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Importance Sampling procedure

▶ Suppose that we are willing to estimate π(f ) =
∫
RD f (x)π(dx) for

some distribution π;

▶ π is known up to a normalizing factor ZΠ, π(dx) = π̃(dx)/ZΠ;

▶ Importance Sampling (IS) consists of re-weighting samples from a
proposal distribution λ.

▶ Assume that π̃ and λ have densities π̃ and λ, respectively.

▶ Define importance weights as w̃(x) = π̃(x)/λ(x);

▶ The self-normalized importance sampling (SNIS) estimator of π(f ) is
then given by

ΠN f (X
1:N) =

N∑
i=1

ωi
N f (X

i ) ,

where

X 1:N ∼ λ , ωi
N =

w̃(X i )∑N
j=1 w̃(X j)

, i ∈ {1, . . . ,N} .
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Self-normalized IS estimate

SNIS procedure

ΠN f (X
1:N) =

N∑
i=1

ωi
N f (X

i ) ,

where

X 1:N ∼ λ , ωi
N =

w̃(X i )∑N
j=1 w̃(X j)

, i ∈ {1, . . . ,N} .

Pros and cons
▶ Advantage: Does not require have an access to the normalising

constant of π, that is, λ(w̃) =
∫
X
w̃(x)λ(x) dx might be unknown;

▶ Disadvantage: The SNIS estimator is known to be biased
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Bias of the SNIS estimate

The result below is due to [Agapiou et al., 2017, Theorem 2.1].

Theorem 1.

Assume that λ(w̃2) < ∞, and set κ[π, λ] = λ(w̃2)/λ2(w̃). Then the bias
and mean-squared error (MSE) of the SNIS estimator over bounded test
functions f satisfying |f |∞ ≤ 1 are given respectively by

|E[ΠN f (X
1:N)]− π(f )| ≤ 12κ[π, λ]

N
,

E[{ΠN f (X
1:N)− π(f )}2] ≤ 4κ[π, λ]

N
.

(1)
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From IS to SIR

▶ Sampling counterpart of the IS procedure is known as Sampling
Importance Resampling (SIR; Rubin [1987]);

▶ Sample X 1, . . . ,XN - i.i.d. from λ and compute the importance
weights ω1

N , . . . , ω
N
N ;

▶ Sample Y 1, . . . ,YM from X 1, . . . ,XN with replacement, and with
probabilities proportional to the weights ω1

N , . . . , ω
N
N . That is, we

sample from the empirical distribution

π̂(dx) =
N∑
i=1

ωi
NδX i (dx) ,

where δy (dx) denotes the Dirac mass at y .

▶ As N → ∞, Y 1, . . . ,YM ∼ Π̂ will be distributed according to π.

▶ Main drawback: the described procedure is only asymptotically valid;

▶ Iterating samples from λ, we arrive at iterated SIR algorithm (i-SIR ,
Andrieu et al. [2010], and Andrieu et al. [2018]).
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Iterated SIR (i-SIR) algorithm

Algorithm 1: Single stage of i-SIR algorithm

Input : Sample Yj from previous iteration
Output: New sample Yj+1

1 Set X 1
j+1 = Yj and draw X 2:N

j+1 ∼ λ.

2 for i ∈ [N] do
3 compute the normalized weights

ωi,j+1 = w̃(X i
j+1)/

∑N
k=1 w̃(X k

j+1).

4 Set Ij+1 = Cat(ω1,j+1, . . . , ωN,j+1).

5 Draw Yj+1 = X
Ij+1

j+1 .

i-SIR properties
▶ Under appropriate conditions, the distribution of Yk approaches π,

regardless of the initial distribution;

▶ Disadvantage: Waste of computational resources: N − 1 out of N
generated particles in the chunk X 1:N

j+1 are not used
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V -geometric ergodicity

Definition: V -norm

Let V (x) : Rd 7→ [1;+∞), then the V -norm of two probability measures
ξ and ξ′ on (Rd ,B(Rd)), is defied as

∥ξ − ξ′∥V := sup
|f (x)|≤V (x)

|ξ(f )− ξ′(f )| .

