
LECTURE 3: TENSOR DECOMPOSITIONS

IVAN OSELEDETS

PLAN OF THE COURSE
Lecture 1:
 Basic machine learning models. Supervised/unsupervised learning.Deep learning. Convolutional neural networks.
Lecture 2:
 Modern deep learning models. Concept of attention. Transformers (natural language processing / vision transformers). Idea of
generative models (GANs). Application to image processing.

Lecture 3:
Tensor decompositions: Basic tensor factorizations (canonical polyadic, Tucker, tensor-train, H-Tucker). Algorithms for computing tensor
factorizations. Applications of tensor decompositions, including image processing

Lecture 4:
Multivariate function approximation. Cross approximation. Approximation of smooth functions.

Lecture 5: Tensor decompositions and machine learning for compression of signals, images and videos. Neural Radiance Fields, signed
distance functions.

RECAP OF LECTURE 2

• Convolutional neural networks
• Concept of attention
• Transformer architecture
• Transformers in NLP
• Transformers in Vision (Vision Transformers)
• Idea of GAN, unsupervised learning.

PLAN OF LECTURE 3

• Tensors
• Basic tensor decompositions
• Advanced tensor decompositions.

WHAT IS A TENSOR
D = 1: Vector
D = 2: Matrix
D > 2: Tensor

WHY STUDY TENSORS?

Data is multidimensional.

Can you come up with examples of multidimensional data in
practice?

WHY STUDY TENSORS?
Data is multidimensional.

Can you come up with examples of multidimensional data in practice?

Images: width x height x colors (i.e., 512 x 512 x 3)
Videos: width x height x colors x time (i.e. 512 x 512 x 3 x 100)
Multispectral images
Tomography/MRI images
Many, many more..

LITERATURE ON TENSORS

1) Brett Bader, Tammy Kolda, Tensor decomposition, SIREV,
2009

2) Cichocki A, Lee N, Oseledets I, Phan AH, Zhao Q, Mandic
DP. Tensor networks for dimensionality reduction and large-
scale optimization: Part 1&2 Low-rank tensor decompositions.
Foundations and Trends® in Machine Learning. 2016 Dec
18;9(4-5):249-429.

TENSOR AND MULTIVARIATE FUNCTIONS

Consider d-variate function:

Sample each point on a grid

You get d-dimensional tensor!

f(x1, …, xd)

xik, ik = 1,…, nk .

n1 × n2 × … × nd

WHERE TENSORS COME FROM
D-dimensional Partial Differential Equations (PDE)

Parametric equations:

Data: images, videos, hyperspectral images
Factor models
Weight tensors in deep neural networks…

Δu = f

A(p)u(p) = f(p), p = (p1, …, pM)

WHERE TENSORS COME FROM

D-dimensional Partial Differential Equations (PDE)
Parametric equations:
Data: images, videos, hyperspectral images
Factor models
Weight tensors in deep neural networks…

Δu = f
A(p)u(p) = f(p), p = (p1, …, pM)

DEFINITION

A tensor is a d-dimensional array:

Mathematically more correct definition: polylinear form
A(i1, …, id), 1 ≤ ik ≤ nk

DEFINITIONS

Tensors (as matrices) they form a linear space.
The natural norm for tensors is Frobenius norm:

∥A∥F = ∑
i1,…,id

|A(i1, …, id) |

CURSE OF DIMENSIONALITY

Curse of dimensionality: Storage of a d-dimensional
tensor requires

Grows exponentially with the dimensionality

nd

BASIC QUESTIONS

How to break the curse of dimensionality?

How to perform multidimensional sampling

How to do everything efficiently and in a robust way?

REAL LIFE PROBLEMS
If you need to compute something high-dimensional, people typically do the
following:

- Monte-Carlo integration
- Special basis sets (radial basis functions)
- Best N-term approximations (wavelets, sparse grids)
- Neural networks

But we want algebraic techniques…

SEPARATION OF VARIABLES

One of the few fruitful ideas is the idea of separation of
variables.

SEPARATION OF VARIABLES

We have seen separation of variables in two dimensions:

Or in the matrix form,

A(i1, i2) ≈
r

∑
α=1

U1(i1, α)U2(i2, α)

A = U1U⊤
2

IDEAL SEPARATION

Rank-1:

How we can generalize it to d dimensions?

