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e Motivation from Data Mining perspective

e Closure systems and concept lattices

e T1 closure systems

The lattice of all atomic lattices L,

Davis’ subset lattices

v/
°

Enumeration
~ e Two cases — two algorithms

e New numbers and sequences for OEIS

Extra results

~ e Kleitman’s maximal union-free families for n=6
e Standard context representation of L,

e Extremal lattices and the breadth of atomic lattices

Upper bounds for | L |
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https://arxiv.org/abs/2209.12256
https://arxiv.org/abs/2209.12256
https://arxiv.org/abs/2209.12256
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The-FIMI’'03 best implementation award was granted to Gosta Grahne and Jiahfei Z
(pf{ the left). The award consisted of the most frequent itemset: {diapers, beer}.

/
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.\, MOTIVATION FROM DATA MINING

* Frequent itemset mining (Zaki & Meira, 2022)

)
L D[A[B[C|D|E T 0 x TA[BIC|D[E
1 111101111 1| ABDE 11112111
O 2 Oj1)J1]0¢(1 2 BCE 312143 |2
ENBRESLAREE ST ABDE| |t |4|3]|5|5]3
4 111111071 4| ABCE 514|16|6 1|4
E 1111 (1¢]1 5 | ABCDE 5 5 -
( 6[OJT|T[1]0 6| BCD 6 /
\ / (a) Binary database (b) Transaction database (c) Vertical database

| / ®
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2 MOTIVATION FROM DATA MINING

N\ O (ZAKI & MEIRA, 2022)

/a ()

@)

/

D

Tid | Itemset
1 ABDE
2 BCE
3 ABDE
4 ABCE
5 | ABCDE
6 BCD

(a) Transaction database

sSup Itemsets
6 B
5 E,.BE
4 A, C,D,AB,AE,BC,BD,ABE
3 | AD,CE,DE,ABD,ADE, BCE,BDE,ABDE

(b) Frequent itemsets (minsup = 3)
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O MOTIVATION FROM DATA MINING

N | O (ZAKI & MEIRA, 2022)
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135
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0)
0O)
0)
~ |ABDE
135
| ~ Figure 9.2. Frequent, closed, minimal generators, and maximal frequent itemsets. Itemsets that are boxed

and shaded are closed, whereas those within boxes (but unshaded) are the minimal generators; maximal
/ itemsets are shown boxed with double lines.
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O MOTIVATION FROM DATA MINING

N | O (ZAKI & MEIRA, 2022)

0 () 9.5 FURTHER READING

O The concept of closed itemsets is based on the elegant lattice theoretic framework of

formal concept analysis in Ganter, Wille, and Eranzke-(1997).The Charm algorithm for
mining frequent closed itemsets appears in Zaki and Hsiao (2005), and the GenMax
method for mining maximal frequent itemsets is described in Gouda and Zaki (2005).
For an Apriori style algorithm for maximal patterns, called MaxMiner, that uses very
effective support lower bound based itemset pruning see Bayardo Jr (1998). The notion
of minimal generators was proposed in Bastide et al. (2000); they refer to them as key
patterns. Nonderivable itemset mining task was introduced in Calders and Goethals
(2007).

)_/

M Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., and Lakhal, L. (2000). Mining fre-
quent patterns with counting inference. ACM SIGKDD Explorations Newsletter,
0) 2(2), 66-75. &
Bayardo Jr, R. J. (1998). Efficiently mining long patterns from databases. Proceedings
O of the ACM SIGMOD International Conference on Management of Data. ACM,
pp. 85-93. )
e Calders, T. and Goethals, B. (2007). Non-derivable itemset mining. Data Mining and
| Knowledge Discovery, 14 (1), 171-206. 5 /

- Ganter, B., Wille, R., and Eranzke C. (1997). Formal Concept Analysis: Mathematical
/ Foundations. New York: Springer-Verlag. ~
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o CLOSURE SYSTEMS AND LATTICES

_ (COLOMB, IRLANDE, AND RAYNAUD, 2010)

A )

{0,1,2}

{o,1}
{0}

m N
~ Fig. 1. Two oore families : On the left, family {0, {0}, {0, 1}, {2}, {0,1,2}} on the J

set {0,1,2}. On the right, family {0, {0}, {1} {2},1{1,2},{2,3},{0, 1,2, 3}} on the set

{0,1,2,3}. /“
~

8 /
0O

/ ~
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o CLOSURE SYSTEMS AND LATTICES

_ (COLOMB, IRLANDE, AND RAYNAUD, 2010)

A
e O Table 1. Known values of |[M,| onn <7
0)
n IM,, | Référence
0 1
1 2
)
1 2 7
3 61
> 4 2 480
2 5 1 385 552 11]
2 6 75 973 751 474 1]
\ /r 71(14 087 648 235 707 352 472||This paper
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THE LATTICE OF ALL MOORE FAMILIES
FOR n=3

/

A. Higuchi [ Discrete Mathematics 179 (1998) 267272
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.\, OEIS SEQUENCE A102896

The OEIS is supported by the many generous donors to the OEIS Foundation.