If V (x) ≡ 1, we get the total variation distance.

V -geometric ergodicity

A Markov kernel Q with invariant probability measure π is
V -geometrically ergodic if there exist constants ρ ∈ (0, 1) and M < ∞
such that, for all x ∈ X and k ∈ N,

∥Qk(x , ·)− π∥V ≤ M {V (x) + π(V )}ρk .

7 / 53



i-SIR algorithm

Assumption B1

Assume that |w̃ |∞ < ∞.

The result below is due to Andrieu et al. [2018].

i-SIR ergodicity

Assume B1. Then the Markov kernel PN is uniformly geometrically
ergodic. Namely, for any initial distribution ξ on (X,X ) and k ∈ N,

∥ξPk
N − π∥TV ≤ κk

N , (2)

with ϵN = N−1
2L+N−2 ,L = |w̃ |∞/λ(w̃) and κN = 1− ϵN . Hence, its mixing

time is upper bounded by

τmix,N = ⌈− ln 4/ lnκN⌉,
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i-SIR algorithm

▶ Provided also that |w̃ |∞ < ∞, it was shown in Andrieu et al. [2018]
that the Markov kernel PN is uniformly geometrically ergodic.
Namely, for any initial distribution ξ on (X,X ) and k ∈ N,

∥ξPk
N − π∥TV ≤ κk

N , (3)

with ϵN = N−1
2L+N−2 ,L = |w̃ |∞/λ(w̃) and κN = 1− ϵN .

▶ Note that the bound (3) relies significantly on the restrictive
condition that weights are uniformly bounded |w̃ |∞ < ∞.

▶ Moreover, even when this condition is satisfied, the rate κN can be
close to 1 when the dimension d is large.

▶ Indeed, consider a simple scenario π(x) =
∏d

i=1 p(xi ) and

λ(x) =
∏d

i=1 q(xi ) for some densities p(·) and q(·) on R. Then it is
easy to see that L = (supy∈R p(y)/q(y))d grows exponentially with d .
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i-SIR sampling from an energy-based model on CIFAR-10

(a) One trajectory of i-SIR algorithm.
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Global samplers
▶ Examples: Neural Transport HMC (Hoffman et al. [2019]), Multiple

Try Metropolis (Liu et al. [2000]), i-SIR (Andrieu et al. [2010])

▶ Able to generate more global updates, but difficult to design

▶ Issue: The acceptance rate of independent proposals decreases
dramatically with dimensions
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Main ideas

▶ We focus on combining local and global samplers

▶ Intuition: local steps interleaved between global updates increase
accuracy by allowing accurate sampling in distribution tails;

▶ Global kernel: iterative-sampling importance resampling (i-SIR),
Andrieu et al. [2010]. This kernel uses multiple proposals in each
iteration;

▶ Local samplers: Metropolis Adjusted Langevin (MALA), Hamiltonian
Monte Carlo (HMC).

▶ We call this combination strategy Explore-Exploit MCMC
(Ex2MCMC)
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Ex2MCMC algorithm

▶ Main i-SIR drawback: absence of local exploration moves;

▶ Idea: apply a local MCMC kernel R (rejuvenation kernel) after each
i-SIR step;

▶ R has π as invariant distribution;

▶ Here comes Ex2MCMC : Exploration steps through i-SIR ,
Exploitation steps through R(x , ·);

▶ As our default choice we consider MALA as rejuvenation, but other
ones (HMC, NUTS) are also possible.
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Ex2MCMC algorithm

Algorithm 1: Single stage of Ex2MCMC algorithm with independent
proposals

1 Procedure Ex2MCMC (Yj ,Λ,R):
Input : Previous sample Yj ;

proposal distribution Λ;
rejuvenation kernel R;

Output: New sample Yj+1;
2 Set X 1

j+1 = Yj , draw X 2:N
j+1 ∼ λ;

3 for i ∈ [N] do
4 compute the normalized weights

ωi,j+1 = w̃(X i
j+1)/

∑N
k=1 w̃(X k

j+1);

