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Handling Distributions in Machine Learning Tasks

Mapping/comparing
2 distributions

generative modeling, domain
adaptation, image manipulation:
enhancement, super-resolution,

style transfer, etc.

Averaging
N distributions

shape interpolation, texture
mixing, aggregating probabilistic

forecasts, etc.

Modeling dynamics
Sequence of distributions

inference of diffusion processes
appearing in machine learning,

economics, physics, etc.

This presentation
presents scalable neural methods to solve these problems

based on the Optimal Transport (OT) theory
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1. Introduction to Optimal
Transport



Monge’s Optimal Transport for the Quadratic Cost1

The (square of) the Wasserstein-2 distance between P ∈ P2(RD) and Q ∈ P2(RD) is

W2
2(P,Q) = min

T]P=Q

∫
RD

‖x − T (x)‖2

2 dP(x).

The map T ∗ attaining the minimum is called the optimal transport map.

Problem A: Computing the OT map & distance.

1Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.
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Monge’s Formulation of Optimal Transport2

Let c : X × Y → R+ be a cost function, e.g., c(x , y) = ‖x−y‖2

2 .

The optimal transport cost between measures P and Q is

Cost(P,Q) = min
T]P=Q

∫
RD

c
(
x ,T (x)

)
dP(x).

The map T ∗ attaining the minimum is called
the optimal transport map between P and Q.

2Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.
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Optimal Transport in Machine Learning Tasks

Problem A: Computing the OT map & distance.
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Approaches to Use OT in Large-Scale Generative Models

OT cost as the loss3 OT map

3Martin Arjovsky, Soumith Chintala, and Léon Bottou (2017). “Wasserstein generative adversarial networks”.
In: International conference on machine learning. PMLR, pp. 214–223.
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Why Do We Need Optimal Maps?

Practical tasks45

Domain Adaptation Unpaired Learning

4Nicolas Courty et al. (2016). “Optimal transport for domain adaptation”. In: IEEE transactions on pattern
analysis and machine intelligence 39.9, pp. 1853–1865.

5Yujia Xie et al. (2019). “On scalable and efficient computation of large scale optimal transport”. In:
International Conference on Machine Learning. PMLR, pp. 6882–6892.
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Examples (Unpaired Style Transfer)

Handbags −→ shoes (64× 64)

Shoes −→ handbags (64× 64)
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Examples (Unpaired Style Transfer)

Outdoor −→ churches (64× 64)

Faces −→ anime (64× 64)
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Examples (Unpaired Style Transfer)

Handbags −→ shoes (128× 128)

Faces −→ anime (128× 128)
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Barycenters in the Wasserstein-2 Space6

The Wasserstein-2 barycenter P of distribu-
tions P1,P2, · · · ,PN ∈ P2(RD) w.r.t. weights
α1, . . . , αN ≥ 0 (

∑N
n=1 αn = 1) is defined by

P = arg min
P∈P2(RD)

N∑
n=1

αnW2
2(P,Pn).

Problem B: Computing the Wasserstein-2 barycenter.

6Martial Agueh and Guillaume Carlier (2011). “Barycenters in the Wasserstein space”. In: SIAM Journal on
Mathematical Analysis 43.2, pp. 904–924.

11



Applications of Wasserstein-2 Barycenters

Practical tasks78

Subset Posterior Aggregation

p(θ|D) ≈ Barycenter
[
p(θ|D1), . . . , p(θ|DN ))]

Color/Style Mixing

7Sanvesh Srivastava, Cheng Li, and David B Dunson (2018). “Scalable Bayes via barycenter in Wasserstein
space”. In: The Journal of Machine Learning Research 19.1, pp. 312–346.

8Youssef Mroueh (2020). “Wasserstein Style Transfer”. In: International Conference on Artificial Intelligence
and Statistics. PMLR, pp. 842–852.
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Wasserstein-2 Gradient Flows9

Let F : P2(RD) → R be a functional on the space of proba-
bility distributions with the finite second moment.

Let δF
δρ (ρ) : RD → R be its flat derivative at a point ρ.

