Machine learning in astrophysics

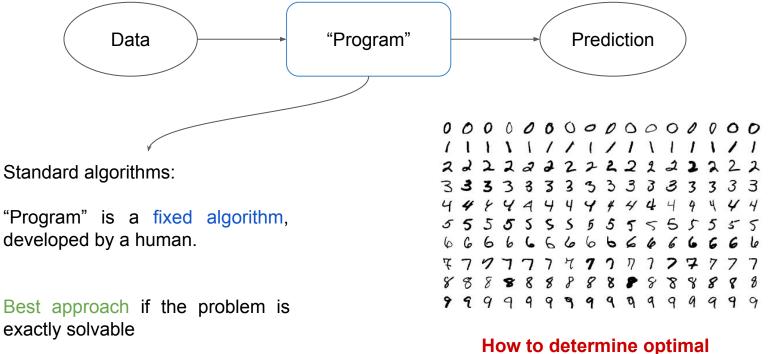
Fall into ML 02.11.22

Ivan Kharuk, INR ivan.kharuk@phystech.edu

Plan

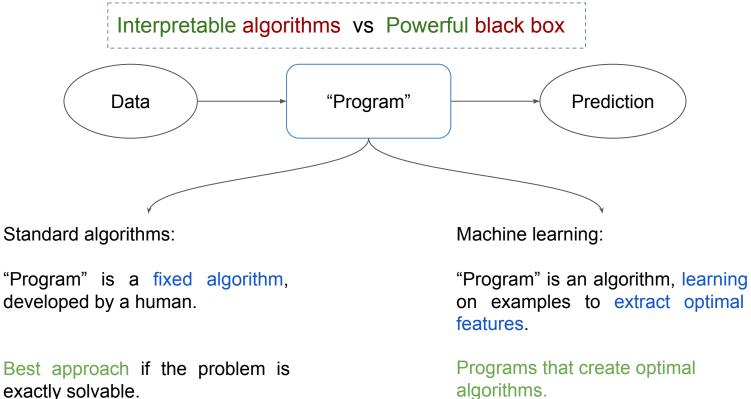
- Why use ML?
- Telescope Array
 - \circ Ways of thinking about data
 - Adjusting precision and recall
 - Validation of NN reliability
 - Making use of statistics
- Baikal-GVD
 - Choosing best data representation

Why use ML?



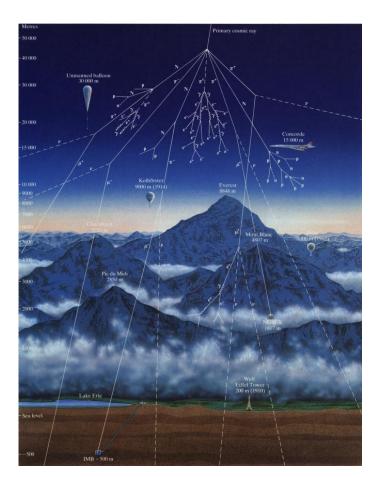
features?

Why use ML?



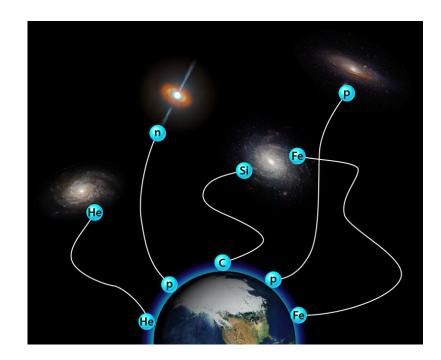
Telescope Array

What are cosmic rays



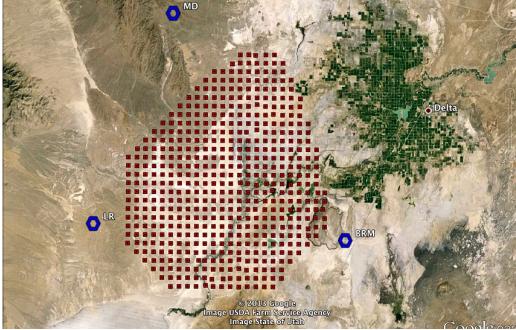
Indirect studies of cosmic objects:

