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Neural Optimal Transport
https://arxiv.org/abs/2201.12220

Alexander Korotin, Daniil Selikhanovych, Evgeny Burnaev

We present a novel neural-networks-based algorithm to compute optimal transport maps and
plans for strong and weak transport costs.
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Generative Modeling: Intro



The Task of Generative Modeling

Map the given distribution P into the given distribution Q.

Case 1: noise → data
synthetic data generation/data manipulation

Case 2: data → data
unpaired style transfer, super-resolution, domain adapatation
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Types of Generative Models1

1https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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What is Optimal Transport and
Why Do We Need It?



Monge’s Formulation of Optimal Transport2

Let c : X × Y → R be a cost function, e.g., c(x , y) = ∥x−y∥2

2 .

The optimal transport cost between measures P and Q is

Cost(P,Q) = inf
T♯P=Q

∫
X

c
(
x , T (x)

)
dP(x).

The map T ∗ attaining the minimum is called the optimal transport map.

2Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.
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Optimal Transport in Machine Learning Tasks
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Approaches to Use OT in Generative Models

OT cost as the loss (WGANs)3 OT map

Wasserstein GANs are not Optimal Transport!4

3Martin Arjovsky, Soumith Chintala, and Léon Bottou (2017). “Wasserstein generative adversarial networks”.
In: International conference on machine learning. PMLR, pp. 214–223.
4Alexander Korotin, Alexander Kolesov, and Evgeny Burnaev (2022). “Kantorovich Strikes Back! Wasserstein

GANs are not Optimal Transport?” In: Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track. url: https://openreview.net/forum?id=VtEEpi-dGlt.
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Why Do We Need Optimal Maps?

Practical tasks5

Domain Adaptation Unpaired Learning

Theoretical side
rigorous OT theory, guarantees of performance.

5Nicolas Courty et al. (2016). “Optimal transport for domain adaptation”. In: IEEE transactions on pattern
analysis and machine intelligence 39.9, pp. 1853–1865.
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Types of Optimal Transport Methods

Discrete

+ Convex optimization;
+ Strong theoretical guarantees;
- Poor scalability;
- No out-of-support estimates;

Continuous (Parametric)

± Neural networks;
± Limited theoretical guarantees;
+ Good scalability;
+ Out-of-sample estimation
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Development of Scalable Neural Methods

The presentation is based on the following papers:

[1] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2022b). “Neural Optimal Transport”. In: arXiv preprint
arXiv:2201.12220

[2] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2022a). “Kernel Neural Optimal Transport”. In: arXiv
preprint arXiv:2205.15269

[3] Arip Asadulaev et al. (2022). “Neural Optimal Transport with General Cost Functionals”. In: arXiv preprint
arXiv:2205.15403

[4] Milena Gazdieva et al. (2022). “Unpaired
Image Super-Resolution with Optimal Transport Maps”. In: arXiv preprint arXiv:2202.01116

[5] Litu Rout, Alexander Korotin, and Evgeny Burnaev
(2022). “Generative Modeling with Optimal Transport Maps”. In: International Conference
on Learning Representations. url: https://openreview.net/forum?id=5JdLZg346Lw

[5] Alexander Korotin,
Lingxiao Li, et al. (2021). “Do Neural Optimal Transport Solvers Work? A Continuous
Wasserstein-2 Benchmark”. In: Advances in Neural Information Processing Systems 34

[6] Alexander Korotin, Vage Egiazarian,
et al. (2021). “Wasserstein-2 Generative Networks”. In: International Conference
on Learning Representations. url: https://openreview.net/forum?id=bEoxzW_EXsa
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Example: Unpaired Image-to-Image Style Translation

Input: two unpaired datasets – empirical samples from P,Q.

Output: «style translation map» T : X → Y satisfying T#P = Q.
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Preliminary Examples (128×128 images)

Deterministic (one-to-one)

Celeba (female) → anime

Outdoor → churches

Stochastic (one-to-many)

Handbags → shoes
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Background on OT



Issues of Monge’s Formulation

Let c : X × Y → R be a cost function, e.g., c(x , y) = ∥x−y∥2

2 .

The optimal transport cost between measures P and Q is

Cost(P,Q) = inf
T♯P=Q

∫
X

c
(
x , T (x)

)
dP(x).

Issues of the formulation
• There might be no map T satisfying T ♯P = Q (no mass splitting).

