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We propose a novel neural algorithm for the fundamental problem of computing the entropic
optimal transport (EOT) plan between probability distributions which are accessible by samples.
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Introduction to optimal transport
and Schrödinger Bridge problems



Kantorovich’s Formulation of Optimal Transport1

Let c : X × Y → R be a cost function, e.g., c(x , y) = ∥x−y∥2

2 .

The optimal transport cost between measures P and Q is

Cost(P,Q) = inf
π∈Π(P,Q)

∫
X ×Y

c(x , y)dπ(x , y).

The plan π∗ attaining the minimum is called
the optimal transport plan between P and Q.

1Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.
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Entropy-regularized Optimal Transport

Let c : X × Y → R be a cost function, e.g., c(x , y) = ∥x−y∥2

2 .

The entropic optimal transport cost between measures P and Q is

Cost(P,Q) = inf
π∈Π(P,Q)

∫
X ×Y

c(x , y)dπ(x , y)− ϵH(π),

where H(π) = −
∫

X ×Y log dπ(x ,y)
d[x ,y ] dπ(x , y) and ϵ is a regularization strength.

The plan π∗ attaining the minimum is called
the optimal transport plan between P and Q.
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NOT for entropy-regularized Optimal Transport

Entropy-regularized OT is equivalent to the weak OT with the weak cost:

C(x , π(·|x)) =
∫

Y
c(x , y)dπ(y |x)− H(π(y |x)).

NOT objective for the weak cost:

sup
ω

inf
θ
L(ω, θ) = sup

ω
inf
θ

[ ∫
Y

fω(y)dQ(y) +∫
X

(
C

(
x , Tθ(x , ·)#S

)
−

∫
Z

fω
(
Tθ(x , z)

)
dS(z)

)
dP(x)

]
.

But we can not optimize such objective because
there is no simple way to estimate π(y |x) by samples.
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Dynamic Schrödinger Bridge

We denote P0 = P and P1 = Q. We consider stochastic processes Tf , which is described by
the following SDE:

dXt = f (Xt , t)dt +
√

ϵdWt

Dynamic Schrödinger Bridge for this family of processes is formulated as follows:

inf
Tf ∈D(P0,P1)

ETf [
∫ 1

0

1
2ϵ
||f (Xt , t)||2dt]

The process Tf ∗ attaining the minimum has joint distribution πTf ∗ which is
the solution to the Entropic OT with regularization parameter ϵ.2

2Yongxin Chen, Tryphon T Georgiou, and Michele Pavon (2021). “Stochastic control liaisons: Richard sinkhorn
meets gaspard monge on a schrodinger bridge”. In: SIAM Review 63.2, pp. 249–313.
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Entropic Neural Optimal
Transport via Diffusion Processes



Reformulation of the Dynamic Schrödinger Bridge

Theorem (Minimax reformulation of the Dynamic Schrödinger Bridge)

inf
Tf ∈D(P0,P1)

ETf [
∫ 1

0

1
2ϵ
||f (Xt , t)||2dt] = sup

β
inf

Tf ∈D(P0)
L̃(β, Tf ),

where the functional L̃ is defined by

L̃(β, Tf ) := ETf [
∫ 1

0

1
2ϵ
||f (Xt , t)||2dt] +

∫
Y

β(y)dP1(y)−
∫

Y
β(y)dPTf

1 (y)

and dPTf
1 (y) is a marginal distribution of Tf at t = 1.

7



The Algorithm: Preliminaries

L̃(β, Tf ) := ETf [
∫ 1

0

1
2ϵ
||f (Xt , t)||2dt] +

∫
Y

β(y)dP1(y)−
∫

Y
β(y)dPTf

1 (y)

We use ResNet3 βω : R3×W ×H → R;
We use UNet fθ(X , t) : R3×H×W × [0, 1]→ R3×W ×H .

To condition on the time variable t we use positional encoding as in the transformer
based models.4

For sampling from SDE we use Euler-Maruyama algorithm.
We solve the saddle point problem with the stochastic gradient ascent-descent by
using random batches from P0,P1.