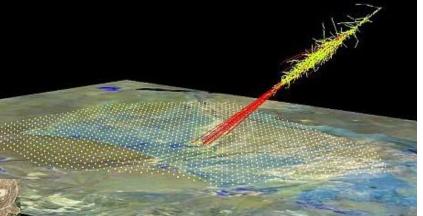
- Models of galaxies evolution
- Extremely-high energy physics
- Search for interesting objects

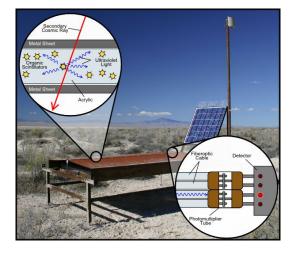


Telescope Array

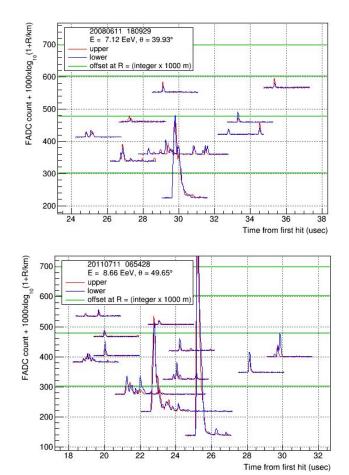
Largest cosmic ray observatory in Northern hemisphere (700 km², 507 surface + 3 fluorescent detectors)







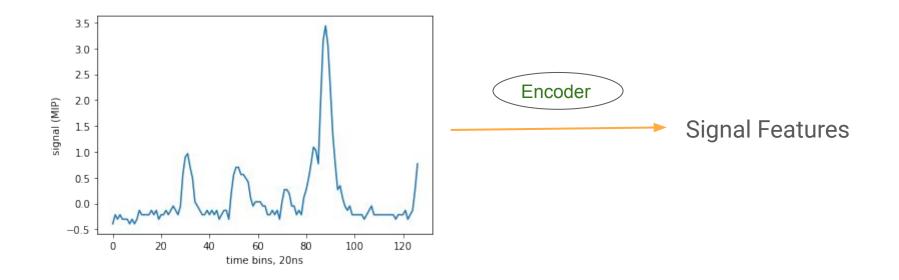
Stage 1



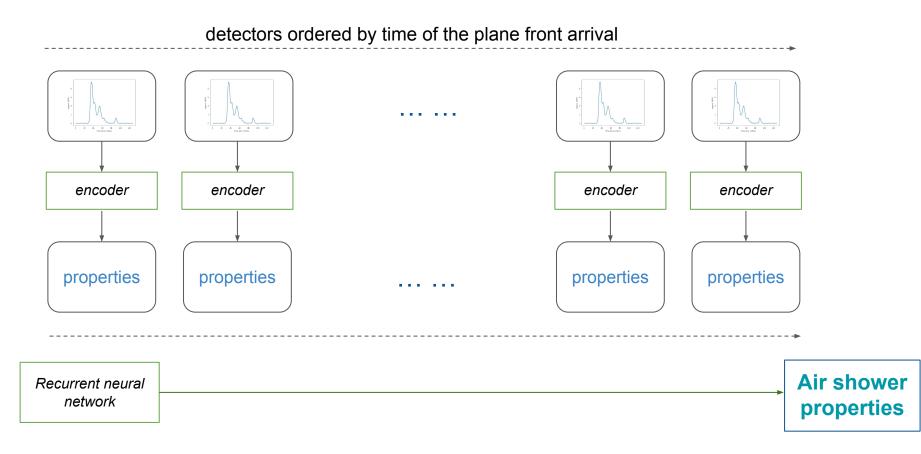
What is the best way to represent the data?

Waveforms: image or sequence?