The Wasserstein-2 gradient flow of F which starts at a point
ρ0 ∈ P2(RD) is the continuous sequence of probability distri-
butions ρt ∈ P2(RD) satisfying the following PDE:

∂ρt
∂t −∇ ·

(
ρt∇x

δF
δρ

(ρt)
)

︸ ︷︷ ︸
−∇W2F(ρt )

= 0 s.t. ρ0 = ρ0.

9Filippo Santambrogio (2017). “{Euclidean, metric, and Wasserstein} gradient flows: an overview”. In:
Bulletin of Mathematical Sciences 7.1, pp. 87–154.
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Common PDEs and Flow Functionals1011

Certain well-celebrated PDEs are the Wasserstein-2 gradient flows:

Class PDE ∂ρt
∂t = Flow functional F(ρ) =

Heat Equation ∆ρ
∫
RD log dρ

dx dρ(x)

Advection ∇ · (ρ∇V )
∫
RD V (x)dρ(x)

Fokker-Plank ∇ · (ρ∇V ) + ∆ρ
∫
RD V (x)dρ(x) +

∫
RD log dρ

dx dρ(x)

10David Alvarez-Melis, Yair Schiff, and Youssef Mroueh (2022). “Optimizing Functionals on the Space of
Probabilities with Input Convex Neural Networks”. In: Transactions on Machine Learning Research. url:
https://openreview.net/forum?id=dpOYN7o8Jm.
11Image source: https://en.wikipedia.org/wiki/Heat_equation
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Computing the Wasserstein-2 Gradient Flows12

Jordan Kinderlehrer and Otto proposed to compute a dis-
crete sequence ρ1, ρ2, ... given by

ρk+1 ← arg min
ρ∈P2(RD)

[
F(ρ) + 1

τ
W2

2(ρk , ρ)
]
.

For τ → 0, it holds that ρk ≈ ρτ ·k , i.e., time-discretized gra-
dient flow converges to the true continuous flow.

The practical implementation of the JKO scheme is non-trivial
as it requires computing the W2 distance term.

Problem C: Computing the Wasserstein-2 gradient flow.

12Richard Jordan, David Kinderlehrer, and Felix Otto (1998). “The variational formulation of the Fokker-Planck
equation”. In: SIAM journal on mathematical analysis 29.1, pp. 1–17.
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2. Existing OT Methods:
Challenges and Limitations



Types of Optimal Transport Methods13

Discrete

+ Convex optimization;
+ Strong theoretical guarantees;
- Poor scalability;
- No out-of-support estimates;

Continuous
(Focus of the presentation)

± Neural networks;
± Limited guarantees;
+ Good scalability;
+ Out-of-sample estimation

13Gabriel Peyré, Marco Cuturi, et al. (2019). “Computational optimal transport: With applications to data
science”. In: Foundations and Trends® in Machine Learning 11.5-6, pp. 355–607.
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Dual Form Methods

Primal form
W2

2(P,Q) = min
T]P=Q

∫
RD

‖x − T (x)‖2

2 dP(x).
Dual form14

W2
2(P,Q) = max

f ,g

[ ∫
RD

f (x)dP(x) +
∫
RD

g(y)dQ(y)
]
,

where f , g ∈ L1(P),L1(Q) satisfy f (x) + g(y) ≤ ‖x−y‖2

2 for x , y ∈ RD .

Dual form (c-transform)

W2
2(P,Q) = max

f

[ ∫
RD

f (x)dP(x) +
∫
RD

f c (y)dQ(y)
]
,

where f c (y) def= min
x∈RD

[ 1
2‖x − y‖2 − f (x)

]
is called the c-transform of f .

14Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.
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Approaches to Solve the Dual Form

Primal-dual relation: extract T ∗ from f ∗

T ∗(x) = x −∇f ∗(x)

Most existing continuous methods solve the dual problem, i.e., obtain the potential f ∗,
and then recover the primal solution from it, i.e., the transport map T ∗ = x −∇f ∗(x).

Existing dual-form methods are of two types:
1. (Regularized OT) Soft penalization of potentials f , g for disobeying f ⊕ g ≤ 1

2‖ · ‖
2.