A 02322 THE ON-LINE ENCYCLOPEDIA
2'3(P§f3 OF INTEGER SEQUENCES®

10221121

/0 ()

founded in 1964 by N. ]. A. Sloane

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A102896 Number of ACI algebras (or semilattices) on n generators with no annihilator.
W 1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472 (list; graph; refs; listen; history; edit; text;
internal format)
) OFFSET 0,2
COMMENTS Or, number of Moore families on an n-set, that is, families of subsets that

contain the universal set {1,...,n} and are closed under intersection.
m Or, number of closure operators on a set of n elements.
An ACI algebra or semilattice is a system with a single binary, idempotent,

commutative and associative operation.
e Also the number of set-systems on n vertices that are closed under union.
The BII-numbers of these set-systems are given by A326875. - Gus Wiseman,
Jul 31 2019
) REFERENCES G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium
Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for
Implicational Systems, in Automated Reasoning, Lecture Notes in Computer
) Science, Volume 5195/2008, Springer-Verlag.
P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7,
International Conference on Formal Concept Analysis (2010). [From Pierre
e} Colomb (pierre(AT)colomb.me), Sep 04 2010)

E. H. Moore, Introduction to a Form of General Analysis, AMS Collogquium
/ Publication 2 (1910), pp. 53-80.

33
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EXAMPLE

MATHEMATICA

CROSSREFS

KEYWORD
AUTHOR
EXTENSIONS

STATUS
3

\\ » OEIS OEIS SEQUENCE A102896

From Gus Wiseman, Jul 31 2019: (Start)
The a(0) = 1 through a(2) = 7 set-systems closed under union:
{} O {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
(End)
Table[Length[Select[Subsets[Subsets[Range[n], {1, n}]], SubsetQ[#,
Union@@@Tuples([#, 2])&]], {n, 0, 3}) (* Gus Wiseman, Jul 31 2019 ¥*)

For set-systems closed under union:

- The covering case is A102894.

- The unlabeled case is Al193674.

- The case also closed under intersection is A306445.

- Set-systems closed under overlapping union are A326866.

- The BII-numbers of these set-systems are given by A326875.

cf. A102895, A102897, Al108798, Al108800, Al193675, A000798, A0l4466, A326878,
A326880, A326881.

Sequence in context: A046846 A111010 A089307 * A088107 Al132524 A153694

Adjacent sequences: Al102893 A102894 A102895 * A102897 A102898 A102899

nonn,hard, more

Mitch Harris, Jan 18 2005

N. J. A. Sloane added a(6) from the Habib et al. reference, May 26 2005
Additional comments froJul 01 2005

a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010

approved
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.\, WHAT DOES DON KNUTH SAY?2

‘A )
)
N In actual fact, | was tearing my hair out for awhile, because
| couldn't believe that this would be so complicated. Maybe
O some day I'll learn the right way to tackle this problem.
)
~ .
p )
(/7 /


https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w
https://www-cs-faculty.stanford.edu/~knuth/programs/horn-count.w