3Huidong Liu, Xianfeng Gu, and Dimitris Samaras (2019). “Wasserstein gan with quadratic transport cost”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4832–4841.
4Ashish Vaswani et al. (2017). “Attention is all you need”. In: Advances in neural information processing

systems 30.
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The Algorithm: Entropic Neural Optimal Transport (ENOT)

Algorithm 1: Entropic Neural OT (ENOT)
repeat

Sample batches X0 ∼ P0, Y ∼ P1;
{Xn}N

n=1, {fn}N
n=1 ← SDESolve(X0, fθ, N, ϵ) ;

Lβ ← 1
|XN |

∑
xN ∈XN

βϕ(xN)− 1
|Y |

∑
y∈Y

βϕ(y) ;

Update ϕ by using ∂Lβ

∂ϕ ;
for k = 1 to K do

Sample batches X0 ∼ P0, Y ∼ P1;
{Xn}N

n=1, {fn}N−1
n=0 ← SDESolve(X0, fθ, N, ϵ) ;

Lf ← 1
N|X0|

N−1∑
t=0

∑
ft,k ∈ft

||ft,k ||2 − 1
|XN |

∑
xN ∈XN

βϕ(xN) ;

Update θ by using ∂Lf
∂θ ;

until converged ;
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The Algorithm: SDESolve function

Algorithm 2: Euler-Maruyama algorithm

Input : batch of initial states X0 at time moment t = 0;
SDE drift network fθ : D × [0, 1]→D ;
number of steps for the SDE solver N ≥ 1;
noise variance ϵ ≥ 0.

Output: batches {Xn}N
n=1 of intermediate states at t = n

N simulating the proccess
dXt = f (Xt , t)dt+

√
ϵdWt ;

batches {fn}N−1
n=0 of drift values f (Xn, tn) at t = n−1

N simulating the process;
∆t ← 1

N ;
for t = 1, 2, . . . , N do

for i = 1, 2, . . . , |X0| do
Sample noise W from N (0, I) ;
ft−1,i ← f (Xt−1, t − 1) ;
Xt,i ← Xt−1,i + ft−1,i∆t +

√
ϵ∆tW ;
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Experiments



Toy example I

(a) x ∼ P0, y ∼ P1 (b) ENOT (ours), ϵ = 0 (c) ENOT (ours), ϵ=0.01 (d) ENOT (ours), ϵ = 0.1

Figure 1: Gaussian → Mixture of 8 Gaussians., learned stochastic process with ENOT (ours). 11



Toy example II

(a) x ∼ P0, y ∼ P1 (b) ENOT (ours), ϵ = 0 (c) ENOT (ours), ϵ=0.01 (d) ENOT (ours), ϵ=0.1

Figure 2: Gaussian → Swiss roll, learned stochastic process with ENOT (ours). 12



Unpaired image experiments setup

We do the unpaired train-test split as follows:
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Colored MNIST I

(a) ENOT (ours) samples, ϵ = 0. (b) ENOT (ours) samples, ϵ = 1. (c) ENOT (ours) samples, ϵ=10.

Figure 3: Samples of colored MNIST obtained by ENOT (ours) for different ϵ.
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Colored MNIST II

Figure 4: Trajectories from our learned ENOT for colored MNIST for different ϵ.
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Celeba. Existing competitive algorithm - SCONES

(a) (b) (c) SCONES, ϵ = 100 (d) SCONES, ϵ = 1250

Figure 5: Faces produced by SCONEs for various ϵ.
Figure 5a shows test degraded images, 5b – their original high-resolution counterparts.

Competitive algorithm (SCONES) does not work for the small ϵ .
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Celeba. Our algorithm I

(a) (b) (c) ENOT (ours), ϵ = 0 (d) ENOT (ours), ϵ = 1 (e) ENOT (ours), ϵ = 10

Figure 6: Faces produced by ENOT (ours) for various ϵ.
Figure 6a shows test degraded images, 6b – their original high-resolution counterparts.

Our algorithm (ENOT) does work for small ϵ ϵ .
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Celeba. Our algorithm II

Figure 7: Trajectories of samples learned by our Algorithm 1 for Celeba with ϵ = 0, 1, 10.
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