Such methods recover biased solutions;

2. (Maximin OT) Maximin optimization of potentials f , g via the c-transform.
Such methods suffer from training instabilities.
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Entropy-regularized Optimal Transport15

Regularized dual form

W2
2,ε(P,Q) = max

f ,g

[ ∫
RD

f (x)dP(x) +
∫
RD

g(y)dQ(y)−RεEnt(f , g)
]

RεEnt(f , g) = ε

∫
RD×RD

exp
f (x) + g(y)− ‖x−y‖2

2
ε

d
(
P×Q

)

Problems: highly biased for ε� 0, unstable for ε→ 0.
15Vivien Seguy et al. (2018). “Large Scale Optimal Transport and Mapping Estimation”. In: International
Conference on Learning Representations.
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Brenier Optimal Transport with the Quadratic Cost

W2
2(P,Q) = − min

ψ∈Conv

[ Corr(P,Q|ψ,ψ)︷ ︸︸ ︷∫
ψ(x)dP(x) +

∫
ψ(y)dQ(y)

]
+ Const(P,Q)

ψ(y) = max
x

(
〈x , y〉 − ψ(x)

)
Minimax Approach16

min
ψ∈Convex

[ ∫
ψ(x)dP(x) +

∫
ψ(y)dQ(y)

]
=

min
ψ∈Conv

max
φ∈Conv

[ ∫
ψ(x)dP(x) +

∫ [
〈∇φ(y), y〉 − ψ

(
∇φ(y)

)]
dQ(y)︸ ︷︷ ︸

Corr(P,Q|ψ,φ)

]

Relation to the optimal Kantorovich potential f ∗:

ψ∗(x) = ‖x‖
2

2 − f ∗(x) and ∇ψ∗(x) = x −∇f ∗(x) = T ∗(x)
16Ashok Makkuva et al. (2020). “Optimal transport mapping via input convex neural networks”. In:
International Conference on Machine Learning. PMLR, pp. 6672–6681.
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Input Convex Neural Networks

Approximate convex function ψ(x) : RD → R by neural nets!

• ψθ : RD → R – deep input convex neural network17 (ICNN);
• Tθ = ∇xψθ : RD → RD - transport map.

17Brandon Amos, Lei Xu, and J Zico Kolter (2017). “Input convex neural networks”. In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org, pp. 146–155.
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How to Assess the Results?

Problem: How to understand whether continuous OT methods recover the OT map T ∗ well?

• There are no benchmarks in the field of continuous OT.
• There exists a limited amount of pairs (P,Q) with analytically known ground truth T ∗;

these pairs are rather trivial and not representative, e.g., 1-dimensional, Gaussian, etc.
• New methods are tested on a restricted set of self-generated ad-hoc examples;

Problem 0: Benchmarking continuous OT methods.
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3. Overview of presented results



Main results

1. (Problem 0). The novel methodology to construct benchmark pairs of continuous
distributions with analytically known OT maps and distances for W2 between them. The
methodology enables quantitative evaluation of existing methods for W2.

2. (Problem A). Algorithm for computing the W2 map between continuous distributions;
3. (Problem B). Algorithm for computing W2 barycenters of continuous distributions.
4. (Problem C). Algorithm for computing the W2 gradient flows.
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4. A Continuous W2 Benchmark
[Problem 0]



Benchmarking OT Solvers

Do Neural Optimal Transport Solvers Work?
A Continuous Wasserstein-2 Benchmark (NeurIPS 2021, A*)

https://openreview.net/forum?id=CI0T_3l-n1

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov, Evgeny
Burnaev

A generic methodology to construct pairs of continuous distributions with analytically-known
optimal transport (OT) solutions for the quadratic cost to test continuous OT methods.
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Existing Metrics for OT Solvers

1. Indirect Metrics use an OT solver as a component in a larger pipeline, using end-to-end
performance as a proxy for solver quality.
, A lot of metrics exist, e.g., FID, Inception scores for GANs.
/ Do not provide understanding about the quality of the solver itself

2. Direct metics compare computed T̂ with the true T ∗;
/ Limited number of pairs (P,Q) with known T ∗.
/ Limited amount of metrics.
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Benchmark Key Idea

Let P be a continuous measure with finite second moment on RD .