• 128 bins (20ns each) of the signal in upper and lower detectors



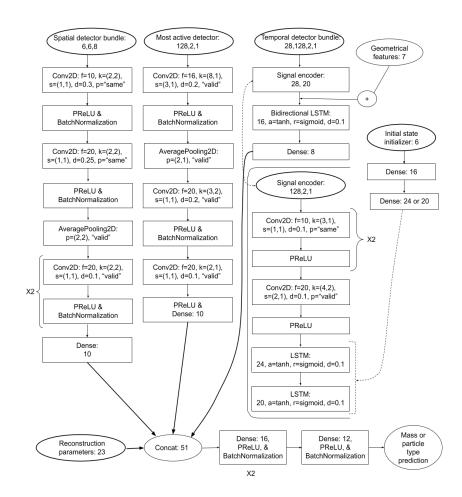
Event representation



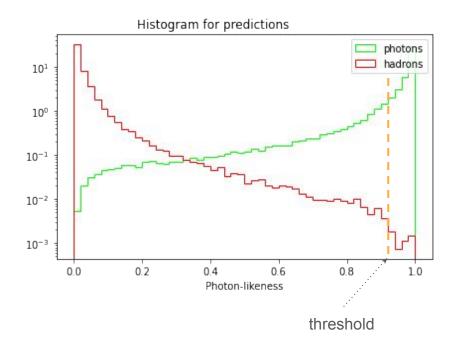
Neural network

Neural network's blocks:

- Spatial detectors bundle (geometrical features)
- Strongest waveform (signal specifics)
- Temporal detector bundle (overall information)
- Reconstruction parameters (high-level information)



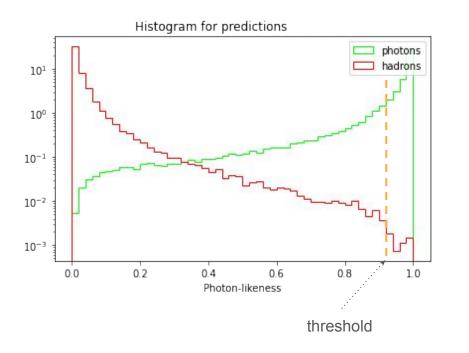
NN prediction $\xi \in [0;1]$: 0 - hadron, 1 - photon



What is the right balance between true and false positives?

Optimizing predictions

NN prediction $\xi \in [0;1]$: 0 - hadron, 1 - photon



Cut optimization: strongest sensitivity in absence of photons in data (~ minimizing (false photons)/(true photons))

Requires special loss functions (hand-made, *focal loss*)

NN must be insensitive to unphysical details.

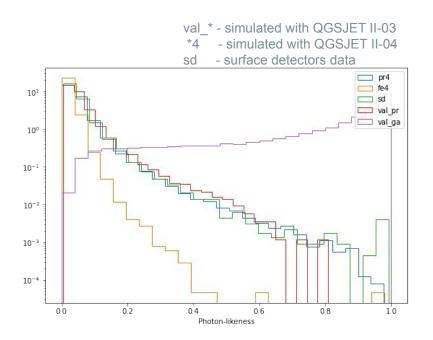
Simulations (MC) are subject to errors and imprecision:

- Not (properly) working detectors
- Simulation errors and specifics
- Limitations of simulating the hardware response

How to make sure that NNs predictions are reliable?

Cross-checks

NN must be insensitive to unphysical details.



Make cross-checks:

- against standard algorithms
- between MC and real data

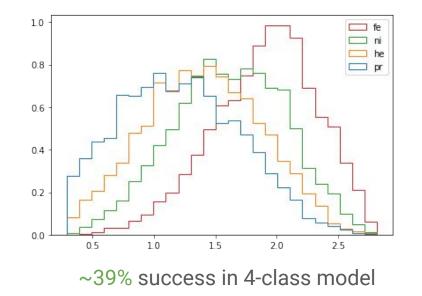
Discrepancies often can be resolved by:

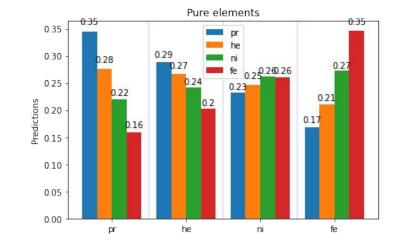
- various dropouts
- masks
- noise sampling

Stage 2-b

Evolution of air showers is **stochastic**. Data may be **similar** for different primaries

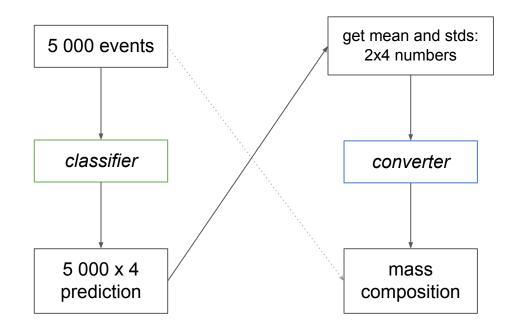
Can we do better on ensembles of events?