5 Set Ij+1 = Cat(ω1,j+1, . . . , ωN,j+1);

6 Draw Yj+1 ∼ R(X
Ij+1

j+1 , ·).
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Assumptions

A1

(i) R has π as its unique invariant distribution;
(ii) There exists a function V : X → [1,∞), such that for all r ≥ rR > 1
there exist λR,r ∈ [0, 1), bR,r < ∞, such that
RV (x) ≤ λR,rV (x) + bR,r1Vr , where Vr = {x : V (x) ≤ r};

A2

(i) For all r ≥ rR, w̃∞,r := supx∈Vr
{w̃(x)/λ(w̃)} < ∞;

(ii) Varλ[w̃ ]/{λ(w̃)}2 < ∞.
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Ex2MCMC ’s V -geometric ergodicity

Theorem

Let A1 and A2 hold. Then, for all x ∈ X and k ∈ N,

∥Kk
N(x , ·)− π∥V ≤ cKN

{π(V ) + V (x)}κ̃k
KN

, (4)

where cKN
, κ̃KN

∈ [0, 1) are some constants. In addition,
cKN

= cK∞ + O(N−1) and κ̃KN
= κ̃K∞ + O(N−1).
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Ex2MCMC ’s V -geometric ergodicity

Theorem

Let A1 and A2 hold. Then, for all x ∈ X and k ∈ N,

∥Kk
N(x , ·)− π∥V ≤ cKN

{π(V ) + V (x)}κ̃k
KN

, (5)

where cKN
, κ̃KN

∈ [0, 1) are some constants. In addition,
cKN

= cK∞ + O(N−1) and κ̃KN
= κ̃K∞ + O(N−1).
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Toy example: Gaussian mixture

Figure: Single chain mixing visualization, 3 gaussians mixture, d = 2. The
target density is given by

pβ(x) ∝
3∑

i=1

βi exp
{
−∥x − µi∥2/(2σ2)

}
, (7)

where we set all βi = 1/3.
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Toy example: Gaussian mixture (continue)

Figure: Set mixing weights to β = (β1, β2, β3) = (2/3, 1/6, 1/6). Quantitative
analysis of parallel chains, M = 500 chains KDE
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Toy example: Gaussian mixture (continue)

Figure: Set mixing weights to β = (β1, β2, β3) = (2/3, 1/6, 1/6). Quantitative
analysis during for single chains statistics, M = 100 trajectories average
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Adaptive modifications of Ex2MCMC

▶ Consider family of proposals {λθ}, θ ∈ RD , chosen to match the
target distribution π̃;

▶ Let T : Rd → Rd be smooth and invertible. Denote by T#Λ the
distribution of Y = T (X ) with X ∼ λ;

▶ The corresponding density is given by λT (y) = λ
(
T−1(y)

)
JT−1(y),

where JT denotes the Jacobian determinant of T ;
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Adaptive proposals: learning procedure
▶ Disperancy measure: linear combination of forward and backward KL

divergence (generalizations to [Papamakarios et al., 2021] possible);
▶ Forward and backward KL:

Lf (θ) =

∫
log

π(x)

λθ(x)
π(x)dx ,

Lb(θ) =

∫
log

λ(x)

π
(
Tθ(x)

)
JTθ

(x)
λ(x)dx .

▶ Given a sample Yk ∼ π ,Zk ∼ λ, k ∈ {1, . . . ,K}, the gradients ∇Lf

and ∇Lb can be estimated as

∇̂Lf (Y 1:K , θ) = − 1

K

K∑
k=1

∇ log λθ(Yk) ,

∇̂Lb(Z 1:K , θ) = − 1

K

K∑
k=1

∇ log
(
π̃(Tθ(Zk) JTθ

(Zk)
)
.

▶ Following Gabrié et al. [2021], we consider

L̂(Y 1:K ,Z 1:K , θ) = αL̂f (Y 1:K , θ) + βL̂b(Z 1:K , θ) .
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FlEx2MCMC algorithm with adaptive proposals

Algorithm 2: Single stage of FlEx2MCMC. Steps of Ex2MCMC are
done in parallel with common values of proposal parameters θj . Step 4
updates the parameters using the gradient estimate obtained from all
the chains.

