LECTURE 3: TENSOR DECOMPOSITIONS

IVAN OSELEDETS



PLAN OF THE COURSE

Lecture 1:
Basic machine learning models. Supervised/unsupervised learning.Deep learning. Convolutional neural networks.
Lecture 2:

Modern deep learning models. Concept of attention. Transformers (natural language processing / vision transformers). ldea of
generative models (GANSs). Application to image processing.

Lecture 3:

Tensor decompositions: Basic tensor factorizations (canonical polyadic, Tucker, tensor-train, H-Tucker). Algorithms for computing tensor
factorizations. Applications of tensor decompositions, including image processing

Lecture 4
Multivariate function approximation. Cross approximation. Approximation of smooth functions.

Lecture 5: Tensor decompositions and machine learning for compression of signals, images and videos. Neural Radiance Fields, signed
distance functions.



RECAP OF LECTURE 2

- Convolutional neural networks

« Concept of attention

- Transformer architecture

« Transformers in NLP

 Transformers in Vision (Vision Transformers)

- ldea of GAN, unsupervised learning.




PLAN OF LECTURE 3

 Tensors
- Basic tensor decompositions

- Advanced tensor decompositions.




WHAT IS A TENSOR

D =1: Vector
D = 2: Matrix

D > 2: Tensor

SC&I&Y

\/e ctor

—[—erISor




WHY STUDY TENSORS?

Data is multidimensional.

Can you come up with examples of multidimensional data in
practice?



WHY STUDY TENSORS?

Data is multidimensional.
Can you come up with examples of multidimensional data in practice?

Images: width x height x colors (i.e., 512 x 512 x 3)

Videos: width x height x colors x time (i.e. 512 x 512 x 3 x 100)
Multispectral images

Tomography/MRI images

Many, many more..



LITERATURE ON TENSORS

1) Brett Bader, Tammy Kolda, Tensor decomposition, SIREV,
2009

2) Cichocki A, Lee N, Oseledets |, Phan AH, Zhao Q, Mandic
DP. Tensor networks for dimensionality reduction and large-
scale optimization: Part 1&2 Low-rank tensor decompositions.
Foundations and Trends® in Machine Learning. 2016 Dec
18;9(4-5):249-429.



TENSOR AND MULTIVARIATE FUNCTIONS

Consider d-variate function: f(x, ..., x;)

Sample each pointon a grid x;, i;, = 1,..., 7.

You get ny X n, X ... X n;d-dimensional tensor!



WHERE TENSORS COME FROM

D-dimensional Partial Differential Equations (PDE)
Au=1f

Parametric equations:

Data: images, videos, hyperspectral images

Factor models
Weight tensors in deep neural networks...




WHERE TENSORS COME FROM

D-dimensional Partial Differential Equations (PDE) Au = f

Parametric equations: A(p)u(p) = f(p),p = (py, ---» Pas)
Data: images, videos, hyperspectral images

Factor models
Weight tensors in deep neural networks...




DEFINITION

A tensor is a d-dimensional array:
A(il,...,id), 1 S lks nk

Mathematically more correct definition: polylinear form



DEFINITIONS

Tensors (as matrices) they form a linear space.

The natural norm for tensors is Frobenius norm:

||A||F=\/ N 1Al osig)
i,




CURSE OF DIMENSIONALITY

Curse of dimensionality: Storage of a d-dimensional

tensor requires n?

Grows exponentially with the dimensionality




BASIC QUESTIONS

How to break the curse of dimensionality?
How to perform multidimensional sampling

How to do everything efficiently and in a robust way?



REAL LIFE PROBLEMS

If you need to compute something high-dimensional, people typically do the
following:

Monte-Carlo integration

Special basis sets (radial basis functions)

Best N-term approximations (wavelets, sparse grids)
Neural networks

But we want algebraic techniques...



SEPARATION OF VARIABLES

One of the few fruitful ideas is the idea of separation of
variables.



