Neural Optimal Transport and Applications

Evgeny Burnaev Prof., Head of Skoltech Applied Al Center Head of AIRI Research Group

Neural Optimal Transport

https://arxiv.org/abs/2201.12220

Alexander Korotin, Daniil Selikhanovych, Evgeny Burnaev

We present a novel neural-networks-based algorithm to compute optimal transport maps and plans for strong and weak transport costs.

Generative Modeling: Intro

What is Optimal Transport and Why Do We Need It?

Background on OT

An Algorithm to Learn OT Plans

Experiments

Conclusion and extensions

Generative Modeling: Intro

The Task of Generative Modeling

Types of Generative Models¹

¹https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

What is Optimal Transport and Why Do We Need It?

Monge's Formulation of Optimal Transport²

Let
$$c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$
 be a cost function, e.g., $c(x, y) = \frac{\|x - y\|^2}{2}$.

The optimal transport **cost** between measures \mathbb{P} and \mathbb{Q} is

$$\mathsf{Cost}(\mathbb{P},\mathbb{Q}) = \inf_{\mathcal{T} \not \models \mathbb{P} = \mathbb{Q}} \int_{\mathcal{X}} c(x, \mathcal{T}(x)) d\mathbb{P}(x).$$

The map T^* attaining the minimum is called the optimal **transport map**.

²Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.

Optimal Transport in Machine Learning Tasks

Approaches to Use OT in Generative Models

Wasserstein GANs are not Optimal Transport!⁴

³Martin Arjovsky, Soumith Chintala, and Léon Bottou (2017). "Wasserstein generative adversarial networks". In: International conference on machine learning. PMLR. pp. 214–223.

⁴Alexander Korotin, Alexander Kolesov, and Evgeny Burnaev (2022). "Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?" In: *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*. URL: https://openreview.net/forum?id=VtEEpi-dGlt.

Why Do We Need Optimal Maps?

Theoretical side

rigorous OT theory, guarantees of performance.

⁵Nicolas Courty et al. (2016). "Optimal transport for domain adaptation". In: *IEEE transactions on pattern analysis and machine intelligence* 39.9, pp. 1853–1865.

Types of Optimal Transport Methods

- + Convex optimization:
- + Strong theoretical guarantees;
- Poor scalability;
- No out-of-support estimates;

$X_1 \bullet$ X₂ • **`(X**r

'(χ.

- \pm Neural networks:
- \pm Limited theoretical guarantees:
- + Good scalability;
- + Out-of-sample estimation

The presentation is based on the following papers:

[1] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2022b). "Neural Optimal Transport". In: arXiv preprint arXiv:2201.12220

[2] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2022a). "Kernel Neural Optimal Transport". In: arXiv preprint arXiv:2205.15269

[3] Arip Asadulaev et al. (2022). "Neural Optimal Transport with General Cost Functionals". In: arXiv preprint arXiv:2205.15403

[4] Milena Gazdieva et al. (2022). "Unpaired Image Super-Resolution with Optimal Transport Maps". In: arXiv preprint arXiv:2202.01116

[5] Litu Rout, Alexander Korotin, and Evgeny Burnaev (2022). "Generative Modeling with Optimal Transport Maps". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=5JdLZg346Lw

[5] Alexander Korotin,
Lingxiao Li, et al. (2021). "Do Neural Optimal Transport Solvers Work? A Continuous
Wasserstein-2 Benchmark". In: Advances in Neural Information Processing Systems 34

[6] Alexander Korotin, Vage Egiazarian, et al. (2021). "Wasserstein-2 Generative Networks". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=bEoxzW_EXsa

Example: Unpaired Image-to-Image Style Translation

Input: two unpaired datasets – empirical samples from \mathbb{P}, \mathbb{Q} .

Output: «style translation map» $T : \mathcal{X} \to \mathcal{Y}$ satisfying $T_{\#}\mathbb{P} = \mathbb{Q}$.

Preliminary Examples (128×128 images)

 $\mathsf{Outdoor} \to \mathsf{churches}$

Stochastic (one-to-many)

 $\mathsf{Handbags} \to \mathsf{shoes}$

Background on OT

Issues of Monge's Formulation

Let
$$c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$
 be a cost function, e.g., $c(x, y) = \frac{\|x-y\|^2}{2}$.

The optimal transport cost between measures $\mathbb P$ and $\mathbb Q$ is

$$\mathsf{Cost}(\mathbb{P},\mathbb{Q}) = \inf_{\mathcal{T} \not\equiv \mathbb{P} = \mathbb{Q}} \int_{\mathcal{X}} c(x, \mathcal{T}(x)) d\mathbb{P}(x).$$

Issues of the formulation

- There might be no map *T* satisfying *T* ♯ℙ = ℚ (no mass splitting).
 - The infimum might not be attained (no minimizer *T**).

