cross
Our

16 18 20 22
Number of players, N

10 15

10 12

10 9

10 6

10 3

Re
l.

er
ro

r

Weighted majority

Cross
Our

15 20 25
Number of players, N

100

101

Bankruptcy

Brute force
Cross
Our

16 18 20 22
Number of players, N

10 15

10 13

10 11

10 9

10 7

10 5

10 3
Bankruptcy

Cross
Our

Times in seconds and relative accuracy as functions of number of
players for four cooperative games. Brute force—calculating the

sum directly, Cross—results from the paper of Ballester.
16 / 29

Results
Matrix calculus

Consider a task of calculating permanent4 of a
matrix {aij} = A ∈ Cd×d . To solve this problem using the
presented technique, let us construct two tensors in TT-format.
The first tensor A will represent products of matrix A elements in
the form

A(i1, i2, . . . , id) = ai1,1ai2,2 · · · aid ,d .

This is rank-1 tensor and its cores {Hk ∈ C1×d×1}d
k=1 are

Hk(1, i , 1) = aik , i = 1, . . . , d .

4Recall that matrix permanent defined as follows
perm(A) =

∑
σ∈Sn

∏n
i=1 ai,σ(i)

17 / 29

Results
Matrix calculus

The second tensor is an indicator tensor for such a set of indices,
in which all indices are different

I(i1, i2, . . . , id) =
{

1, if all i1, i2, . . . , id are different,
0, else.

The cores G of this tensor are obtained using the following
derivative functions

f (k)(i , x) =
{

x + 2i , x & 2i = 0,

None, else
, k < d ;

f (d)(i , x) =
{

1, x & 2i = 0,

0, else
,

where the ampersand sign stands for bitwise AND for integers. In
this scheme the middle-core is the last (d-th) core.

18 / 29

Results
Matrix calculus

The permanent value is equal to the convolution of tensor I and
tensor A. Since the tensor A is one-rank tensor, we can look at
the computation of the permanent as an contraction of the
tensor I with weights equal to the corresponding elements of the
given matrix A.

a:, 1

G1

6

a:, 2

G2

6

a:, 3

G3

6

a:, 4

G4

6

a:, 5

G5

6

a:, 6

G6

6

1

6

1

15

1

20

1

15

1

6

19 / 29

Results
Matrix calculus

After the cores are built, total number of operations ntot (both
additions and multiplications) required to obtain the result at these
ranks has asymotics

ntot ∼ 2NN.

This asymptotic is better than the one that can be obtained from
the well-known Ryser’s formula for calculating the permanent:
P(A) = (−1)N ∑

S⊆{1,2,...,N}(−1)|S|∏N
i=1

∑
j∈S aij . When applied

head-on, this formula requires O(2N−1N2) operations. It is true
that if one uses Hamiltonian walk on (N − 1)-cube (Gray code) for
a more optimal sequence of subset walks, this formula will give
asymptotic ntot ∼ (2N−1N) which is only twice as good as ours.

20 / 29

Main contribution

Our main contribution and advantages of our approach
▶ the exact and fast representation of the tensor in TT-format,

which can then, if necessary, be rounded to smaller ranks with
a given accuracy. In many of the given examples, this
representation is optimal in the sense that the ranks of the TT
decomposition cannot be reduced without loss of accuracy;

▶ highly sparse structure of TT-decomposition cores which leads
to a noticeable reduction in calculations;

▶ an unified approach and a simple algorithmic interface to
inherently different tasks and areas including those problems
for which it is not immediately obvious the representation of
the function specifying the tensor value in the form of
consecutive functions;

21 / 29

Main contribution

▶ the ability to construct an approximate TT-decomposition
with a controlled error or/and with the specified maximum
ranks of the TT decomposition;

▶ the possibility to build an iterative algorithm for calculating
the value sought in a particular problem, without involving the
notion of the tensor or matrix operations;

▶ the ability to combine different conditions and quickly impose
additional conditions when the basic tensor has already been
constructed (and rounded).

arXive paper: https://arxiv.org/abs/2206.03832
Github repository: https://github.com/G-Ryzhakov/Constructive-TT

22 / 29

Tensor Cross Approximation in optimization

Classical result: a rank-r matrix can be recovered from r columns
and r rows!

A = CÂ−1R

Similar result holds for tensors (O., Tyrtyshnikov, TT-cross
approximation).

A tensor can be recovered from O(dnr2) elements!

23 / 29

Tensor Cross Approximation in optimization

Classical result: a rank-r matrix can be recovered from r columns
and r rows!

A = CÂ−1R

Good choice for submatrix Â: maximum-volume submatrix (the
one, that maximizes the determinant).

24 / 29

Tensor Cross Approximation in optimization

A = CÂ−1R

Good choice for submatrix Â:maximum-volume submatrix (the
one, that maximizes the determinant).

A maximum-volume submatrix has large element:

∥Â∥C ≤ ∥A∥C
r2 + r , (1)

i.e. if we find it, we get dimension-independent bound.

25 / 29

TT-opt

The idea of TT-opt is simple: we start the cross approximation
method and record the maximal element on the way.

Several tricks (how to find minimum, how to improve the
convergence)

Outperforms several evolutionary algorithms!

26 / 29

TT-opt scheme

27 / 29

Application to RL

0 2 4 6
Number of function queries 104

0

1

2

3

4

av
er

ag
e

re
w

ar
ds

10
3

HalfCheetah-v3

TTopt

cmaES

openES

GA

target reward

0 2500 5000 7500 10000 12500 15000
seconds

0

1

2

3

4

av
er

ag
e

re
w

ar
ds

10
3

HalfCheetah-v3

TTopt

cmaES

openES

GA

target reward

Figure: Training curves of TTOpt and baselines for HalfCheetah-v3
(N = 3). The upper plot is the average cumulative reward versus the
number of interactions with the environment. The lower plot is the same
versus execution time. The reward is averaged for seven seeds. The
shaded area shows the difference of one standard deviation around the
mean.

28 / 29

Thank you!
Questions?

29 / 29