m N\
\ 0)
~ WHAT DOES DON KNUTH WRITE?
A A
/o0 0O)
Table 3
m BOOLEAN FUNCTIONS OF n VARIABLES ”
n=0n=1n=2n=3 n=4 n=>5 n=~6 EXTTE}I‘VEDCE%)A,S&%%@?&ED
arbitrary 2 4 16 256 65,536 4,294,967,296 18,446,744,073,709,551,616
self-dual 0 2 4 16 256 65,536 4,294,967,296
monotone 2 3 6 20 168 7,581 7,828,354 The Art of
both 0 1 2 4 12 81 2,646 Computer
Horn 2 1 14 122 4,960 2,771,104 151,947.,502,948 .
Krom 2 4 16 166 4170 224,716 24,445,368 Prog g
ﬁ threshold 2 4 14 104 1,882 94,572 15,028,134 VOLME4A
symmetric 2 4 8 16 32 64 128 Cobivateoal fleothing
0 canalizing 2 4 14 120 3,514 1,292,276 103,071.,426,294
DONALD E. KNUTH
~ Table 4
BOOLEAN FUNCTIONS DISTINCT UNDER PERMUTATION OF VARIABLES
) n=0n=1n=2n=3 n=4 n=>5 n==~6 ~
arbitrary 2 4 12 80 3,984 37,333,248 25,626,412,338,274.,304
0O self-dual 0 2 2 8 32 1,088 6,385,408
monotone 2 3 ) 10 30 210 16,353
both 0 1 1 2 3 7 30 )
) Horn 2 | 10 38 368 29.328 216.591.692
Krom 2 4 12 48 308 3,028 49,490
threshold 2 4 10 34 178 1,720 590,440 14 |
canalizing 2 4 10 38 294 15,774 149,325,022
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KNOWN ASYMPTOTIC AND BOUNDS

O (V.B. ALEKSEEV, 1989) e

B npauuoit padore, B 4acCTHOCTH, JOKasblBaeTcd CJAEAYyIOllasi Teopema.
Teopema 1. [Jaa uucaa o (n) cemeiicms noOMHONC2CME N-3ACMEHIMHO20 MHO-
HCECMBA, BAMKHYMOLX OMHOCUMEAbHO N2pecederull, cnpasedaugo acumMnmormu4eckoe
© UspatenbcTBo «Hayka». ['maBHas peldakuus

du3uKO-MaTEMaTHUECKOH JIUTEpaTyPHI,
«JlucKkpeTHas MaTeMaTHKa», 1989

5 JuckperTHast MaTemaTHKa, T. 1, Buim. 23
130 B. B. Auxexcees
PABEHCIT60
log, & (n) ~CY"* npu n— oo. (2)

Eonee mouro, log, o (n) = C["/Z](l—l—O(n—l/4 log, n)).
3ajnaua 0 YnCse CeMEHCTB NOAMHOKECTB, 3aMKHYTBIX OTHOCHTEJIbHO nepece' .
yeHui, paccmatpuBanach B [1], rae ana log, a(n) nosydeHb! OLEHKH

CE* < log, o (1) < CR¥*log, n(1+0(1)) nmpn n— oco.

ITosnnee temu :xe aBTopamu u . KieilitmMeHoMm mnosyueHa oueHka ~
log, & (n) < C¥/*12V/2 (14 0(1)), /
15 /

T. €. Halijled TMOpANOK Aas log, o (n) mpu n— oo.
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\\ _T1 CLOSURE SYSTEMS

A334254

Number of closure operators on a set of n elements which satisfy the T_1 separation axiom. |

m 1, 2, 1, 8, 545, 702525, 66960965307 (list; graph; refs; listen; history; edit; text; internal format)

OFFSET
COMMENTS

LINKS

j EXAMPLE
@)

m CROSSREFS

@)

m KEYWORD
AUTHOR
EXTENSIONS

C STATUS

0,2
The T_1 axiom states that all singleton sets {x} are closed.

For n>1, this property implies strictness (meaning that the empty set is
closed).

Table of n, a(n)_for n=0..6.

Dmitry I. Ignatov, Supporting iPython code for counting closure systems
w.r.t. the T 1 separation axiom, Github repository

Dmitry I. Ignatov, PDF of the supporting iPython notebook

Eric Weisstein's World of Mathematics, Separation Axioms

Wikipedia, Separation Axiom

The a(3) = 8 set-systems of closed sets:
{{1,2,3}, {1}, {2}, {3}, {}}
{41,2,3},{1,2},{1},{2}, {3}, {}}
{41,2,3},{1,3}, {1}, {2}, {3}, {}}
{{1,2,3},4{2,3}, {1}, {2}, {3}, {}}
{{1,2,3},{1,2},{1,3},{1},{2}, {3}, {}}
{{1,2,3},{1,2},{2,3},{1},{2}, {3}, {}}
{{1,2,3},{1,3},{2,3},{1},{2}, {3}, {}}
{{1,2,3},{1,2},{1,3},{2,3}, {1}, {2}, {3}, {}}

The number of all closure operators is given in A102896.

For T_0 closure operators, see A334252.

For strict T_1 closure operators, see A334255, the only difference is a(l).

Cf. A326960, A326961, A326979.