• The infimum might not be attained (no minimizer T ∗).
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Weak Formulation of Optimal Transport6

Let C : X × P(Y)→ R be a weak cost function.

The optimal transport cost between measures P and Q is

Cost(P,Q) = inf
π∈Π(P,Q)

∫
X

C
(
x , π(·|x)

)
dπ(x)︸ ︷︷ ︸
dP(x)

where π(·|x) ∈ P(Y) denotes the conditional distribution of y ∈ Y conditioned on x ∈ X .
6Nathael Gozlan et al. (2017). “Kantorovich duality for general transport costs and applications”. In: Journal

of Functional Analysis 273.11, pp. 3327–3405.
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An Example: γ-Weak Wasserstein-2 (W2,γ)

We will focus on the γ-weak quadratic cost (γ > 0):

C
(
x , π(·|x)

)
=

∫
Y

1
2∥x − y∥2dπ(y |x)− γ

2 Var
(
π(·|x)

)
,

where Var
(
π(·|x)

)
denotes the variance of the π(·|x) ∈ P(Y).

Cost C(x , µ) is convex in µ since Var(µ) is a concave functional of µ.
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Dual Form of the Weak Optimal Transport

Primal form
Cost(P,Q) = inf

π∈Π(P,Q)

∫
X

C
(
x , π(·|x)

)
dπ(x).

Dual form7

Cost(P,Q) = sup
f

∫
X

f C (x)dP(x) +
∫

Y
f (y)dQ(y),

where f : Y → R are continuous, lower-bounded and not rapidly
growing functions; f C denotes the weak C -transform of f :

f C (x) = inf
µ∈P(Y)

{
C(x , µ)−

∫
Y

f (y)dµ(y)
}

.

7Julio Backhoff-Veraguas, Mathias Beiglböck, and Gudmun Pammer (2019). “Existence, duality, and cyclical
monotonicity for weak transport costs”. In: Calculus of Variations and Partial Differential Equations 58.6,
pp. 1–28.
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Dual Form of the Weak Optimal Transport

Primal form

Dual form

sup
f

∫
X

inf
µ∈P(Y)

{
C(x , µ)−

∫
Y

f (y)dµ(y)
}

dP(x) +
∫

Y
f (y)dQ(y),

Our goal

is to extract the primal solution (OT plan) π∗ from the dual problem.
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An Algorithm to Learn OT Plans



Stochastic Functions

We say that that T : X × Z → Y is a stochastic function.

Stochastic functions can implicitly8 represent transport plans π∈Π(P,Q).

T (x , ·)#S ∼ π(·|x).

If a stochastic function T ∗ represents some OT plan π∗,
we say that T ∗ is the stochastic OT map.

8Olav Kallenberg (1997). Foundations of modern probability. Vol. 2. Springer.
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Reformulation of the Dual Problem

Lemma (Minimax reformulation of the dual problem)

Cost(P,Q) = sup
f

inf
T
L(f , T ),

where the functional L is defined by

L(f , T ) def=
∫

Y
f (y)dQ(y) +

∫
X

(
C

(
x , T (x , ·)#S

)
−

∫
Z

f
(
T (x , z)

)
dS(z)

)
dP(x).

Lemma (Stochastic OT maps solve the problem.)

For any potential f ∗ which attains the optimal value of the problem, and for any stochastic
map T ∗ which realizes some OT plan π∗:

T ∗ ∈ arg inf
T
L(f ∗, T ).
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The Algorithm: Preliminaries

sup
ω

inf
θ
L(ω, θ) = sup

ω
inf
θ

[ ∫
Y

fω(y)dQ(y) +∫
X

(
C

(
x , Tθ(x , ·)#S

)
−

∫
Z

fω
(
Tθ(x , z)

)
dS(z)

)
dP(x)

]
.

• We use ResNet9 fω : R3×W ×H → R;
• We use UNet Tθ : R(3+1)×H×W → R3×W ×H .

• The noise simply as an additional input channel (RGBZ);
• We use a Gaussian noise S of dim=W ×H with axis-wise σ =0.1.

• We solve the saddle point problem with the stochastic gradient ascent-descent by
using random batches from P,Q,S.