A(i1, i2) = U1(i1)U2(i2)

IDEAL SEPARATION

D dimension, rank=1

However, not many tensors, can be represented in this
format

A(i1, i2, …, id) = U1(i1)U2(i2)…Ud(id)

CANONICAL POLYADIC (CP) FORMAT

A tensor is said to be in the canonical polyadic (CP)
format, if it can be represented as

The minimal number r such that the equality is achieved is
called CP-rank

A(i1, …, id) =
r

∑
α=1

U1(i1, α)…Ud(id, α)

CP-FORMAT

What are the properties of the CP-format and CP-rank, and
are they different from the matrix rank?

The answer is big yes! There is a big difference between
matrix rank and tensor rank.

A(i1, …, id) =
r

∑
α=1

U1(i1, α)…Ud(id, α)

CP-FORMAT

The answer is big yes! There is a big difference between
matrix rank and tensor rank.

Computation of the CP-rank an NP-complete problem, i.e. it
can not be done in polynomial time.

A(i1, …, id) =
r

∑
α=1

U1(i1, α)…Ud(id, α)

CP-FORMAT

The answer is big yes! There is a big difference between
matrix rank and tensor rank.

There exists a tensor for which the value of the CP
rank is not known!

A(i1, …, id) =
r

∑
α=1

U1(i1, α)…Ud(id, α)

9 × 9 × 9

CP-DECOMPOSITION

There are good properties of the CP decomposition!

- The CP decomposition is unique (Kruskal theorem)
- The number of parameters is very low

CP-DECOMPOSITION

There are bad properties of the CP decomposition!

- The best approximation may not exist
- The computation of the rank can be a hard problem
- Algorithms may converge very slow.

BAD EXAMPLE (1)

Example

The CP-rank is d.

This tensor can be approximated with rank with any
accuracy!!

f(x1, …, xd) = x1 + … + xd

BAD EXAMPLE (2)
Example

The CP-rank is d.

 — rank 2 with any accuracy.

But what does it mean from the view point of algorithms?

f(x1, …, xd) = x1 + … + xd

g = (1 + x1t)(1 + x2t)…(1 + xdt)
dg
dt

|t=0 = f

dg
dt

≈
g(h) − g(0)

h
+ 𝒪(h)

ANOTHER EXAMPLE:

For the complex field, the CP rank is 2.

For the real field, the CP rank is d (non-trivial!)

f(x1, …, xd) = sin(x1 + … + xd)

APPLICATIONS OF THE CP

Work on the CP decomposition
has been started in multiway
factor analysis

Each factor corresponds to pure
mixture

COMPUTATION OF THE CP DECOMPOSITION

The main workhorse for the
computation of the CP
decomposition is the alternating
least squares (ALS)

Each substep is a linear least
squares!!

Fix V, W compute U
Fix U, W compute V
Fix U, V compute W

A = (U, V, W)

ALS: SOME INSIGHTS

Convergence of the ALS can be very slow.

Many improvements have been developed.

Best code: TensorLab (De Lathauwer laboratory, KU Leuven)

CP & ALS: SUMMARY

Useful in many factor models
 
Sometimes difficult to compute

Not the only tensor decomposition around!

TUCKER DECOMPOSITION

Another attempt is the Tucker
decomposition or Higher-Order
SVD: HOSVD

It was proposed by Tucker (1966)
and brought to mathematics by
Lieven De Lathauwer in 2000.

TUCKER DECOMPOSITION

It can be computed using SVD!
It has exponential dependence on d.
It is very good for small d.

A(i1, i2, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)U2(i2, α2)…Ud(id, αd)

HIGHER-ORDER SVD

To compute we need to compute the unfolding of the tensor into a matrix of size
 and compute its left singular vectors.

One can use alternating least squares method.

It has much faster convergence!

A(i1, i2, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)U2(i2, α2)…Ud(id, αd)

Uk
n × nd−1

CROSS APPROXIMATION

You can generalize cross approximation to Tucker decomposition

(Oseledets, Savostyanov, Tucker dimensionality reduction of three-dimensional arrays in
linear time).