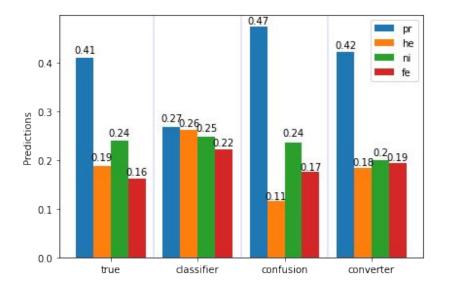
Making use of statistics

We are interested in obtaining mass composition of an ensemble of events!



Converter is the second neural network, which improves *classifier* predictions for ensembles of events

Making use of statistics

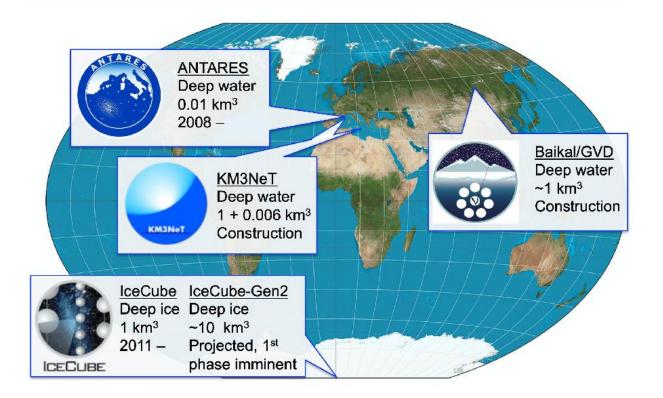


	proton	helium	nitrogen	iron
classifier	0.1	0.14	0.12	0.09
converter	0.03	0.07	0.06	0.02

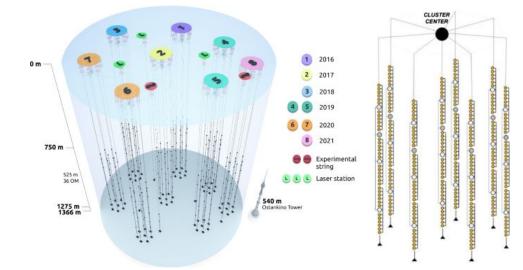
Error: mean absolute error (averaging over events) on 2000 ensembles

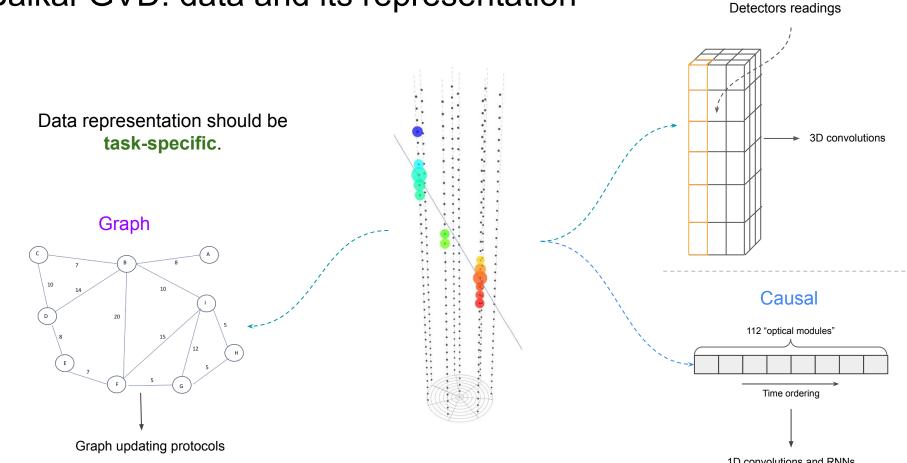
Baikal-GVD

Baikal-GVD



Baikal-GVD





Baikal-GVD: data and its representation

Geometric

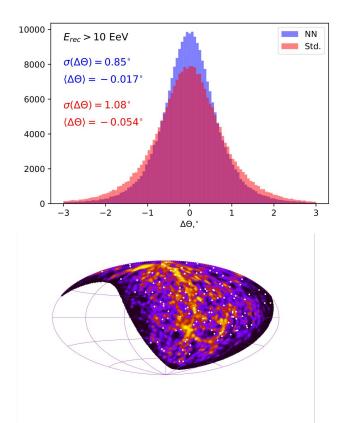
1D convolutions and RNNs

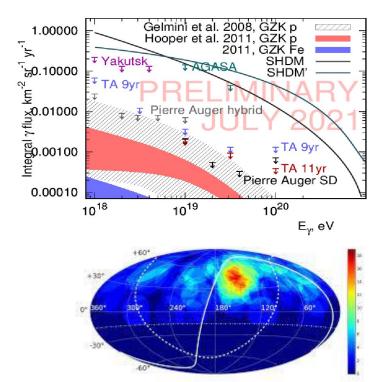
Thank you for attention!