Let ∇ψ]P be its pushforward with some convex ψ : RD → R.

Then ∇ψ is the OT map from P to ∇ψ]P (Brenier’s Theorem).1819

18Robert J McCann et al. (1995). “Existence and uniqueness of monotone measure-preserving maps”. In:
Duke Mathematical Journal 80.2, pp. 309–324.
19Yann Brenier (1991). “Polar factorization and monotone rearrangement of vector-valued functions”. In:
Communications on pure and applied mathematics 44.4, pp. 375–417.
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Approximating Arbitrary Pairs

Let (P,Q) be a pair of continuous measures on RD .

1. We approximate the OT map from P to Q by an ICNN ∇ψθ, i.e. we train ψθ by the OT
solver with ICNN parametrization.

2. We use the approximate pair (P,∇ψθ]P) ≈ (P,Q) as a pair of benchmark measures with
known OT solution.
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Developed Benchmark Pairs

High-dimensional benchmark distributions
D = 2, 4, 8, . . . , 256

Images benchmark distributions (based on Celeba20 faces)
3 pairs, D = 12288

20Ziwei Liu et al. (2015). “Deep Learning Face Attributes in the Wild”. In: Proceedings of International
Conference on Computer Vision (ICCV).
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Evaluation Metrics

• L2-unexplained variance percentage21 of the computed map T̂

L2-UVP(T̂ ,T ∗) = 100%×
‖T̂ − T ∗‖2

L2(P)
Var(Q)

• Cosine similarity of ∇f̂ : x 7→ x − T̂ (x) and the ground truth ∇f ∗

cos(id− T̂︸ ︷︷ ︸
∇f̂

, id− T ∗︸ ︷︷ ︸
∇f ∗

) def=
〈∇f ∗,∇f̂ 〉L2(P)

‖∇f ∗‖L2(P) · ‖∇f̂ ‖L2(P)
∈ [−1, 1]

21Alexander Korotin, Vage Egiazarian, Arip Asadulaev, et al. (2021). “Wasserstein-2 Generative Networks”. In:
International Conference on Learning Representations. url:
https://openreview.net/forum?id=bEoxzW_EXsa.
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High-dimensional Benchmark Pairs: Qualitative Results

Dimension D = 64
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High-dimensional Benchmark Pairs: Quantitative Results

Dim 2 4 8 16 32 64 128 256
bW2e (Ours) 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7
bW2:Re 0.2 0.9 4.0 5.3 5.2 7.0 2.0 2.7
bMMv1e 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
bMMe 0.1 0.3 0.9 2.2 4.2 3.2 3.1# 4.1#
bMM:Re 0.1 0.3 0.7 1.9 2.8 4.5 9 9
bMMv2e 0.1 0.68 2.2 3.1 5.3 10.1# 3.2# 2.7#
bMMv2:Re 0.1 0.7 4.4 7.7 5.8 6.8 2.1 2.8
bMM-Be 0.1 0.7 3.1 6.4 12.0 13.9 19.0 22.5
bLSe 5.0 11.6 21.5 31.7 42.1 40.1 46.8 54.7
bLe 14.1 14.9 27.3 41.6 55.3 63.9 63.6 67.4
bQCe 1.5 14.5 28.6 47.2 64.0 75.2 80.5 88.2
bCe 100 100 100 100 100 100 100 100
bIDe 32.7 42.0 58.6 87 121 137 145 153

Dimensions D = 2, 22, . . . , 28. Orange highlights L2-UVP > 10%.
Red indicates performance worse than bLe baseline.