We managed to compress arrays on a very old workstation in 2005.

A(i1, i2, …, id) = ∑
α1,…,αd

G(α1, …, αd)U1(i1, α1)U2(i2, α2)…Ud(id, αd)

106 × 106 × 106

LETS SUMMARIZE

CP decomposition: no curse of dimensionality, difficult to compute
Tucker decomposition: easy to compute, curse of dimensionality

Is there anything in between those formats?

Yes, and these are novel SVD based tensor formats: tensor train, H-Tucker

And more complicated representations called tensor networks

REMINDER
Canonical decomposition:

Tucker decomposition

Exponential complexity!

Is there anything in between?

A(i1, …, id) =
r

∑
α=1

U1(i1, α)…Ud(id, αd)

A(i1, …, id) =
r

∑
α1=1,…,αd

G(α1, …, αd)U1(i1, α1)…Ud(id, αd)

FIRST ATTEMPT

First attempt was just reshaping tensors into matrices.

Take a tensor, reshape it into matrix

Compute SVD of the matrix:

nd1 × nd2

A(ℐ, 𝒥) ≈
r

∑
α=1

U1(ℐ, α)U2(𝒥, α), ℐ ∪ 𝒥 = (i1, …, id)

FIRST ATTEMPT
Compute SVD of the matrix:

Now we can run it recursively.

If you do in naive way, you get tensors with d/2 indices,
leading to large complexity (which one)?

A(ℐ, 𝒥) ≈
r

∑
α=1

U1(ℐ, α)U2(𝒥, α), ℐ ∪ 𝒥 = (i1, …, id)

r

TREE TUCKER
Compute SVD of the matrix:

Example:

A smarter idea: consider as dimensional tensor
and compress.

Now we get real «dimensionality reduction» !

A(ℐ, 𝒥) ≈
r

∑
α=1

U1(ℐ, α)U2(𝒥, α), ℐ ∪ 𝒥 = (i1, …, id)

ℐ = (i1, i4), 𝒥 = (i2, i3, i5)

U1(ℐ, α) d1 + 1

TREE TUCKER

Lemma: If has canonical rank r, the new tensors have rank
not higher than

I. V. Oseledets, E.E. Tyrtyshnikov Breaking curse of
dimensionality, or how to use SVD in many dimension. SISC,
2009.

A
r

TREE TUCKER

The process is then applied recursively:

We had a 9 dimensional tensor of canonical rank r, we split it
into 4 and 5 indices, replace it by 6 = 5 + 1 and 5 = 4 + 1
dimensional tensors of canonical rank r. We can go on…

TREE TUCKER

TREE TUCKER: COMPLEXITY

The number of leafs in the tree is exactly

And we get parameters!

I.e., no curse of dimensionality, but SVD-based algorithm!

d − 2

𝒪(dnr + (d − 2)r3)

EQUIVALENCE TO A SIMPLER MODEL
We quickly realized (March 2009) that this representation is
equivalent to a much simpler one:

If we reorder indices in a tensor, we get the following
representation:

which is now now known as tensor train decomposition

A(i1, …, id) = ∑
α1,…,αd−1

G1(i1, α1)G2(α1, i2, α2)……Gd(αd−1, id)

TENSOR TRAIN DECOMPOSITION

MATRIX FORM OF TT-DECOMPOSITION

Where is a matrix of size and

A(i1, …, id) = G1(i1)…Gd(id),

Gk(ik) rk−1 × rk r0 = rd = 1

VISUALIZATION OF TT-DECOMPOSITION

Where is a matrix of
size and

A(i1, …, id) = G1(i1)…Gd(id),

Gk(ik)
rk−1 × rk

r0 = rd = 1

VISUALIZATION OF TT-DECOMPOSITION

Matrices are called
TT-cores, and are called
TT-ranks

A(i1, …, id) = G1(i1)…Gd(id),

Gk(ik)
rk

H-TUCKER DECOMPOSITION

H-Tucker is another successful SVD-based tensor format.