Appendix

Other applications

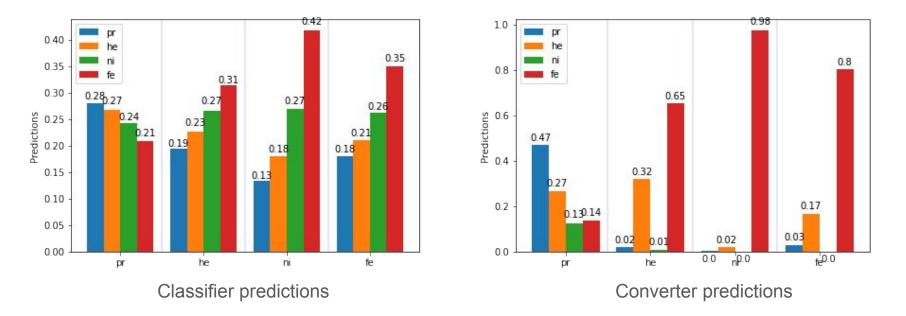
One can estimate primary particle's: mass, energy, and incoming direction





Model dependence

Neural network, trained on QGSJET II-03, observing events generated with QGSJET II-04:



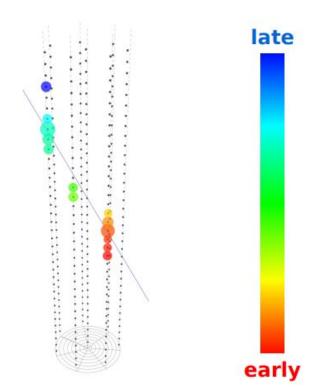
High systematic error: up to 100%

Baikal-GVD: tasks

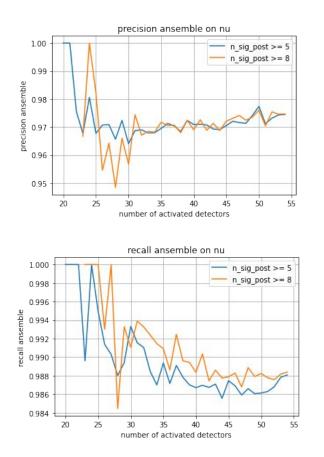
Task 1: Detectors are located underwater \rightarrow Signal-noise separation

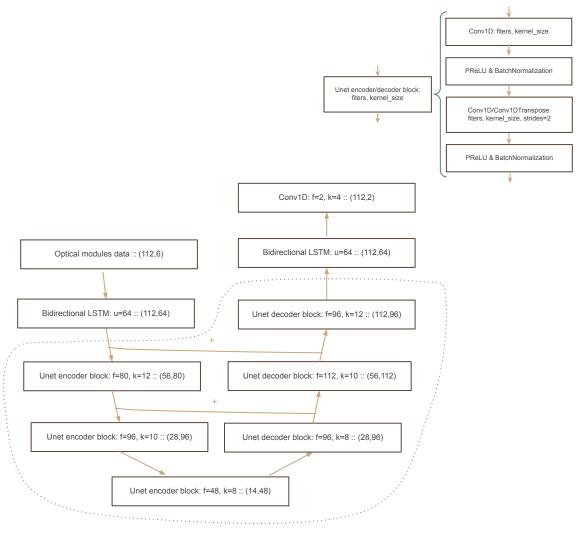
Task 2: Detector is sensitive to muons and neutrinos \rightarrow Identifying neutrino events

Taks 3-...: Given detectors' data, Reconstruct the energy, arriving directions, etc.



Signal-noise separation





Other applications:

• Obtaining posterior distribution of model parameters (intervertebral neural networks, arXiv:1808.04730, 2110.09493)

 Unsupervised clustering (deep adaptive image clustering, self-organizing maps)