Weak Formulation of Optimal Transport⁶

Let $C : \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R}$ be a **weak** cost function.

The optimal transport cost between measures $\mathbb P$ and $\mathbb Q$ is

$$\mathsf{Cost}(\mathbb{P},\mathbb{Q}) = \inf_{\pi \in \Pi(\mathbb{P},\mathbb{Q})} \int_{\mathcal{X}} C(x,\pi(\cdot|x)) \underbrace{d\pi(x)}_{d\mathbb{P}(x)}$$

where $\pi(\cdot|x) \in \mathcal{P}(\mathcal{Y})$ denotes the conditional distribution of $y \in \mathcal{Y}$ conditioned on $x \in \mathcal{X}$.

⁶Nathael Gozlan et al. (2017). "Kantorovich duality for general transport costs and applications". In: *Journal of Functional Analysis* 273.11, pp. 3327–3405.

An Example: γ -Weak Wasserstein-2 ($\mathcal{W}_{2,\gamma}$)

We will focus on the γ -weak quadratic cost ($\gamma > 0$):

$$C(x,\pi(\cdot|x)) = \int_{\mathcal{Y}} \frac{1}{2} \|x-y\|^2 d\pi(y|x) - \frac{\gamma}{2} \operatorname{Var}(\pi(\cdot|x)),$$

where $\mathsf{Var}ig(\pi(\cdot|x)ig)$ denotes the **variance** of the $\pi(\cdot|x)\in\mathcal{P}(\mathcal{Y}).$

Cost $C(x, \mu)$ is **convex** in μ since $Var(\mu)$ is a concave functional of μ .

Dual Form of the Weak Optimal Transport

PRIMAL FORM

$$\mathsf{Cost}(\mathbb{P},\mathbb{Q}) = \inf_{\pi\in \Pi(\mathbb{P},\mathbb{Q})} \int_{\mathcal{X}} C(x,\pi(\cdot|x)) d\pi(x).$$

 $\rm Dual \; Form^7$

$$\operatorname{Cost}(\mathbb{P},\mathbb{Q}) = \sup_{f} \int_{\mathcal{X}} f^{C}(x) d\mathbb{P}(x) + \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y),$$

where $f : \mathcal{Y} \to \mathbb{R}$ are continuous, lower-bounded and not rapidly growing functions; f^{C} denotes the weak *C*-transform of *f*:

$$f^{C}(x) = \inf_{\mu \in \mathcal{P}(\mathcal{Y})} \left\{ C(x,\mu) - \int_{\mathcal{Y}} f(y) d\mu(y) \right\}.$$

⁷Julio Backhoff-Veraguas, Mathias Beiglböck, and Gudmun Pammer (2019). "Existence, duality, and cyclical monotonicity for weak transport costs". In: *Calculus of Variations and Partial Differential Equations* 58.6, pp. 1–28.

Dual Form of the Weak Optimal Transport

is to extract the **primal solution** (OT plan) π^* from the dual problem.

An Algorithm to Learn OT Plans

Stochastic Functions

We say that that $T : \mathcal{X} \times \mathcal{Z} \to \mathcal{Y}$ is a **stochastic function**.

Stochastic functions can *implicitly*⁸ represent transport plans $\pi \in \Pi(\mathbb{P}, \mathbb{Q})$.

If a stochastic function T^* represents some OT plan π^* , we say that T^* is the **stochastic OT map**.

⁸Olav Kallenberg (1997). Foundations of modern probability. Vol. 2. Springer.

Reformulation of the Dual Problem

Lemma (Minimax reformulation of the dual problem)

 $\operatorname{Cost}(\mathbb{P},\mathbb{Q}) = \sup_{f} \inf_{T} \mathcal{L}(f,T),$

where the functional ${\cal L}$ is defined by

$$\mathcal{L}(\mathbf{f},\mathbf{T}) \stackrel{\text{def}}{=} \int_{\mathcal{Y}} \mathbf{f}(\mathbf{y}) d\mathbb{Q}(\mathbf{y}) + \int_{\mathcal{X}} \left(C(\mathbf{x},\mathbf{T}(\mathbf{x},\cdot)_{\#} \mathbb{S}) - \int_{\mathcal{Z}} \mathbf{f}(\mathbf{T}(\mathbf{x},\mathbf{z})) d\mathbb{S}(\mathbf{z}) \right) d\mathbb{P}(\mathbf{x})$$

Lemma (Stochastic OT maps solve the problem.)