9Huidong Liu, Xianfeng Gu, and Dimitris Samaras (2019). “Wasserstein gan with quadratic transport cost”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4832–4841.
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The Algorithm: Neural Optimal Transport (NOT)

Algorithm 1: Neural optimal transport (NOT)
repeat

Sample batches Y ∼ Q, X ∼ P;
For each x ∈ X sample batch Zx ∼ S;
Lf ← 1

|X |
∑

x∈X

1
|Zx |

∑
z∈Zx

fω
(
Tθ(x , z)

)
− 1

|Y |
∑

y∈Y
fω(y);

Update ω by using ∂Lf
∂ω ;

for kT = 1, 2, . . . , KT do
Sample batches X ∼ P;
For each x ∈ X sample batch Zx ∼ S;
LT ← 1

|X |
∑

x∈X

[
Ĉ

(
x , Tθ(x , Zx )

)
− 1

|Zx |
∑

z∈Zx

fω
(
Tθ(x , z)

)]
;

Update θ by using ∂LT
∂θ ;

until not converged ;
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Unbiased Empirical Estimator for the γ-Weak Quadratic Cost

Recall the γ-weak quadratic cost

C
(
x , π(·|x)

)
=

∫
Y

1
2∥x − y∥2dπ(y |x)− γ

2 Var
(
π(·|x)

)
,

We use the estimator Ĉ for the γ-weak quadratic cost C
(
x , T (x , ·)#S

)
:

Ĉ
(
x , T (x , Z )

)
= 1

2|Z |
∑
z∈Z
∥x − T (x , z)∥2 − γ

2 σ̂2,

where Z ∼ S is a random batch and σ̂2 is the (corrected) batch variance

σ̂2 = 1
|Z | − 1

∑
z∈Z

∥∥∥T (x , z)− 1
|Z |

∑
z∈Z

T (x , z)
∥∥∥2

.
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Neural Optimal Transport is NOT a GAN

NOT is NOT a WGAN. It solves a different problem.

Neural Optimal
Transport [NOT]

Wasserstein Generative
Adversarial Nets [WGAN]

The idea OT plan as the generative model OT cost as the loss for generator

Minimax
optimization

objective
max

f
min

T
L(f , T ) min

T
max

f
L(T , f )

Transport map T
(generator)

T ∗ solves the inner problem;
it is an OT map from P to Q

T ∗ solves the outer problem;
it is an arbitrary map from P to Q

Potential f
(discriminator) Unconstrained f Constrained f ∈ Lip1

Note that, in general, swapping min and max is prohibited, i.e., maxf minT (·) ̸= minT maxf (·), for example,

1 = min
x

max
y

sin(x + y) ̸= max
y

min
x

sin(x + y) = −1.

23



Experiments



General Details

Datasets: various 64× 64 and 128× 128 RGB images datasets.

Transport cost: γ-weak quadratic cost (γ ≥ 0).

Train-test split. 90% – train; the rest 10% – test.

Computational resources: 1 to 4 Tesla V100 GPUs,
convergence in 1-3 days (depending on the particular experiment).
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Preliminary Experiments

Handbags → shoes, 64×64

γ = 0 γ = 1
3 γ = 2

3 γ = 1
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Deterministic maps - Qualitative Results (Part 1)

Handbags → shoes, 128× 128.

Shoes → handbags, 128× 128.
26



Deterministic maps - Qualitative Results (Part 2)

Celeba (female) → anime, 128× 128.

Outdoor → church, 128× 128.
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Deterministic maps - Comparison with Other Methods

Method DiscoGAN Cycle GAN NOT (ours)

FID↓ 22.42 16.00 13.77

NOT (ours)

DiscoGAN

CycleGAN
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Stochastic Maps - Qualitative Results

128× 128 images

Celeba (female) → anime Outdoor → church
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Stochastic Maps - Qualitative Results

Outdoor → church, 128×128
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Stochastic Maps - Qualitative Results

Outdoor → church (Interpolation)
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Stochastic Maps – Comparison with Other Methods

Method AugCycleGAN MUNIT NOT (ours)

FID↓ 18.84 ± 0.11 15.76 ± 0.11 13.44 ± 0.12

NOT (ours) MUNIT AugCycleGAN
32



Conclusion and extensions



Conclusion

Neural Optimal Transport (NOT)

1. is a way to use learn OT plans as a generative mapping;
2. is built on rigorous OT theory;
3. solves a saddle point problem (not the GAN’s one);
4. easily controls stochasticity (one-to-many mappings);
5. applicable to unpaired learning problems and beyond;
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