The experimental results confirm the issues of existing solvers:

1. Minimax methods bMMe are unstable and sometimes diverge (#);
2. Entropic OT bLSe is notably biased in high-dimensions;
3. The proposed method bW2e is stable and performs well.
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Images Benchmark Pairs: Qualitative Results

”Early” ”Mid” ”Late”

32



5. A Non-Minimax Algorithm to
Compute OT Maps for W2

[Problem A]



Wasserstein-2 Generative Networks

Wasserstein-2 Generative Networks (ICLR 2021, A*)

https://openreview.net/forum?id=bEoxzW_EXsa

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, Evgeny Burnaev

A novel end-to-end parametric method to compute optimal transport maps between continuous
distributions without introducing bias or resorting to minimax optimization.
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Proposed Optimization Objective

Minimax approach (prior art)22

min
ψ∈Convex

[ ∫
ψ(x)dP(x) +

∫
ψ(y)dQ(y)

]
=

min
ψ∈Conv

max
φ∈Conv

[ ∫
ψ(x)dP(x) +

∫ [
〈∇φ(y), y〉 − ψ

(
∇φ(y)

)]
dQ(y)︸ ︷︷ ︸

Corr(P,Q|ψ,φ)

]

Non-minimax approach (this presentation): cycle consistency regularizer (λ > 0)

min
ψ,φ∈Conv

Corr(P,Q | ψ, φ;λ) def= min
ψ,φ∈Conv

[
Corr(P,Q|ψ, φ) + λ

2

∫
Y
‖∇ψ

(
∇φ(y)

)
− y‖2dQ(y)︸ ︷︷ ︸

Cycle Reg.

]
.

22Ashok Makkuva et al. (2020). “Optimal transport mapping via input convex neural networks”. In:
International Conference on Machine Learning. PMLR, pp. 6672–6681.
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Theoretical Results23

Theorem (primal-dual relation)

For P,Q ∈ P2,ac (RD), with mild assumptions on λ > 0 and convex ψ̂, φ̂ the statements

1. Corr(P,Q|ψ∗, ψ∗) ≤ Corr(P,Q | ψ̂, φ̂;λ) ≤ Corr(P,Q|ψ∗, ψ∗) + O(ε) #dual;
2. ‖∇ψ̂ −∇ψ∗‖2

L2(P) ≤ O(ε) and ‖∇φ̂−∇φ∗‖2
L2(Q) ≤ O(ε) #primal;

are equivalent. Here ∇ψ∗,∇φ∗ are the forward and inverse OT maps.

Theorem (optimization over restricted sets of functions)
For P,Q ∈ P2,ac (RD), consider two sets of convex functions Φ,Ψ with mild assumptions on
them. Assume that ∃ψ̂ ∈ Ψ and ∃φ̂ ∈ Φ satisfying the #primal condition. Let

(ψ†, φ†) def= min
ψ∈Ψ,φ∈Φ

Corr(P,Q | ψ, φ;λ).

Then it holds that ‖∇ψ† −∇ψ∗‖2
L2(P) ≤ O(ε) and ‖∇φ† −∇φ∗‖2

L2(Q) ≤ O(ε).
23In the theorem formulations, some technical assumptions are skipped for the simplicity.
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Experiments: Gaussian Optimal Transport

Gaussian Setting: P,Q = N (µP,ΣP),N (µQ,ΣQ)

Metric:

L2-UVP(T ) = 100 · ‖T −∇ψ
∗‖2

P
Var(Q) %

Dim 2 4 8 16 32 64 128 256 512 1024 2048 4096

LSOT < 1 3.7 7.5 14.3 23 34.7 46.9 > 50

MM-1 < 1 < 1 < 1 < 1 < 1 1.2 1.4 1.3 1.5 1.6 1.8 2.7

MM-2 < 1 < 1 < 1 < 1 < 1 < 1 1 1.1 1.2 1.3 1.5 2.1

W2GN (ours) < 1 < 1 < 1 < 1 < 1 < 1 1 1.1 1.3 1.3 1.8 1.5
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Experiments: Gaussian Optimal Transport

Comparison of convergence of MM-1, MM-2 and W2GN (ours) methods in dimensions
D = 64, 256, 1024, 4096.
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Experiments: Latent Space Optimal Transport