For any potential f^* which attains the optimal value of the problem, and for any stochastic map T^* which realizes some OT plan π^* :

$$T^* \in \operatorname*{arg\,inf}_{T} \mathcal{L}(f^*, T).$$

The Algorithm: Preliminaries

$$\sup_{\omega} \inf_{\theta} \mathcal{L}(\omega, \theta) = \sup_{\omega} \inf_{\theta} \left[\int_{\mathcal{Y}} f_{\omega}(y) d\mathbb{Q}(y) + \int_{\mathcal{X}} \left(C(x, T_{\theta}(x, \cdot)_{\#} \mathbb{S}) - \int_{\mathcal{Z}} f_{\omega}(T_{\theta}(x, z)) d\mathbb{S}(z) \right) d\mathbb{P}(x) \right].$$

• We use ResNet⁹
$$f_{\omega} : \mathbb{R}^{3 \times W \times H} \to \mathbb{R};$$

- We use UNet $T_{\theta} : \mathbb{R}^{(3+1) \times H \times W} \to \mathbb{R}^{3 \times W \times H}$.
 - The noise simply as an additional input channel (RGBZ);
 - We use a Gaussian noise S of dim = $W \times H$ with axis-wise $\sigma = 0.1$.
- We solve the saddle point problem with the stochastic gradient ascent-descent by using random batches from P, Q, S.

⁹Huidong Liu, Xianfeng Gu, and Dimitris Samaras (2019). "Wasserstein gan with quadratic transport cost". In: *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4832–4841.

Algorithm 1: Neural optimal transport (NOT)

repeat

$$\begin{split} & \text{Sample batches } Y \sim \mathbb{Q}, \ X \sim \mathbb{P}; \\ & \text{For each } x \in X \text{ sample batch } Z_x \sim \mathbb{S}; \\ & \mathcal{L}_f \leftarrow \frac{1}{|X|} \sum_{x \in X} \frac{1}{|Z_x|} \sum_{z \in Z_x} f_\omega \big(T_\theta(x,z) \big) - \frac{1}{|Y|} \sum_{y \in Y} f_\omega(y); \\ & \text{Update } \omega \text{ by using } \frac{\partial \mathcal{L}_f}{\partial \omega}; \\ & \text{for } k_T = 1, 2, \dots, K_T \text{ do} \\ & \text{Sample batches } X \sim \mathbb{P}; \\ & \text{For each } x \in X \text{ sample batch } Z_x \sim \mathbb{S}; \\ & \mathcal{L}_T \leftarrow \frac{1}{|X|} \sum_{x \in X} \big[\widehat{C} \big(x, T_\theta(x, Z_x) \big) - \frac{1}{|Z_x|} \sum_{z \in Z_x} f_\omega \big(T_\theta(x, z) \big) \big]; \\ & \text{Update } \theta \text{ by using } \frac{\partial \mathcal{L}_T}{\partial \theta}; \end{split}$$

until not converged;

Recall the γ -weak quadratic cost

$$C(x,\pi(\cdot|x)) = \int_{\mathcal{Y}} \frac{1}{2} \|x-y\|^2 d\pi(y|x) - \frac{\gamma}{2} \operatorname{Var}(\pi(\cdot|x)),$$

We use the estimator \widehat{C} for the γ -weak quadratic cost $C(x, \mathcal{T}(x, \cdot)_{\#}\mathbb{S})$:

$$\widehat{C}(x, T(x, Z)) = rac{1}{2|Z|} \sum_{z \in Z} \|x - T(x, z)\|^2 - rac{\gamma}{2} \widehat{\sigma}^2,$$

where $Z\sim\mathbb{S}$ is a random batch and $\hat{\sigma}^2$ is the (corrected) batch variance

$$\hat{\sigma}^2 = \frac{1}{|Z|-1} \sum_{z \in Z} \left\| T(x,z) - \frac{1}{|Z|} \sum_{z \in Z} T(x,z) \right\|^2.$$

Neural Optimal Transport is NOT a GAN

NOT is NOT a WGAN. It solves a different problem.

Neural Optimal Transport [NOT]		Wasserstein Generative Adversarial Nets [WGAN]	
The idea	OT plan as the generative model	OT cost as the loss for generator	
Minimax optimization objective	$\max_{f} \min_{T} \mathcal{L}(f, T)$	$\min_{\substack{T \\ f}} \max_{f} \mathcal{L}(T, f)$	
Transport map <i>T</i> (generator)	T^* solves the inner problem; it is an <u>OT map</u> from $\mathbb P$ to $\mathbb Q$	\mathcal{T}^* solves the outer problem; it is an <u>arbitrary</u> map from \mathbb{P} to \mathbb{Q}	
Potential <i>f</i> (discriminator)	Unconstrained f	Constrained $f \in Lip_1$	

Note that, in general, swapping min and max is prohibited, i.e., $\max_{f} \min_{T}(\cdot) \neq \min_{T} \max_{f}(\cdot)$, for example,

$$1 = \min_{x} \max_{y} \sin(x+y) \neq \max_{y} \min_{x} \sin(x+y) = -1.$$

Experiments

General Details

Datasets: various 64×64 and 128×128 RGB images datasets.