SEPARATION OF VARIABLES

We have seen separation of variables in two dimensions:

Ay i) ~ ) Uy(iy, a)Uy(iy, @)

a=1

Or in the matrix form, A = U, U2T




IDEAL SEPARATION

Rank-1:

A(ila iz) — U1(i1)U2(i2)

How we can generalize it to d dimensions?



IDEAL SEPARATION

D dimension, rank=1

A(ly, 1y, ...y i) = Ui U, (15)... U (1)

However, not many tensors, can be represented in this
format



CANONICAL POLYADIC (CP) FORMAT

A tensor is said to be in the canonical polyadic (CP)
format, if it can be represented as

Ay, ....ig) = Y Uiy, @)... Uiy @)
a=1

The minimal number r such that the equality is achieved is
called CP-rank




CP-FORMAT

Ay, .nig) = ) Uy(ip @).... Ui )
a=1

What are the properties of the CP-format and CP-rank, and
are they different from the matrix rank?

The answer is big yes! There is a big difference between
matrix rank and tensor rank.



CP-FORMAT

A(il’ . ld) —_ Z Ul(ll,a)Ud(ld, 0{)
a=1

The answer is big yes! There is a big difference between
matrix rank and tensor rank.

Computation of the CP-rank an NP-complete problem, i.e. it
can not be done in polynomial time.



CP-FORMAT

A(il, . ld) —_ Z Ul(ll,a)Ud(ld, 0{)
a=1

The answer is big yes! There is a big difference between
matrix rank and tensor rank.

There exists a9 X 9 X 9 tensor for which the value of the CP
rank is not known!



CP-DECOMPOSITION

There are good properties of the CP decomposition!

- The CP decomposition is unique (Kruskal theorem)

- The number of parameters is very low



CP-DECOMPOSITION

There are bad properties of the CP decomposition!

- The best approximation may not exist

- The computation of the rank can be a hard problem

- Algorithms may converge very slow.



BAD EXAMPLE (1)

Examplef(xl, <o xd) = X + ... + xd
The CP-rank is d.

This tensor can be approximated with rank with any
accuracy!!



BAD EXAMPLE (2)

Example f(x;, ..., X;) = x; + ... +x;
The CP-rank is d.

dg

E |t:O =f

dg  g(h)—g(0)
dt h
But what does it mean from the view point of algorithms?

+ O(h) — rank 2 with any accuracy.




ANOTHER EXAMPLE:

flxy, ..

., X;7) = sin(x,

X;)

For the complex field, the CP rank is 2.

For the real field, the CP rank is d (non-trivial!)



APPLICATIONS OF THE CP

Work on the CP decomposition
has been started in multiway
factor analysis

Each factor corresponds to pure
mixture




COMPUTATION OF THE CP DECOMPOSITION

The main workhorse for the

computation of the CP

decomposition is the alternating A= UV, W)
least squares (ALS) Fix V, W compute U

Fix U, W compute V

Each substep is a linear least Fix U, V. compute W
squares!!




ALS: SOME INSIGHTS

Convergence of the ALS can be very slow.
Many improvements have been developed.

Best code: TensorLab (De Lathauwer laboratory, KU Leuven)



CP & ALS: SUMMARY

Useful in many factor models

Sometimes difficult to compute

Not the only tensor decomposition around!




TUCKER DECOMPOSITION

Another attempt is the Tucker
decomposition or Higher-Order
SVD: HOSVD

It was proposed by Tucker (1966)
and brought to mathematics by
Lieven De Lathauwer in 2000.




TUCKER DECOMPOSITION

A(il’ iz, cooy ld) — Z G(al, cooy ad)Ul(il, al)Uz(iz, 052). .o Ud(id’ ad)
Afy- .50

t can be computed using SVD!
t has exponential dependence on d.

tis very good for small d.



HIGHER-ORDER SVD

Ay - 50

To compute U, we need to compute the unfolding of the tensor into a matrix of size
nxn®!and compute its left singular vectors.

