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Plan

● Why use ML?

● Telescope Array
○ Ways of thinking about data
○ Adjusting precision and recall
○ Validation of NN reliability
○ Making use of statistics

● Baikal-GVD
○ Choosing best data representation



Why use ML?

Data “Program” Prediction

Standard algorithms:

“Program” is a fixed algorithm, 
developed by a human.

Best approach if the problem is 
exactly solvable

How to determine optimal 
features?



Why use ML?

Data “Program” Prediction

Standard algorithms:

“Program” is a fixed algorithm, 
developed by a human.

Best approach if the problem is 
exactly solvable.

Machine learning:

“Program” is an algorithm, learning 
on examples to extract optimal 
features.

Programs that create optimal 
algorithms.

Interpretable algorithms  vs  Powerful black box



Telescope Array



What are cosmic rays Indirect studies of cosmic objects:

● Models of galaxies evolution
● Extremely-high energy physics
● Search for interesting objects



Telescope Array

Largest cosmic ray observatory in Northern hemisphere
(700 km2, 507 surface + 3 fluorescent detectors)



Stage 1

What is the best way to 
represent the data?



Waveforms: image or sequence?

● 128 bins (20ns each) of the signal in upper and lower 
detectors  

Signal Features
Encoder



Event representation

         … …

detectors ordered by time of the plane front arrival

encoder encoder encoder encoder

properties properties properties properties

Recurrent neural 
network

         … …

Air shower 
properties



Neural network

Neural network’s blocks:
                    

● Spatial detectors bundle 
(geometrical features)

                                              

● Strongest waveform
(signal specifics)

                                              

● Temporal detector bundle
(overall information)

● Reconstruction parameters 
(high-level information)



Stage 2-a
NN prediction ξ ∊[0;1]:
0 - hadron, 1 - photon

What is the right 
balance between true 
and false positives?

threshold



Optimizing predictions
NN prediction ξ ∊[0;1]:
0 - hadron, 1 - photon

threshold

Cut optimization: strongest sensitivity 
in absence of photons in data
(~ minimizing (false photons)/(true photons) )

Requires special loss functions
(hand-made, focal loss)



Stage 3

Simulations (MC) are subject to 
errors and imprecision:

● Not (properly) working detectors
● Simulation errors and specifics
● Limitations of simulating the 

hardware response 

How to make sure that 
NNs predictions are 

reliable?

NN must be insensitive to unphysical details.



Cross-checks

val_* - simulated with QGSJET II-03
 *4     - simulated with QGSJET II-04
sd     - surface detectors data

NN must be insensitive to unphysical details.

Discrepancies often can be resolved by: 

● various dropouts
● masks
● noise sampling

Make cross-checks: 

● against standard algorithms
● between MC and real data



Stage 2-b

~39% success in 4-class model

Evolution of air showers is stochastic.
Data may be similar for different primaries   

Can we do better on 
ensembles of events?



Making use of statistics

We are interested in obtaining mass composition of an ensemble of events!

5 000 events

classifier

5 000 x 4
prediction

get mean and stds:
2x4 numbers

converter

mass 
composition

Converter is the second 
neural network, which 

improves classifier 
predictions for ensembles of 

events



Making use of statistics

proton helium nitrogen iron

classifier 0.1 0.14 0.12 0.09

converter 0.03 0.07 0.06 0.02

Error: mean absolute 
error (averaging over 
events) on 2000 
ensembles



Baikal-GVD



Baikal-GVD



Baikal-GVD



Baikal-GVD: data and its representation Detectors readings 

3D convolutions

Geometric

Time ordering

112 “optical modules”

Causal

1D convolutions and RNNs

Graph

Graph updating protocols

Data representation should be 
task-specific.



Thank you for attention!



Appendix



Other applications One can estimate primary particle’s:
mass, energy, and incoming direction



Model dependence 

Classifier predictions Converter predictions

Neural network, trained on QGSJET II-03, observing events generated with QGSJET II-04:

High systematic error: up to 100%



Baikal-GVD: tasks

Task 1: Detectors are located underwater → 
Signal-noise separation

Task 2: Detector is sensitive to muons and neutrinos → 
Identifying neutrino events  

Taks 3-...: Given detectors’ data,
Reconstruct the energy, arriving directions, etc.



Signal-noise separation

Optical modules data :: (112,6)

Unet encoder block: f=80, k=12 :: (56,80)

Unet encoder block: f=96, k=10 :: (28,96)

Unet encoder block: f=48, k=8 :: (14,48)

Unet decoder block: f=96, k=8 :: (28,96)

Unet decoder block: f=112, k=10 :: (56,112)

Unet decoder block: f=96, k=12 :: (112,96)

+

+

Bidirectional LSTM: u=64 :: (112,64)

Conv1D: f=2, k=4 :: (112,2)

Bidirectional LSTM: u=64 :: (112,64)

Conv1D: fiters, kernel_size

PReLU & BatchNormalization

Conv1D/Conv1DTranspose: 
fiters, kernel_size, strides=2

PReLU & BatchNormalization

Unet encoder/decoder block: 
fiters, kernel_size



Other applications:

● Obtaining posterior distribution of model parameters
(intervertebral neural networks, arXiv:1808.04730, 2110.09493)

● Unsupervised clustering
(deep adaptive image clustering, self-organizing maps) 