Input : weights θj , batch Y 1:K
j

Output: new weights θj+1, batch Y 1:K
j+1

1 for k ∈ [K ] do
2 Yj+1,k = Ex2MCMC (Yj,k ,Tθj#Λ,R)

3 Draw Z̄ 1:K ∼ λ.

4 Update θj+1 = θj − γ∇̂L(Y 1:K
j+1 , Z̄

1:K , θj).

Practical note
In our experiments: Tθ is modelled as a normalizing flow based on
RealNVP architecture (Dinh et al. [2017]).
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Example: Complex geometry distributions

▶ Funnel distribution: for x ∈ Rd , consider the density

pf (x) = Z−1 exp

(
−x21/2a

2 − (1/2)e−2bx1
∑d

i=2
{x2i + 2bx1}

)
,

Here we fix the hyperparameters a = 2, b = 0.5;

▶ Symmetric banana-shaped distribution: for x ∈ Rd , d = 2k, consider
the density

pb(x) = Z−1 exp

(
−
∑d/2

i=1

{
x22i/2a

2 − (x2i−1 − bx22i + a2b)2/2
})

,

and set the parameters a = 5, b = 0.02.
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Experiments: quality metrics

Suppose that we produce samples {Yt}Mt=1, Yt ∈ Rd .

▶ ESTV: Empirical sliced total variation distance. To compute ESTV,
we perform random one-dimensional projections and then perform
KDE for reference and produced samples, and take TV-distance
between 1-dimensional marginals;

▶ ESS: Efficient Sample Size. We define this metric as

ESSi =
1

1 +
∑M

k=1 ρ
(i)
k

, ρ
(j)
k =

Cov(Y
(j)
t ,Y

(j)
t+k)

Var(Y
(j)
t )

,

where ρ
(j)
k are substituted with their empirical counterparts. We

report the averaged metrics

ESS = d−1
d∑

i=1

ESSi .
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Example: Banana-shape density

(a) d = 100, 2000 samples projection
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Example: Banana-shape density

(a) Banana-shape distribution, metrics
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Example: Funnel

(a) Funnel distribution, d = 100, 1000 samples projection
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Example: Funnel

(a) Funnel distribution, metrics
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GANs as Energy-based models

▶ Generator G : Rd 7→ RD: takes a latent variable z from a prior density
p0(z), z ∈ Rd , produces G (z) ∈ RD in the observation space;

▶ Discriminator D : RD 7→ [0, 1]: takes a sample in the observation
space, distinguishes between real examples and fake ones;

▶ GAN training objective:

LD = −Ex∼pdata [logD(x)]− Ez∼pz [log
(
1− D(G (z))

)
]

LG = Ez∼pz [log
(
1− D(G (z))

)
]

(8)

▶ Consider pd(x) and pg (x) be the densities of real and fake
observations, respectively;

▶ Optimal discriminator:

D⋆(x) =
pd(x)

pd(x) + pg (x)
(9)
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GANs as an energy-based model
▶ Main drawback: information accumulated by discriminator is not used

during the generation procedure;

▶ Let d⋆(x) = logitD⋆(x), therefore:

pd(x)

pd(x) + pg (x)
=

1

1 +
pg (x)
pd (x)

=
1

1 + exp(−d⋆(x))

Hence, we can express

pd(x) = pg (x)e
d⋆(x) .