Sequence in context: A224090 A013327 A009349 * A230582 A011186 A078088

Adjacent sequences: A334251 A334252 A334253 * A334255 A334256 A334257

nonn,more

Joshua Moerman, Apr 20 2020

a(6) from Dmitry I. Ignatov, Jul 03 2022
approved

16
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THE LATTICE OF ATOMIC LATTICES
N O s, MAPES 2009, 2010 ~
0 (O)
O
5. STRUCTURE OF L(n)
) In this section, we study some basic properties of £(n). Counting ar-
O guments show that |£(3)| = 8 and |£(4)| = 545, and by using a reverse
search algorithm on a computer one can see that |£(5)| = 702,525 and
O |L£(6)| = 66,960,965,307 (see appendix A in [Map09]). Thus the com-
¢ plexity of £(n) rapidly increases with n. Still there are nice properties e
that we can show about £(n) which give it some extra structure. /

.1/
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" THE LATTICE OF ATOMIC LATTICES

Y O s. MAPES 2009, 2010

B @’;ffi@ /@\

g

m §50
P

O Figure 4.2: P U Q is not the join of P and @

| Figure 2.1: £(3)

18
/ For n = 4, there are 545 elements thus the picture cannot
n here.
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“ THE LATTICE OF ATOMIC LATTICES
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.\, INEQUIVALENT CASE

The OEIS is supported by the many generous donors to the OEIS Foundation.

"THE ON-LINE ENCYCLOPEDIA
%OFINTEGERSEQUENCES®

founded in 1964 by N. |. A. Sloane

36

R

0221

-—-I\)
r\_)v—‘l\)»—-'\)

Search  Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A235604 Number of equivalence classes of lattices of subsets of the power set 2A[n].

1, 1, 1, 4, 50, 7443 (list; graph; refs; listen; history; draft edits; text; internal format)

OFFSET 0,4

LINKS Table of n, a(n) for n=0..5.
Donald M. Davis, Enumerating lattices of subsets, arXiv preprint

arXiv:1311.6664, 2013

CROSSREFS Sequence in context: A327229 A231832 A193157 * A221477 Al22464 A226375
Adjacent sequences: A235601 A235602 A235603 * A235605 A235606 A235607

KEYWORD nonn,more, hard

AUTHOR N. J. A. Sloane, Jan 21 2014

EXTENSIONS a(5) from Andrew Weimholt, Jan 27 2014

STATUS approved

@)

20
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_ INEQUIVALENT CASE

\ (M. DAVIS, 2014) I
/0 0O)

O ENUMERATING LATTICES OF SUBSETS

DONALD M. DAVIS

ABSTRACT. If Xi,..., X\ are sets such that no one is contained

in another, there is an associated lattice on 2!¥! corresponding to

inclusion relations among unions of the sets. Two lattices on 2!

are equivalent if there is a permutation of [k] under which they g e
~ correspond. We show that for £k = 1, 2, 3, and 4, there are 1, 1, ~
/ 4, and 50 equivalence classes of lattices on 2/¥! obtained from sets

:)_/

() in this way. We cannot find a reference to previous work on this
/ enumeration problem in the literature, and so wish to introduce it O
0)

for subsequent investigation. We explain how the problem arose /
21

from algebraic topology.
()
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INEQUIVALENT CASE

\ (M. DAVIS, 2014)
/a ()

O
Let [k] = {1,...,k}, and 2[¥ its power set. If M = {X},..., X} is a collection of

sets, and S C [k], let
(1.1) M;s = | ] X

1€S
We say that M is proper if it is never the case that X; C X for ¢ # j. Any M defines
a lattice L(M) on 2[¥l by § < T if Mg C My. Lattices L and L’ on 2/*! are said to be
equivalent if there is a permutation o of [k] under which the induced permutation of
O 2l preserves the lattice relations; i.e., 0(S) <’ o(T) iff S < T. We wish to enumerate

¢ the equivalence classes of all possible L(M)’s for proper M’s of size k.

(@)
22
e

/
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CLOSURE SYSTEMS AND OPERATORS

N O (GANTER & WILLE, 1999; IGNATOV 2022)
/0 ()

~ A closure system on a set [n] is a set of its subsets which contain [n] and is closed under
intersection. That is M C 2[" is a closure system if [n] € M and

X§M=>ﬂXeM.