Method FID
AE: Dec(Enc(X)) 7.5

AE Raw Decode: Dec(Z) 31.81
W2GN+AE: Dec(g†(Z)) 17.21

WGAN-QC : Gen(Z) 14.41 38



Experiments: Unpaired Image-to-image Style Transfer

128× 128 image crops

Winter2SummerYosemite dataset24

24Jun-Yan Zhu et al. (2017). “Unpaired image-to-image translation using cycle-consistent adversarial networks”.
In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232.
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6. A Non-Minimax Algorithm for
Continuous W2 Barycenters
[Problem B]



Wasserstein-2 Barycenter Estimation

Continuous Wasserstein-2 Barycenter Estimation
without Minimax Optimization (ICLR 2021, A*)

https://openreview.net/forum?id=3tFAs5E-Pe

Alexander Korotin, Lingxiao Li, Justin Solomon, Evgeny Burnaev

A new algorithm to compute Wasserstein-2 barycenters powered by input convex neural
networks and a straightforward optimization procedure without introducing bias.
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Primal and Dual Formulations of the Barycenter Problem

Primal Form

P = arg min
P∈P2(RD)

N∑
n=1

αnW2
2(P,Pn)︸ ︷︷ ︸

B(P)

.

Dual form

B(P) = Const−min
{φn} congr.

N∑
n=1

αn

∫
RD
ψn(y)dPn(y)︸ ︷︷ ︸

MultiCorr({αn,Pn}|{ψn})

,

where convex functions ψn are congruent, i.e.,

∀x ∈ RD :
N∑

n=1
αnψn(x) = ‖x‖

2

2 .

Primal-dual relation

∇ψ∗n]Pn = P

allows to recover the barycenter P
from dual solutions ψ∗n .
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Proposed Barycenter Optimization Objective

Consider the following optimization (λ, τ > 0) over 2N convex functions {ψn, φn}:

min
{ψn,φn}

Approximate multiple correlation︷ ︸︸ ︷
N∑

n=1

[
αn

∫
RD

[〈x ,∇ψn(x)〉−φn(∇ψn(x))]dPn(x)
]

+τ ·RP̂
1 ({φn})︸ ︷︷ ︸

Congruence reg.

+λ
N∑

n=1
αnRPn

2 (ψn, φn)︸ ︷︷ ︸
Cycle regularizer

.

Here RPn
2 (ψn, φn) is the proposed cycle regularizer and RP̂

1 ({φn}) is the novel proposed
congruence regularizer (with the prior P̂):

RP̂
1 ({φn}) =

∫
RD

[ N∑
n=1

αnφn(y)− ‖y‖
2

2
]

+d P̂.

In practice, we optimize the objective by approximating {ψn, φn} with ICNNs whose parameters
are trained by the stochastic gradient-descent on random batches from distributions Pn, P̂.
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Theoretical Results

Theorem (Primal-dual relation)
Let P ∈ P2,ac (RD) be the barycenter of P1, . . . ,PN ∈ P2,ac (RD) w.r.t. weights α1, . . . , αN .
Let {ψ∗n} be the optimal congruent potentials of the barycenter problem. With mild
assumptions on 2N convex functions ψ̂n, φ̂n, parameters τ ≥ 1, λ > 0 and the prior
distribution P̂, it holds that

ε = MultiCorr
(
{αn,Pn} | {ψ̂n}, {φ̂n}; τ, P̂, λ

)
−MultiCorr

(
{αn,Pn} | {ψ∗n}

)
≥ 0,

and for all n ∈ {1, . . . ,N}, we have

W2
2
(
∇ψ̂]Pn,P

)
≤ ‖∇ψ̂ −∇ψ∗‖2

L2(Pn) ≤ O(ε).
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Comparison in the Location-Scatter Case25

Metric Method D=2 4 8 16 32 64 128 256

BW2
2-UVP, % [FCWB], Cuturi and Doucet 2014 0.64 0.77 1.22 3.75 8.92 14.3 18.46 21.64

[SCW2B], Fan, Taghvaei, and Chen 2021 0.12 0.10 0.19 0.29 0.46 0.6 1.38 2.9
L2-UVP, %
(potentials)

0.17 0.12 0.2 0.31 0.47 0.62 1.21 1.52
[CRWB], L. Li et al. 2020 0.58 1.83 8.09 21.23 55.17 > 100

[CW2B], ours 0.17 0.08 0.06 0.1 0.2 0.25 0.42 0.82

Table 1: Comparison of UVP metric for the location-scatter family (cube uniform), N = 4.