One can use alternating least squares method.

It has much faster convergence!



CROSS APPROXIMATION

Ay - 50

You can generalize cross approximation to Tucker decomposition

(Oseledets, Savostyanov, Tucker dimensionality reduction of three-dimensional arrays in
linear time).

We managed to compress 10° X 10° x 10° arrays on a very old workstation in 2005.



LETS SUMMARIZE

CP decomposition: no curse of dimensionality, difficult to compute
Tucker decomposition: easy to compute, curse of dimensionality

Is there anything in between those formats?
Yes, and these are novel SVD based tensor formats: tensor train, H-Tucker

And more complicated representations called tensor networks



REMINDER

Canonical decomposition:

Ay, ...,

i) = Z U,(iy,)...U i, a,)

a=1

Tucker decomposition

A(iy, ..

i) = Z G(al,...,ad)Ul(il,al)...Ud(id,ad)

a;=1,..

Exponential complexity!

Is there anything in between?



FIRST ATTEMPT

First attempt was just reshaping tensors into matrices.
Take a tensor, reshape it into n% x n matrix

Compute SVD of the matrix:

AT F)~ Y UT.aUyF. @), FUFI=(i....iH)
a=1



FIRST ATTEMPT

Compute SVD of the matrix:
AT D)~ ) U(I. UyF.a), JUF=(i....ip)
a=1

Now we can run it recursively.

If you do in naive way, you get r tensors with d/2 indices,
leading to large complexity (which one)?



TREE TUCKER

Compute SVD of the matrix:

AT, F)» Y UT.aUyF.a), JUF=(,...i)
a=1

Example: ¥ = (il,i4), S = (iza I3, is)

A smarter idea: consider U,(-#, a) as d; + 1 dimensional tensor
and compress.

Now we get real «dimensionality reduction» !



TREE TUCKER

Lemma: If A has canonical rank r, the new tensors have rank
not higher than r

|. V. Oseledets, E.E. Tyrtyshnikov Breaking curse of
dimensionality, or how to use SVD in many dimension. SISC,

2009.



TREE TUCKER

The process is then applied recursively:

We had a 9 dimensional tensor of canonical rank r, we split it
iInto 4 and 5 indices, replace itby6=5+1and5=4 + 1
dimensional tensors of canonical rank r. We can go on...



TREE TUCKER
O\
/N \

4
3/\33/\3 /\



TREE TUCKER: COMPLEXITY

The number of leafs in the tree is exactly d — 2
And we get O(dnr + (d — 2)r>) parameters!

l.e., no curse of dimensionality, but SVD-based algorithm!




EQUIVALENCE TO A SIMPLER MODEL

We quickly realized (March 2009) that this representation is
equivalent to a much simpler one:

If we reorder indices in a tensor, we get the following
representation:

A(il’ cees ld) —_ Z Gl(il’ al)Gz(al, iz, az) ...... Gd(ad_l, ld)

[0 ST A
which is now now known as tensor train decomposition




TENSOR TRAIN DECOMPOSITION

Aliy, ... ig) =
2oy G1liy 01) Ga( 01y iy 002) « . Ga( g1, fd)

0 01120 X233 034




MATRIX FORM OF TT-DECOMPOSITION

A(iy, .. i) = G,(Gi))...G (i),

Where G,(i;) is a matrix of size r;,_{ X rpand ry =r; =1



VISUALIZATION OF TT-DECOMPOSITION

Aliyy ..oyiy) = Gy(iy)...G (i),

Where G,(i}) is a matrix of
size r;,_y X 1, and
7‘0 —_ Fd —_ 1

Azazs = :

21—2

2

ﬁ
22—

Gs

r‘x

13 = 2

G4

14 =



VISUALIZATION OF TT-DECOMPOSITION

Al iy = Gi(i))...Gy(1y),

Matrices G(i;)are called
TT-cores, and r;, are called
TT-ranks

Azazs = :

21—2

2

ﬁ
22—

Gs

r“x

13 = 2

G4

14 =



H-TUCKER DECOMPOSITION

H-Tucker is another successful SVD-based tensor format.
In this representation, you apply Tucker decomposition recursively

|.e. we first reshape the tensor into FPXTEX . X array and compute Tucker
decomposition,

Getanr X r X ... X rbut with twice smaller dimension.