Transport cost: γ -weak quadratic cost ($\gamma \ge 0$).

Train-test split. 90% – train; the rest 10% – test.

Computational resources: 1 to 4 Tesla V100 GPUs, convergence in 1-3 days (depending on the particular experiment).

Preliminary Experiments

Deterministic maps - Qualitative Results (Part 1)

Handbags \rightarrow shoes, 128×128 .

Shoes \rightarrow handbags, 128 \times 128.

Deterministic maps - Qualitative Results (Part 2)

Celeba (female) \rightarrow anime, 128 \times 128.

Outdoor \rightarrow church, 128 × 128.

Deterministic maps - Comparison with Other Methods

NOT (ours)

DiscoGAN

CycleGAN

Stochastic Maps - Qualitative Results

 128×128 images

Stochastic Maps - Qualitative Results

Outdoor \rightarrow church, 128×128

Stochastic Maps - Qualitative Results

Outdoor \rightarrow church (Interpolation)

Stochastic Maps – Comparison with Other Methods

Method	AugCycleGAN	MUNIT	NOT (ours)
FID↓	$\big \hspace{0.1cm} 18.84 \hspace{0.1cm} \pm \hspace{0.1cm} 0.11 \hspace{0.1cm}$	$\left \begin{array}{c} 15.76 \pm 0.11 \end{array} \right.$	$ $ 13.44 \pm 0.12

NOT (ours)

MUNIT

AugCycleGAN

Conclusion and extensions

Conclusion

Neural Optimal Transport (NOT)

- 1. is a way to use learn OT plans as a generative mapping;
- 2. is built on rigorous OT theory;
- 3. solves a saddle point problem (not the GAN's one);
- 4. easily controls stochasticity (one-to-many mappings);
- 5. applicable to unpaired learning problems and beyond;

References i

- Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). "Wasserstein generative adversarial networks". In: International conference on machine learning. PMLR, pp. 214–223.
- Asadulaev, Arip et al. (2022). "Neural Optimal Transport with General Cost Functionals". In: arXiv preprint arXiv:2205.15403.
- Backhoff-Veraguas, Julio, Mathias Beiglböck, and Gudmun Pammer (2019). "Existence, duality, and cyclical monotonicity for weak transport costs". In: *Calculus of Variations and Partial Differential Equations* 58.6, pp. 1–28.
- Courty, Nicolas et al. (2016). "Optimal transport for domain adaptation". In: *IEEE transactions on pattern analysis and machine intelligence* 39.9, pp. 1853–1865.
- Gazdieva, Milena et al. (2022). "Unpaired Image Super-Resolution with Optimal Transport Maps". In: arXiv preprint arXiv:2202.01116.

References ii

- Gozlan, Nathael et al. (2017). "Kantorovich duality for general transport costs and applications". In: *Journal of Functional Analysis* 273.11, pp. 3327–3405.
- Kallenberg, Olav (1997). Foundations of modern probability. Vol. 2. Springer.
- Korotin, Alexander, Vage Egiazarian, et al. (2021). "Wasserstein-2 Generative Networks". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=bEoxzW_EXsa.
- Korotin, Alexander, Alexander Kolesov, and Evgeny Burnaev (2022). "Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?" In: *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*. URL: https://openreview.net/forum?id=VtEEpi-dGlt.
- Korotin, Alexander, Lingxiao Li, et al. (2021). "Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark". In: *Advances in Neural Information Processing Systems* 34.

References iii

- Korotin, Alexander, Daniil Selikhanovych, and Evgeny Burnaev (2022a). "Kernel Neural Optimal Transport". In: arXiv preprint arXiv:2205.15269.
- 🔋 (2022b). "Neural Optimal Transport". In: arXiv preprint arXiv:2201.12220.
- Liu, Huidong, Xianfeng Gu, and Dimitris Samaras (2019). "Wasserstein gan with quadratic transport cost". In: *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4832–4841.
- Rout, Litu, Alexander Korotin, and Evgeny Burnaev (2022). "Generative Modeling with Optimal Transport Maps". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=5JdLZg346Lw.
- Villani, Cédric (2008). *Optimal transport: old and new*. Vol. 338. Springer Science & Business Media.