If a closure system M contains emptyset, then M is strict.
A closure operator ¢ on [n| is a map assigning a closure ¢ X C [n] to each subset X C [n]
under the following conditions:

)_/

. XCY = pX CpY (monotony)

2. X CpX (extensity)
0)

3. ppX =X (idempotency)

T1 separation axiom for a closure system M over [n] states that every single element set
{i} € [n] is in M, or, equivalently, is closed, i.e. p{i} = {i} [17].
Every closure system M C 2% defines a closure operator as follows:

pmX =({AeM| X C A}

While the set of closures of a closure operator ¢ is always a closure system M.,.

/
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| ESTABLISHING CRYPTOMORPHISMS

Theorem 3. Let M C 2 be a strict closure system with T1 separation aziom fulfilled,
then (M, C) is an atomic lattice with ANX = X and \| X = o JA for all X C M.
Conversely, every atomic lattice is isomorphic to the lattice of all closures of a strict closure
system with T1 separation axiom fulfilled.

Proposition 4. Every closure system M C 2" with T1 separation aziom fulfilled is strict

forn # 1.

0O Proof. For n = 0 the proposition holds trivially. For n = 1 the system {{1}} is not strict.
For n > 2 any pair i, j € [n] implies {i} N {j} = 0; hence () € M.
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_ESTABLISHING CRYPTOMORPHISMS

\ (IGNATOV 2022) ~

o0 (0)
O To deal with Davis’ lattice, which in fact combines two isomorphic lattices, let us refor-
mulate the original definition.
Let U = |J X; and R be a binary relation on [n] x U with iRu if u € Xj.
i€[n]
Consider two operators, (-)Y : 2" — 2V and ()< : 2V — 2 that are defined as follows
for any A C [n] and B C U:

A" := {u | iRu for some i € A}

3_/

(the union of all X; with ¢ € A, i.e., M4 in Davis’ notation)

D)

( BS := {i | iRu implies u € B} M

(all indices 7 such that X; C B).
These two operators ((-)¥, (-)<) forms the so-called azialities (cf. Birkhoff’s polarities [3]), P
i.e., Galois adjunction [11, 12] between powersets of [n] and U. Note that Galois adjunctions /
25

between ordered sets are also known as isotone Galois connections [21].

|/m 5



“ ADJUNCTIONS AND GALOIS CONNECTIONS: ORIGINS,

N 0 HISTORY AND DEVELOPMENT
(M. ERNE, 2004)

A ) X .
1 The Idea of Adjunctions and Galois Connections

Adjunctions and Galois Connections

M Mais je n'ai pas le temps, et mes idées ne sont pas encore
bien développées sur ce terrain, qui est immense.

A fundamental fact concerning Galois connections, pointed out in the

early sources by Birkhoff [3], Everett [54] and Ore [38], is that all :-::::I“;uf;;}(l)(h(llll(lw”ull(ulr(l\:(rll-tll:)uhlln
polarities in the sense of Birkhoff, that is, all Galois connections be- 1832, on the night before the duel
tween power sets, may be constructed in a unique way from relations
between the underlying sets. The partners of the induced Galois con-
nection associate with any subset of the one set the collection of all
elements of the other that are in relation to each element of the former
subset. We shall focus on that topic in Sections 3.2 and 3.3, but for

7/

( ) A Galows Adjunction

/ A Galois Connection
(Duel Adyunction)
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_ ESTABLISHING CRYPTOMORPHISMS

N ) (IGNATOV, 2022) ~

C) is atomic lattice. Conversely, every atomic lattice is

Theorem 10. L(M) = (M
u &

cu
isomorphic to some ( )

/

3 j
iy (/



(] 4

_ ESTABLISHING CRYPTOMORPHISMS

N ) (IGNATOV, 2022) ~

C) is atomic lattice. Conversely, every atomic lattice is

Theorem 10. L(M) = (M
u &

cu
isomorphic to some ( )

/

3 j
iy S
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" EXAMPLES

W (IGNATQV, 2022) ~
/o0 0O

() Let us consider several binary relations and the lattices of their lower concepts. In Fig. 3.2,

one can see three 3 x 3 exemplary binary relations often used in Formal Concept Analysis
for data scaling [14].

al|b|c al|b|ec al|b|ec
j Lff x| x| X 1| x 1 X | X
2| x| X% 2 X 2| x X
@) 3| X 3 X 3| x| x
) Figure 1: Example relations for order, nominal, and contranominal scales.