H-TUCKER AND TT-FORMAT

H-Tucker and TT are different formats, with H-Tucker more general,
but TT-format typically is simpler to implement and analyze.

There has been a line of research for comparing them.




TT-RANKS ARE MATRIX RANKS

Theorem (Oseledets, Tensor-Train decomposition, 2011)
I"k — I’ankAk, Ak —_ A(ll .. .lk; ik+1’ . 'ld)

|.e. the ranks are matrix ranks of unfoldings !!




PROOF

Theorem (Oseledets, Tensor-Train decomposition, 2011)

I, = l‘ankAk, Ak o A(ll...lk; lk+1"'ld)

Proof is constructive and gives the TT-SVD algorithm

It takes only 50 lines of code to implement



PROPERTIES OF TT-FORMAT

- If the tensor has small canonical rank, then r, < r

- TT-ranks are matrix ranks, TT-SVD

- All basic arithmetic, linear in d, polynomial in r
- Fast TENSOR ROUNDING

- TT-cross methods, exact interpolation formula
- Much more advanced stuff (tomorrow)




TT-RANKS ARE MATRIX RANKS

Theorem (Oseledets, Tensor-Train decomposition, 2011)
I"k — I’ankAk, Ak —_ A(ll .. .lk; ik+1’ . 'ld)

|.e. the ranks are matrix ranks of unfoldings !!




NO EXACT RANKS IN PRACTICE

Theorem (Oseledets, Tensor-Train decomposition, 2011)

then there exists a TT-decomposition with

IA =TTl < \ D,




TT-SVD

- Ayis ny X (ny,nsny)

- U, S8, V, =SVD(A)), U, is n; X r; — first core

- Ay =5,V,, Ayis 1y X (nynyny)

- Reshape it into (rn,) X (n;n,) matrix A,

. Compute its SVD: A, = G,S,V,), U, is (ry1n,) X r, — second core

Ay = S2V2T reshape into (r,13) X n, and compute its SVD, resulting in the third
and fourth core.



FAST AND SIMPLE LINEAR ALGEBRA

- Addition and Hadamard product, scalar product, matrix-by-vector product
- All scale linear in d



ADDITION

A(ly, ..., 1) =A(0))...Ayiy), B(y,...,15) = B(i;)...By(i,)

How the tensor C = A + B look like?



MULTIPLICATION

How the tensor C = A o B look like?

Answer: Ci (i) = A1) @ Bi(i;), where @ is a Kronecker product of matrices



TENSOR ROUNDING

Suppose we made an operation with tensors.
We got suboptimal tensor representation.

Can we find optimal ranks?




TENSOR ROUNDING (2)

Can we find optimal ranks?
Yes, we can.

The answer is given by rounding




ROUNDING: ILLUSTRATION IN 2D

Let us illustrate the idea in 2D.

In fact, there is a trick: if something works for matrices, it can be generalized to TT
format (but it many be not very easy).

So, lets assume A = UV'

How to compute the SVD?



ROUNDING: ILLUSTRATION IN 2D ...

So, lets assume A = UV
How to compute the SVD?

Compute QR factorization (Lecture 1)

U= QuyRy, V=0yRy

Then, A = QUMQ‘_,r . It is enough to compute SVD of a small matrix!!

M = USVT, then A = (Q,U)S(Q, V)T is the SVD of the matrix (why??)




TT-ROUNDING

In tensor rounding, you have to orthogonalize the cores from the left
(I will illustrate on a picture) and then start computing the SVD from the right.