25Pedro C Álvarez-Esteban et al. (2016). “A fixed-point approach to barycenters in Wasserstein space”. In:
Journal of Mathematical Analysis and Applications 441.2, pp. 744–762.
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Application: Color Palette Averaging
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7. A Neural Implementation of
the JKO scheme for W2 Gradient
Flows [Problem C]



Wasserstein-2 Gradient Flows

Large-Scale Wasserstein Gradient Flows (NeurIPS 2021, A*)

A neural algorithm to compute the Wasserstein-2 Gradient Flows via JKO scheme.

https://openreview.net/forum?id=nlLjIuHsMHp

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Evgeny Burnaev
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An Algorithm to Compute The Wasserstein-2 Gradient Flow

Recall the JKO gradient step:

ρk+1 ← arg min
ρ∈P2(RD)

[
F(ρ) + 1

2τW
2
2(ρk , ρ)

]
.

We replace the optimization over distributions with the
practically feasible optimization over convex functions ψ:

ψk ← arg min
ψ∈Conv

[
F(∇ψ]ρk ) + 1

τ

∫
RD

1
2‖x −∇ψ(x)‖2dρk (x)

]
.

The approach yields ρk = ∇ψk−1]
[
∇ψk−2]

[
. . .∇ψ0]ρ0]].

In practice, to compute the JKO steps, we learn a successively sequence of ICNNs as {ψk} and
optimize their parameters via the stochastic gradient descent by using random batches from ρk .
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Connection between Wasserstein gradient flows and SDEs

Consider an RD-valued stochastic process {Xt}t≥0, governed by the following Ito SDE:

dXt = −∇V (Xt)dt +
√

2β−1dWt , s.t. X0 ∼ ρ0,

where V : RD → R is the potential function, Wt is the standard Wiener process

The marginal measure ρt of Xt satisfies the Fokker-Planck equation

∂ρt
∂t = div (∇V (x)ρt) + β−1∆ρt , s.t. ρ0 = ρ0

This equation is the Wasserstein gradient flow for

FFP(ρ) =
∫
RD

V (x)dx + β−1
∫
RD

log dρ
dx dρ(x)

48



Theoretical Results - Estimator for the Fokker-Plank Functional

Consider the Fokker-Plank free energy functional F = FFP:

FFP(ρ) def=
∫
RD

V (x)dρ(x) +
∫
RD

log dρ(x)
dx dρ(x).

How to estimate F(∇ψ︸︷︷︸
T

]ρ)?

Theorem (Stochastic Estimator of FFP)
Let ρ ∈ P2,ac (RD) and T : RD → RD be a diffeomorphism. For a random batch
x1, . . . , xN ∼ ρ, the expression

1
N

N∑
n=1

V
(
T (xn)

)
− 1

N

N∑
n=1

log | det∇T (xn)|,

is a consistent estimator of FFP(T ]ρ) up to constant (w.r.t. T ) shift.

49



Evaluation: Convergence to the Stationary Distribution

Starting from an arbitrary initial ρ0, the gradient flow of FFP converges to26

dρ∗
dx (x) = Z−1 exp(−V (x)),

where Z =
∫
RD exp(−V (x))dx is the normalization constant.
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PCA components of the true stationary and the learned distributions in D = 13 (left) and D = 32 (right).
26Hannes. Risken (1996). The Fokker-Planck Equation: Methods of Solution and Applications (Springer Series
in Synergetics).. Springer,
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Ornstein-Uhlenbeck processes