In this representation, you apply Tucker decomposition recursively

I.e. we first reshape the tensor into array and compute Tucker
decomposition,

Get an but with twice smaller dimension.

r2 × r2 × … × r2

r × r × … × r

H-TUCKER AND TT-FORMAT

H-Tucker and TT are different formats, with H-Tucker more general,

but TT-format typically is simpler to implement and analyze.

There has been a line of research for comparing them.

TT-RANKS ARE MATRIX RANKS

Theorem (Oseledets, Tensor-Train decomposition, 2011)

,

I.e. the ranks are matrix ranks of unfoldings !!

rk = rankAk Ak = A(i1…ik; ik+1…id)

PROOF

Theorem (Oseledets, Tensor-Train decomposition, 2011)

,

Proof is constructive and gives the TT-SVD algorithm

It takes only 50 lines of code to implement

rk = rankAk Ak = A(i1…ik; ik+1…id)

PROPERTIES OF TT-FORMAT

- If the tensor has small canonical rank, then
- TT-ranks are matrix ranks, TT-SVD
- All basic arithmetic, linear in d, polynomial in r
- Fast TENSOR ROUNDING
- TT-cross methods, exact interpolation formula
- Much more advanced stuff (tomorrow)

rk ≤ r

TT-RANKS ARE MATRIX RANKS

Theorem (Oseledets, Tensor-Train decomposition, 2011)

,

I.e. the ranks are matrix ranks of unfoldings !!

rk = rankAk Ak = A(i1…ik; ik+1…id)

NO EXACT RANKS IN PRACTICE
Theorem (Oseledets, Tensor-Train decomposition, 2011)

If

then there exists a TT-decomposition with

Ak = Rk + Ek, rank(Ak) = rk, ∥Ek∥ ≤ εk

∥A − TT∥F ≤
d−1

∑
k=1

ε2
k

TT-SVD

- is
- , is — first core
- , is
- Reshape it into matrix
- Compute its SVD: , is — second core
- reshape into and compute its SVD, resulting in the third

and fourth core.

A1 n1 × (n2n3n4)
U1, S1, V1 = SVD(A1) U1 n1 × r1
A2 = S1V1 A2 r1 × (n2n3n4)

(r1n2) × (n3n4) A′ 2
A′ 2 = G2S2V⊤

2 U2 (r1n2) × r2
A3 = S2V⊤

2 (r2n3) × n4

FAST AND SIMPLE LINEAR ALGEBRA

- Addition and Hadamard product, scalar product, matrix-by-vector product
- All scale linear in d

ADDITION

How the tensor look like?

A(i1, …, id) = A1(i1)…Ad(id), B(i1, …, id) = B1(i1)…Bd(id)

C = A + B

MULTIPLICATION

How the tensor look like?

Answer: , where is a Kronecker product of matrices

A(i1, …, id) = A1(i1)…Ad(id), B(i1, …, id) = B1(i1)…Bd(id)

C = A ∘ B

Ck(ik) = Ak(ik) ⊗ Bk(ik) ⊗

TENSOR ROUNDING

Suppose we made an operation with tensors.

We got suboptimal tensor representation.

Can we find optimal ranks?

TENSOR ROUNDING (2)

Can we find optimal ranks?

Yes, we can.

The answer is given by rounding

ROUNDING: ILLUSTRATION IN 2D

Let us illustrate the idea in 2D.

In fact, there is a trick: if something works for matrices, it can be generalized to TT-
format (but it many be not very easy).

So, lets assume

How to compute the SVD?

A = UV⊤

ROUNDING: ILLUSTRATION IN 2D …

So, lets assume

How to compute the SVD?

Compute QR factorization (Lecture 1)

Then, It is enough to compute SVD of a small matrix!!

, then is the SVD of the matrix (why??)

A = UV⊤

U = QURU, V = QV RV

A = QUMQ⊤
V .

M = ÛS ̂V⊤ A = (QUÛ)S(QV
̂V)⊤

TT-ROUNDING

In tensor rounding, you have to orthogonalize the cores from the left
 (I will illustrate on a picture) and then start computing the SVD from the right.

This non-uniqueness of TT-format allows to orthogonalize representations!

TT-ROUNDING

Rounding can be done in operations

Now we do not have curse of dimensionality, but we have curse of the rank

𝒪(dnr3)

TT-CROSS

Where do we get these 100-dimensional tensors from?