This non-uniqueness of TT-format allows to orthogonalize representations!



TT-ROUNDING

Rounding can be done in O(dnr>) operations

Now we do not have curse of dimensionality, but we have curse of the rank



TT-CROSS

Where do we get these 100-dimensional tensors from?

We can only know their elements or set them up implicitly
(as a solution of a certain minimization problem)



TT-CROSS

Recall, that for matrices we can recover a rank-r matrix from r columns
and r rows using skeleton decomposition

A=CA'R
Can we generalize it to TT-format?

Yes, we can



TT-CROSS

Oseledets, Tyrtyshnikov, TT-cross approximation of multidimensional
arrays, 2010
You can exactly recover a rank-r tensor from O(dnr?>) elements.

Quite a lot of heuristics have been proposed (we are still working on
this), but algorithms still work.



FOKKER PLANCK USING CROSS METHOD

= f(x,dt + S(x, )dp, dpdp’ = O()dt, x =x(t) € R?

Evolution is described by the Fokker-Planck equation for p(x, 7)

d

0
Z Zgg[ i1 = 2 o—Lfip]

i=1 j=1 i=1 !

We consider case D = yl




KEY IDEAS

1: Parametrize density with TT-decomposition
2: Use splitting between diffusion and advection

3: Each splitting step can be integrated «almost explicitly»



DIFFUSION STEP

0
a—'j = Ap, py 1= eATpk, does not change the TT-rank (exponential of the

Laplacian has TT-rank 1!)



CONVECTION STEP

p— .
E_V (fp)

In Lagrangian coordinates,
dx

E =f(x’ t)
dp o
o Te(Vi)p

l.e. to evaluate the density in the next time step at any point, we integrate this system of ODE
back in time. Thus, we can evaluate the density at any point, and can use TT-cross method to
build the approximation!



NUMERICAL ILLUSTRATION
A B

Computation results TT-rank
2.0 8.51
8.0
1.91 7 5
7.0
1.0 .
6.5
6.0
0.5
—=— Value of ¢ 5.5
—e— Value of
0.0- L 5.0 ¢
0.0 2.5 5.0 75 10.0 0.0 2.5 5.0 75 10.0

Time Time



REFERENCE

A. Chertkov, |. Oseledets, Solution of the Fokker—Planck Equation by Cross
Approximation Method in the Tensor Train Format, Front. Artif. Intelligence. 2021



APPROXIMATION OF PROBABILITY DISTRIBUTIONS
FROM SAMPLES USING TENSORS

We are given samples xy, ..., X, from the probability distribution
p(x) & gy(x)

K
Go) = (g, @(x)) = )y, fix)

k=1

Tensor-product basis: ®(x) = f(x)) Q@ ... @ f,(x), [filx) € R™
We put tensor-train constraints on a, which is a d-dimensional tensor!




LOSS FUNCTION

As a loss function, we use
ZL(px) — qg(x))zdx = qudx —2E, _,qy(x) + const

All these terms are computable.




SQUARED TT-MODEL

TT-format for the density is not positive;

We also propose to use squared TT model

q = q5(x)

It happens, that the complexity of the basic operations (sampling,

loss evaluation, etc.) does not grow significantly with respect to the
ranks.



WHY TT IS GOOD?

- Sam pl | ng iS Cheap Table 1: Comparison of the capabilities of different density estimation models. *FFJORD does not use true log-likelihood i
the training process and instead uses its unbiased estimate.

- Likelihood is
) Method Exact Sampling Tractable L. No middle-man Training Computation of CDF

available FEIORD 7 /e /e X
.. i Normalizing Flows v v v X
- Optimization can GANs / X X X
VAEs v X v X
be done by Autoregressive v v v X
: : E -based X X X X

Riemannian o s
TTDE (ours) v v v v

optimization



EXPERIMENTS

Data TTDE (ours)

FFJORD
. - - Random init. | Rank-1 init.
Adam 5 11
Riemannian | 12 32

Table 2: Experiment with mixture of 7 Gaussians in 3D with
additional dimensions containing only noise. We report the

maximum dimensionality for which approximation of the
density converges to the true one for different initialization
@ settings and optimization methods used.