When V (x) = 1
2 (x − b)T A(x − b) with A � 0 and the initial distribution ρ0 is Gaussian, the

gradient flow of FFP admits closed form at every time point t ≥ 0.27

We compare our recovered flow with the ground truth by using SymKL metric.
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27Pat Vatiwutipong and Nattakorn Phewchean (2019). “Alternative way to derive the distribution ofthe
multivariate Ornstein-Uhlenbeck process”. In: Advances in Difference Equations 276.
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8. Optimal Transport Modeling



Optimal Transport Modeling

Generative Modeling with Optimal Transport Maps (ICLR 2022, A*)

https://arxiv.org/abs/2110.02999

Litu Rout, Alexander Korotin, Evgeny Burnaev

While the optimal transport cost serves as the loss for popular generative models, we
demonstrate that the optimal transport map can be used as the generative model itself.
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Optimal Transport Modeling

L(ψ,G) = min
ψ

max
G

{∫ {
〈Q(x),G(x)〉 − ψ

(
G(x)

)}
dP(x) +

∫
ψ(y)dQ(y)

}
In the optimal pair (ψ∗,G∗),

G∗ is the map from P to Q for the Q-embedded quadratic cost.
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Theoretical Guarantees

L(ψ,G) = min
ψ

max
G

{∫ {
〈Q(x),G(x)〉 − ψ

(
G(x)

)}
dP(x) +

∫
ψ(y)dQ(y)

}
Theorem [Non detailed]. For an approximate solution (ψ̂, Ĝ) define

ε1 = max
G
L(ψ̂,G)− L(ψ̂, Ĝ) and ε2 = max

G
L(ψ̂,G)−min

ψ
max

G
L(ψ,G)

Then the following bound holds true for the OT map G∗ from P to Q:

FID(Ĝ#P,Q)
L2 ≤2 · W2

2 (Ĝ#P,Q)≤
∫
‖Ĝ(x)− G∗(x)‖2dP(x)≤O(ε1 + ε2),

where L is the Lipschitz constant of InceptionV328.
28Christian Szegedy et al. (2016). “Rethinking the inception architecture for computer vision”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826.
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Celeba Faces Generation

Model FID ↓
DCGAN 52.0
DRAGAN 42.3
BEGAN 38.9
NVAE 13.4
NCP-VAE 5.2
WGAN 41.3
WGAN-GP 30.0
WGAN-QC 12.9
AE-OT 28.6
W2GN+AE 17.2
AE-OT-GAN 7.8
OTM (Ours) 7.7
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Unpaired Image Denoising

Test C (degraded) Test C (mapped) Test C (clean)
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Extension to Arbitrary Transport Costs c(·, ·)

(1) Solver for the quadratic cost c(x , y)= ‖x−y‖2

2 ⇔ c(x , y)=−〈x , y〉:

L(ψ,T ) = min
ψ

max
T

{∫ {
〈x ,T (x)〉 − ψ

(
T (x)

)}
dP(x) +

∫
ψ(y)dQ(y)

}
(2) Solver for the arbitrary cost c(x , y):

L(f ,T ) = max
f

min
T

{∫ {
c(x ,T (x))− f

(
T (x)

)}
dP(x) +

∫
f (y)dQ(y)

}
Example: c(x , y) = dist

(
color palette(x), color palette(y)

)

29
29Guansong Lu et al. (2019). “Guiding the one-to-one mapping in cyclegan via optimal transport”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01, pp. 4432–4439.
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Issues, open questions

1. Algorithmic issues (solved in our recent papers!)
• Not all solutions T ∗ are OT maps
• Algorithm searches only for dereministic solutions (maps, not plans)

• Application: one-to-many problems, such as image colorization.

2. Statistical issues
• Absolutely no results

3. Approximation issues (with neural networks)
4. Optimization issues

• This min-max problem has not been studied yet
• Disconverges near the optimum

5. Extensions
• Multi-marginal problems, variational problems (barycenters), etc.
• Gradient Flows
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9. Summary: Publications,
Presentations



Summary: 4 OT Problems = 4 Solutions

[Problem 0]
Benchmarking continuous OT methods

[Problem A]
Computation of W2 OT maps

[Problem B]
Computation of W2 barycenters

[Problem C]
Computation of W2 gradient flows
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