▶ Let us introduce d(x) = logitD(x) and consider the corresponding
energy-based model

p⋆d(x) = pg (x)e
d(x)/Z0 ,

where Z0 is the normalizing constant. If D(x) ≈ D⋆(x), p⋆d(x) is close
to pd(x);

▶ Sample from p⋆d(x) using MCMC.
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GANs as an energy-based model

▶ Similar idea considered in Turner et al. [2019]; main issue: MCMC in
pixel space is highly inefficient;

▶ Che et al. [2020] suggested latent-space sampling from the model

p⋆d(z) = p0(z) exp
{
logit

(
D(G (z))

)}
, z ∈ Rd ,

where p0(z) is the generator’s prior distribution in the latent space;

▶ Note that the Wasserstein GAN also allows for an energy-based
representation, with the corresponding latent distribution being equal
to

p⋆W (z) = p0(z) exp {D(G (z))} , z ∈ Rd ,

▶ Sampling using Langevin-based algorithms, as suggested in Che et al.
[2020], can be inefficient, especially if d is large.
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Results: sampling MNIST with latent dimension d = 2
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(a) JS-GAN: latent space visualizations
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Results: MNIST visualized

(a) i-SIR samples (b) MALA samples

(c) Ex2MCMC samples
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DC-GAN energy profile, latent space
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i-SIR on CIFAR-10

Figure: i-SIR samples, DC-GAN.
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MALA on CIFAR-10

Figure: MALA samples, DC-GAN.
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Figure: Ex2MCMC samples, DC-GAN.
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Figure: FlEx2MCMC samples, DC-GAN.
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Results: energy landscapes on CIFAR-10

(a) DC-GAN (b) SN-GAN

Figure: Energy profile for DC-GAN and SN-GAN architectures on CIFAR-10
dataset.
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Results: FID and IS dynamics on CIFAR-10 sampling

(a) DC-GAN (b) SN-GAN

Figure: IS and FID scores for DC-GAN on CIFAR-10 dataset.
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Another ways to improve SNIS

Are there ways to further improve i-SIR ?

Indeed, one can try to recycle all the generated samples by incorporating
all the proposed candidates X 1:N

k into the estimator.
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BR-SNIS properties
Under A1, define the constants

ςbias = 4(κ[π, λ] + 1 + L)

ςmse
i = 4(κ[π, λ]1{0,1}(i) + (1 + L)21{1,2}(i)), i ∈ {0, 1, 2}.

(10)

Then the following theorem holds:

Theorem 2.
Assume A1. Then for every initial distribution ξ, bounded measurable
function f on (X,X ) such that |f |∞ ≤ 1, N ≥ 2, and k, ℓ ∈ N,∣∣Eξ[ΠN f (X

1:N
k )]− π(f )

∣∣ ≤ ςbias(N − 1)−1κk−1
N ,

Eξ[{ΠN f (X
1:N
k )− π(f )}2] ≤

2∑
i=0

ςmse
i (N − 1)−1−i/2,

(11)

Notes
▶ The bias decreases inversely with the number of candidates and

exponentially with the number of iterations;

▶ The MSE is also inversely proportional to the number of candidates N.
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BR-SNIS: the algorithm

▶ Consider an estimator formed by an average across the IS estimators
(ΠN f (X

1:N
k ))k∈N;

▶ To mitigate the bias, remove a “burn-in” period whose length k0
should be chosen proportional to the mixing time of the Markov chain
{Yk , k ∈ N}

▶ This yields the Rao-Blackwellised estimator for π(f ):

Π(k0,k),N(f ) = (k − k0)
−1

k∑
ℓ=k0+1

ΠN f (X
1:N
ℓ )

▶ All the importance weights included in the estimators are obtained as
a by-product of the i-SIR schedule, so we do not add any
computational overhead.
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BR-SNIS: bias and variance

The total number of samples (generated by the proposal λ) underlying
the BR-SNIS estimator is M = (N − 1)k . Denote υ = (k − k0)/k the
fraction of the number of candidate pools used in the estimator, and
MSEis

M = (4/M)κ[π, λ].