Figure 1: Comparison of TTDE and FFJORD models on
2-dimensional toy distributions.



EXPERIMENTS

True distribution

~

4 basis functions

\/

8 basis functions

64 basis functions

rank 16

Figure 2: Approximations of “two moons” distribution by TTDE for different basis function set sizes and TT-ranks.



EXPERIMENTS

POWER GAS HEPMASS MINIBOONE BSDS300

Dataset dimensionality 6 8 21 43 64
Gaussians -1.74 -3.58 -27.93 -37.24 96.67
MADE -3.08 3.56 -20.98 -15.59 148.85
Real NVP 0.17 8.33 -18.71 -13.84 153.28
Glow 0.17 8.15 -18.92 -11.35 155.07
FFJORD 0.46 8.59 -14.92 -10.43 157.40

Squared TTDE (ours) 0.46 8.93 —21.34* —28.77* 143.30




EXPERIMENTS

sliced total variance
© o o o o o
N W~ U O

o
o

Figure 4: Dependence of the sliced total variation w.r.t.
the training time for models trained on 6-dimensional UCI

POWER dataset.
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Figure 5: Dependence of the sampling time w.r.t. the num-
ber of samples to be generated for 6-dimensional space for
models trained on UCI POWER dataset. Our model outper-
forms its competitors and shows 2.6, 2.5, 1.4 and 1.2 times
speedups compared to FFJORD, MAF, GLOW and Real
NVP respectively.
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Figure 4: Dependence of the sliced total variation w.r.t.
the training time for models trained on 6-dimensional UCI

POWER dataset.
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Figure 5: Dependence of the sampling time w.r.t. the num-
ber of samples to be generated for 6-dimensional space for
models trained on UCI POWER dataset. Our model outper-
forms its competitors and shows 2.6, 2.5, 1.4 and 1.2 times
speedups compared to FFJORD, MAF, GLOW and Real
NVP respectively.



APPLICATIONS...

Tensor train neighborhood preserving embedding

W Wang, V Aggarwal, S Aeron - IEEE Transactions on Signal ..., 2018 - ieeexplore.ieee.org
In this paper, we propose a tensor train neighborhood preserving embedding (TTNPE) to
embed multidimensional tensor data into low-dimensional tensor subspace. Novel ...

Y¢ Save 99 Cite Cited by 27 Related articles All 5 versions

Tt-rec: Tensor train compression for deep learning recommendation models
CYin, B Acun, CJ Wu, X Liu - Proceedings of Machine ..., 2021 - proceedings.mlsys.org

... Component Analysis (PCA) (Wold et al., 1987), Tensor-Train (TT) is an approach to tensor
decomposition by decomposing multidimensional data into product of smaller tensors ...

Y¢ Save 99 Cite Cited by 13 Related articles All 4 versions £

TTH-RNN: Tensor-train hierarchical recurrent neural network for video
summarization

B Zhao, X Li, X Lu - IEEE Transactions on Industrial Electronics, 2020 - ieeexplore.ieee.org

... the out- put xe, and the mapping matrix We can be reshaped into tensors x € Rdf1 ... Besides,
according to [22], the total computation complexity of the tensor-train embedding layer is O(d ...
Y¢ Save DY Cite Cited by 26 Related articles All 2 versions

Nimble GNN Embedding with Tensor-Train Decomposition

CYin, D Zheng, | Nisa, C Faloutos, G Karypis... - arXiv preprint arXiv ..., 2022 - arxiv.org
This paper describes a new method for representing embedding tables of graph neural
networks (GNNs) more compactly via tensor-train (TT) decomposition. We consider the ...
Y¢ Save 99 Cite All 3 versions 9

Scalable gaussian processes with billions of inducing inputs via tensor train
decomposition

P_1zmailov, A Novikov... - ... Conference on Artificial ..., 2018 - proceedings.mir.press

... allows deep kernels that produce embeddings of dimensionality up ... Tensor Train (TT)

decomposition, proposed in Os- eledets (2011 ... allows to efficiently store tensors (multi- dimensional ...

