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We propose a novel neural algorithm for the fundamental problem of computing the entropic
optimal transport (EOT) plan between probability distributions which are accessible by samples.


https://arxiv.org/abs/2211.01156

Overview

Introduction to optimal transport and Schrodinger Bridge problems

Entropic Neural Optimal Transport via Diffusion Processes

Experiments



Introduction to optimal transport
and Schrodinger Bridge problems



Kantorovich’s Formulation of Optimal Transport?

lIx=yl>

Let c: & x Y — R be a cost function, e.g., c(x,y) =

The optimal transport cost between measures P and Q is

Cost(P = inf d .
ost(P0)= it [ clxydntey)

The plan 7* attaining the minimum is called
the optimal transport plan between P and Q.

LCédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.



Entropy-regularized Optimal Transport

2
Let c: X x Y — R be a cost function, e.g., c(x,y) = M

The entropic optimal transport cost between measures P and Q is
Cost(P,Q) = inf / c(x,y)dn(x,y) —eH(w),
FO=_jat ) [ elen)dntoy) - ehin)

where H(m) = — [, log d;[(xx,’y}i) dm(x,y) and € is a regularization strength.

The plan 7* attaining the minimum is called
the optimal transport plan between P and Q.



NOT for entropy-regularized Optimal Transport

Entropy-regularized OT is equivalent to the weak OT with the weak cost:
Clen()) = [ el y)dnlyl) — H(x(yb)).

NOT objective for the weak cost:

w

/X (C(X, To(x,-)4S) _/z fw(Te(X7Z))dS(z)> dP(x)}

sgpigfﬁ(wﬁ) = supinf [/y f.(y)dQ(y) +

But we can not optimize such objective because
there is no simple way to estimate m(y|x) by samples.




Dynamic Schrodinger Bridge

We denote Py = P and P; = Q. We consider stochastic processes T, which is described by
the following SDE:

dXt - f(Xt, t)dt + \/gth

Dynamic Schrodinger Bridge for this family of processes is formulated as follows:

1
1
inf E —|F (X, t)||Pdt
Tfelggwl) Tf[/o 26|| (Xe, t)|[7dt]

The process Ty~ attaining the minimum has joint distribution w7,. which is
2

the solution to the Entropic OT with regularization parameter e.

2Yongxin Chen, Tryphon T Georgiou, and Michele Pavon (2021). “Stochastic control liaisons: Richard sinkhorn
meets gaspard monge on a schrodinger bridge”. In: SIAM Review 63.2, pp. 249-313.



Entropic Neural Optimal
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Reformulation of the Dynamic Schrodinger Bridge

Theorem (Minimax reformulation of the Dynamic Schraodinger Bridge)

1
1 ~
inf  E —||f(Xe, t)||?dt] = inf  L(5, T¢),
Tfegzn»o,lpl) T‘[/O 2€|| (Xe, £)][d] Sl:iprel%(]PO) (8, T¢)

where the functional L is defined by

_ 1
£(6, Tr) =Enl | S IF0 0lPa + [ 5)ay) - [ p0)aBT ()

and dP]"(y) is a marginal distribution of T¢ at t = 1.



The Algorithm: Preliminaries

L(3,T¢) = Erf[/o 2i€||f(xt, t)|2dt]+/ys(y)d1P1(y)—/yﬁ(y)dﬂ”ff(y)

We use ResNet? 3, : R3>*WxH _, R.

We use UNet fy(X, t) : R3>*H*XW [0, 1] — R3*WxH,
To condition on the time variable t we use positional encoding as in the transformer
based models.*
For sampling from SDE we use Euler-Maruyama algorithm.

We solve the saddle point problem with the stochastic gradient ascent-descent by
using random batches from Py, IP;.

3Huidong Liu, Xianfeng Gu, and Dimitris Samaras (2019). “Wasserstein gan with quadratic transport cost”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4832—4841.

4Ashish Vaswani et al. (2017). “Attention is all you need”. In: Advances in neural information processing
systems 30.



The Algorithm: Entropic Neural Optimal Transport (ENOT)

Algorithm 1: Entropic Neural OT (ENOT)

repeat
Sample batches Xy ~ Py, Y ~ Py;
{X NV 17{7‘}’\’ 1 < SDESolve(Xy, fa, N, €) ;

Lg \x,v| > 5¢(XN) ﬁ > Boly)
xnEX yey
Update ¢ by using %L(; :
for k=1to K do
Sample batches Xy ~ Py, Y ~ Py;

{X NGNS < SDESolve(Xo, fa, N, €) ;
N—-1
Le w2 o el = = Z 5¢(XN);
Xo] 2 Xl
t=0 f; kEf;

Update 6 by using % ;

until converged,;




The Algorithm: SDESolve function

Algorithm 2: Euler-Maruyama algorithm

Input

Output:

1.
At 5

: batch of initial states Xy at time moment t = 0;

SDE drift network fy : P x [0,1] —P;

number of steps for the SDE solver N > 1;

noise variance ¢ > 0.

batches {X,})_; of intermediate states at t = # simulating the proccess
dX: = f(X;, t)dt++/edW;;

batches {£,}M-! of drift values f(X,, t,) at t = nd simulating the process;

1

fort=1,2,...,N do
for i=1,2,...,|X| do
Sample noise W from N(0, /) ;
fro1,i ¢ F(Xem1, t —1)
Xei 4 Xe—1,i + foo1,iAt + VeAtW
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Experiments




Toy example |
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(b) ENOT (ours), e =0

(c) ENOT (ours), e=0.01

(d) ENOT (ours), e =0.1

Figure 1: Gaussian — Mixture of 8 Gaussians., learned stochastic process with ENOT (ours).
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Toy example Il
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(c) ENOT (ours), e=0.01

(d) ENOT (ours), e=0.1

Figure 2: Gaussian — Swiss roll, learned stochastic process with ENOT (ours).
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Unpaired image experiments setup

We do the unpaired train-test split as follows:

Test
Clean
images | |‘ ‘C ’|
Degraded
images | | C |
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Colored MNIST |

(a) ENOT (ours) samples, e = 0.  (b) ENOT (ours) samples, e =1. (c) ENOT (ours) samples, e=10.

Figure 3: Samples of colored MNIST obtained by ENOT (ours) for different e.
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Colored MNIST 11

Figure 4: Trajectories from our learned ENOT for colored MNIST for different .
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Celeba. Existing competitive algorithm - SCONES

(a) (b) (c) SCONES, ¢ = 100 (d) SCONES, € = 1250

Figure 5: Faces produced by SCONEs for various e.
Figure 5a shows test degraded images, 5b — their original high-resolution counterparts.

Competitive algorithm (SCONES) does not work for the small ¢ 6




Celeba. Our algorithm |
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(c) ENOT (ours), e=0 (d) ENOT (ours), e=1 (e) ENOT (ours), e = 10

Figure 6: Faces produced by ENOT (ours) for various e.
Figure 6a shows test degraded images, 6b — their original high-resolution counterparts.

Our algorithm (ENOT) does work for small € e
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Celeba. Our algorithm Il

Figure 7: Trajectories of samples learned by our Algorithm 1 for Celeba with ¢ = 0, 1, 10.
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