BR-SNIS
Assume A1. Then for every initial distribution ξ, bounded measurable
function f on (X,X ) such that |f |∞ ≤ 1, and N ≥ 2,∣∣Eξ[Π(k0,k),N(f )]− π(f )

∣∣ ≤ ζbias(υM)−14−k0/τmix,N

Eξ[{Π(k0,k),N(f )− π(f )}2] ≤ MSEis
υM + ζmse(υM)−1(N − 1)−1/2

.
(12)

Moreover, for every δ ∈ (0, 1),

|Π(k0,k),N(f )− π(f )| ≤ ςhpd(υM)−1/2(log(4/δ))1/2 (13)

with probability at least 1− δ, where ςhpd, ζmse, and ζbias are some
computable constants .
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Summary

▶ The bias of the BR-SNIS estimator decreases exponentially with the
burn-in period k0;

▶ Large k0 comes at a price of increased overall MSE, mainly through
the term MSEis

υM ;

▶ A natural way to reduce the variance: use bootstrap;

▶ Apply a random permutation to the samples, re-compute BR-SNIS on
the basis of the bootstrapped samples, then average over the
bootstrapped BR-SNIS replicates. This allows for the choice
k0 = k − 1.
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Examples: Gaussian mixture

6 4 2 0 2 4 6

6

4

2

0

2

4

6

(a) 2d projection

129 257 513 SNIS
0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

(b) Bias

129 257 513 SNIS
0.000

0.005

0.010

0.015

0.020

(c) MSE

Figure: Comparison between SNIS and BR-SNIS for the same budget. In each
boxplot the dotted line represents the mean value of the samples.

Target π: mixture of Gaussians in d = 7, proposal - Student distribution
with ν = 3 degrees of freedom, f (x) = 1A(x)− 1B(x).
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Results: IWAE

▶ Let x ∈ RP , z ∈ Rd , define the joint density function pθ(x , z). We
aim to find θ maximizing

pθ(x) =

∫
pθ(x , z)dz .

▶ Then,
∇θ log pθ(x) =

∫
∇θ log pθ(x , z)pθ(z | x)dz , (14)

▶ The conditional density pθ(z | x) = pθ(x , z)/pθ(x) is intractable and
can only be sampled;

▶ The VAE (Kingma and Welling [2014]): introduce ϕ and a family of
variational distributions qϕ(z | x);

▶ Maximize ELBO:

L(θ, ϕ) = log pθ(x)− KL
(
qϕ(· | x) ∥ pθ(· | x)

)
≤ log pθ(x);
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Results: IWAE

▶ Consider the importance weighted autoencoder (IWAE). The
objective of the IWAE:

LM(θ, ϕ) =
∫
log

(
M−1

∑M
i=1 w̃θ,ϕ,x(zi )

)∏M
ℓ=1 qϕ(zℓ | x)dzi ,

where w̃θ,ϕ,x(z) = pθ(x , z)/qϕ(z | x);
▶ Thus,

∇θLM(θ, ϕ) =
∫ ∑M

i=1 ω
(i)
θ,ϕ,x∇θ log w̃θ,ϕ,x(zi )

∏N
ℓ=1 qϕ(zℓ | x)dzℓ,

where ω
(i)
θ,ϕ,x = w̃θ,ϕ,x(zi )/

∑M
j=1 w̃θ,ϕ,x(zj) are normalized importance

weights;

▶ The expression above corresponds to SNIS approximation. Thus, the
optimization problem will suffer from bias.

▶ Proposal: use BR-SNIS for learning IWAE instead;
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Results: IWAE

Latent dimension (d) VAE IWAE BR-IWAE (k = 8)
10 −87.40± 0.14 −86.44± 0.10 −86.29 ± 0.09
20 −83.55± 0.10 −81.81± 0.06 −81.66 ± 0.12
40 −82.90± 0.07 −81.05± 0.09 −81.01 ± 0.05

Table: Comparison of the mean log likelihood over the MNIST validation set
(Higher is better).
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Results: IWAE
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(a) Dimension 10
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(b) Dimension 20
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(c) Dimension 40

Figure: Per epoch training loss (ELBO) for the last 40 epochs. Confidence
intervals are calculated as 1.96σ/

√
n over 10 (n = 10) different seeds.
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Papers available at:
▶ https://arxiv.org/abs/2207.06364 -BR-SNIS paper;

▶ https://arxiv.org/abs/2111.02702 - Ex2MCMC paper;

Both to appear at NeurIPS-2022.
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