Y¢ Save Y9 Cite Cited by 46 Related articles All 10 versions 99

ML Tensorized embedding layers

O Hrinchuk, V Khrulkov, L Mirvakhabova... - Findings of the ..., 2020 - aclanthology.org

... We introduce a novel way of parameterizing embedding layers based on the Tensor Train
decomposition, which allows compressing the model significantly at the cost of a negligible ...
Y¢ Save DY Cite Cited by 10 Related articles All 3 versions 99

[PDF] ieee.org

[PDF] misys.org

[PDF] ieee.org

[PDF] arxiv.org

[PDF] mir.press

[HTML] aclanthology.org



APPLICATIONS...

Learning a low tensor-train rank representation for hyperspectral image super- [PDF] ieee.org
resolution

R Dian, S Li, L Fang - ... on neural networks and learning systems, 2019 - ieeexplore.ieee.org

... In this paper, a novel low tensor- train (TT) rank (LTTR)-based HSI ... each other and can constitute

a 4-D tensor, whose four ... impose the LTTR constraint on these 4-D tensors, which can ...

Y% Save Y9 Cite Cited by 146 Related articles All 5 versions

Multiscale feature tensor train rank minimization for multidimensional image [PDF] ieee.org
recovery

H Zhang, XL Zhao, TX Jiang, MK Ng... - IEEE Transactions on ..., 2021 - ieeexplore.ieee.org

... ZHANG et al.: MULTISCALE FEATURE TENSOR TRAIN RANK MINIMIZATION ... is especially

suitable for high- dimensional tensors [21], [28 ... the resulting high-dimensional MSF tensor XW ...

Y¢ Save Y9 Cite Cited by 15 Related articles All 3 versions

TIE: Energy-efficient tensor train-based inference engine for deep neural [PDF] acm.org
network

C Deng, F Sun, X Qian, J Lin, ZWang... - Proceedings of the 46th ..., 2019 - dl.acm.org

... Among various DNN compression techniques, tensor-train (TT) decomposition [52 ... via decompos-

ing the weight tensors of CONV ... From the perspective of tensor theory, the impressive ...

Y¢ Save Y9 Cite Cited by 44 Related articles All 5 versions

Fast and accurate tensor completion with total variation regularized tensor [PDF] ieee.org
trains

CY Ko, K Batselier, L Daniel, W Yu... - IEEE Transactions on ..., 2020 - ieeexplore.ieee.org

... 21]-[23], which are intrin- sically defined on three-way tensors such as ... [26] adopted tensor trains

(TTs) and ... tensor completion problem formulation and adopted the tensor train format as ...

Y¢ Save Y9 Cite Cited by 25 Related articles All 12 versions



SOFTWARE FOR TT-FORMAT

- tntoch hitps://github.com/rballester/intorch (PyTorch)

- Teneva htips://github.com/AndreiChertkov/teneva (Python)

- TT-Toolbox https://github.com/oseledets/TT-Toolbox (MATLAB)
- ttpy https://github.com/oseledets/tipy (Python + numpy)

- T3f https://github.com/Bihaqo/t3f (Tensorflow)



https://github.com/rballester/tntorch
https://github.com/AndreiChertkov/teneva
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/ttpy
https://github.com/Bihaqo/t3f

RECAP OF LECTURE 3

 Tensors
- Basic tensor decompositions

- Advanced tensor decompositions.




NEXT LECTURE

- Multivariate function approximation
« Cross approximation

 Approximation of smooth functions