We can only know their elements or set them up implicitly
(as a solution of a certain minimization problem)

TT-CROSS

Recall, that for matrices we can recover a rank-r matrix from r columns
and r rows using skeleton decomposition

Can we generalize it to TT-format?

Yes, we can

A = C ̂A−1R

TT-CROSS

Oseledets, Tyrtyshnikov, TT-cross approximation of multidimensional
arrays, 2010

You can exactly recover a rank-r tensor from elements.

Quite a lot of heuristics have been proposed (we are still working on
this), but algorithms still work.

𝒪(dnr3)

FOKKER PLANCK USING CROSS METHOD

Evolution is described by the Fokker-Planck equation for

We consider case

dx = f(x, t)dt + S(x, t)dβ, dβdβ⊤ = Q(t)dt, x = x(t) ∈ ℝd

ρ(x, t)

∂ρ
∂t

=
d

∑
i=1

d

∑
j=1

∂
∂xi

∂
∂xj

[Dijρ] −
d

∑
i=1

∂
∂xi

[fiρ]

D = γI

KEY IDEAS

1: Parametrize density with TT-decomposition
2: Use splitting between diffusion and advection
3: Each splitting step can be integrated «almost explicitly»

DIFFUSION STEP

, does not change the TT-rank (exponential of the

Laplacian has TT-rank 1!)

∂ρ
∂t

= Δρ, ρk+1 = eΔτρk

CONVECTION STEP

In Lagrangian coordinates,

I.e. to evaluate the density in the next time step at any point, we integrate this system of ODE
back in time. Thus, we can evaluate the density at any point, and can use TT-cross method to
build the approximation!

∂ρ
∂t

= ∇ ⋅ (fρ)

dx
dt

= f(x, t)

dρ
dt

= − Tr(∇f)ρ

NUMERICAL ILLUSTRATION

REFERENCE

A. Chertkov, I. Oseledets, Solution of the Fokker–Planck Equation by Cross
Approximation Method in the Tensor Train Format, Front. Artif. Intelligence. 2021

APPROXIMATION OF PROBABILITY DISTRIBUTIONS
FROM SAMPLES USING TENSORS

We are given samples from the probability distribution

Tensor-product basis:

We put tensor-train constraints on which is a d-dimensional tensor!

x1, …, xN

p(x) ≈ qθ(x)

qθ(x) = ⟨αθ, Φ(x)⟩ =
K

∑
k=1

αθ,k fk(x)

Φ(x) = f(x1) ⊗ … ⊗ fd(xd), fk(x) ∈ ℝmk

α,

LOSS FUNCTION

As a loss function, we use

All these terms are computable.

ℒ(p(x) − qθ(x))2dx = ∫ q2
θ dx − 2Ex∼pqθ(x) + const

SQUARED TT-MODEL

TT-format for the density is not positive;
We also propose to use squared TT model

It happens, that the complexity of the basic operations (sampling,
loss evaluation, etc.) does not grow significantly with respect to the
ranks.

̂q = q2
θ (x)

WHY TT IS GOOD?

- Sampling is cheap
- Likelihood is
available
- Optimization can
be done by
Riemannian
optimization

EXPERIMENTS

EXPERIMENTS

EXPERIMENTS

EXPERIMENTS

EXPERIMENTS

APPLICATIONS…

APPLICATIONS…

SOFTWARE FOR TT-FORMAT

- tntoch https://github.com/rballester/tntorch (PyTorch)
- Teneva https://github.com/AndreiChertkov/teneva (Python)
- TT-Toolbox https://github.com/oseledets/TT-Toolbox (MATLAB)
- ttpy https://github.com/oseledets/ttpy (Python + numpy)
- T3f https://github.com/Bihaqo/t3f (Tensorflow)

https://github.com/rballester/tntorch
https://github.com/AndreiChertkov/teneva
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/ttpy
https://github.com/Bihaqo/t3f

RECAP OF LECTURE 3

• Tensors
• Basic tensor decompositions
• Advanced tensor decompositions.

NEXT LECTURE

• Multivariate function approximation
• Cross approximation
• Approximation of smooth functions