7, [
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EXAMPLES
ﬁ O (IGNATOV, 2022)
o0 0O)
O abe
(123, abe) T (123;050) (123, abe)
(12, ab) (23, be)
Q
(23, ab)
j O (1’ a) (3. C)
e (3, a)
- 0.0) | 0.0) (0.0)

~ Figure 2: The line diagrams of the lattices of lower concepts for the binary relations in

N
Fig. 3.2, from left to right, respectively.
0O
@)
30
/ g /
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ALGORITHM

(IGNATOV, 2022)

Since different binary relations R C [n] x U with a fixed n can produce the same Moore
families on [n] (e.g., by removing a full column [n] x {u} in R if [n] x {u} C R), we need to
identify valid ways to reduce U and thus R without affecting the resulting Moore family.

Definition 13 (adopted from Ganter and Wille [14]). We call a binary relation R C [n] x U
column reduced if 1) it is clarified, i.e. R does not contain duplicate rows and columns
(Vi,j € [n] : {i}¥ = {j}* = i = j; similarly, for u,v € U) and 2) there is no u € U which
can be obtained by intersection of other columns X C U, i.e. u € X and () xS # uS.

zeX

A row reduced binary relation is defined similarly. If R is both row and column reduced,
R is called reduced.

In practice, we cannot simultaneously eliminate all the rows and the columns that are
reducible, but this is no problem if we add rows (or columns) in a lectic order and check
reducibility.

By Sperner theorem [28] the largest set antichain in 2[" contains ( n/2 ) sets. It makes it
possible to deduce the exact lower bound for the number of elements in & for Davis’ lattice
and the associated relation.

Theorem 14. The smallest size of U in R C [n] x U such that the associated closure system
is T'1-separated (or atomic) is the minimal k under which (lkﬁ‘é’J) > n.

()
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_ ALGORITHM FOR LABELED CASE

(IGNATOV, 2022)

The ATomic ADDBYONE algorithm is inspired by the CloseByOne algorithm proposed
by S. O. Kuznetsov [24].

Algorithm 1. ATomic ADDBYONE
Input: the number of atoms n € N (n > 1)
Output: the number of Moore families fulfilling T1 separation axiom

1. Generate all combinations (2["],}1?;["]}) in lectic order.

2. Check each combination represented by a tuple ¢t = (7, ...,4;) whether it is a column
reduced binary relation and fulfils T1 axiom. If yes, store 1 in cnt[t].

3. Extend each valid tuple ¢ (the column reduced binary relation) from step 2 by a
next integer iy, after i from {ix + 1,...,2" — 2} and check whether the new tuple t* =
(41,...,1x+1) is a reduced binary relation and fulfils T1 axiom (if T1 was fulfilled for ¢, then
skip T1-check). If yes, increment cnt|t] and repeat step 3 with t* recursively.

4. Return the sum of all ent-s.

Step 1 excludes combinations with emptyset since () should be present in the resulting
system as intersection of atoms by Theorem 3. Since full rows and full columns are reducible,
2"~1 is always excluded (every closure system on [n] contains [n] by definition). Note that
all subsets of 2" of size k,,;,, which elements has |k,,;,/2] (or [kmin/2]) bits each, forms
the antichain of k,,;, elements by Theorem 14 and our previous work on Boolean matrix
factorization of contranominal scales [20]. So, Step 1 can be further improved accordingly .
for n larger than 6 (k,,;, = 4).



NON ISOMORPHIC CASE
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o O To enumerate inequivalent atomic Moore families, we apply all the permutations 7 € II(n)
A on the set [n] to every subset of a concrete Moore family represented by tuple ¢, i.e. we
compute all 7(t) = (7(i1),.... m(ix)). We call t canonic if it is lectically smallest among all

permuted tuples 7(t). Algorlthm 2 counts each canonic representative per an equivalence
class w.r.t. II(n).

Algorithm 2. Atomic INEQADDBYONE
Input: the number of atoms n € N (n > 1)
Output: the number of inequivalent Moore families fulfilling T1 separation axiom

:)_/

The only modification of Algorithm 1 is done at step 3.
3’. We additionally check whether the new tuple t* is canonic and count only such tuples.

D

All the implementations are coded in Python, speeded up with Cython extension and
() multiprocess library, and available on the author’s Github' along with the results of experi- M
IIlGIltb recorded in Jupyter notebooks. J

.|/

'https://github.com/dimachine/ClosureSeparation
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N\ o NEW NUMBERS FOR OEIS

n A334254 A334255 A235604 A355517
0 1 1 1 1

1 2 1 1 2

2 1 1 1 1

3 8 8 1 4

1 245 545 20 20

2 702 525 702 525 7443 7443

6 | 66 096 965 307 | 66 096 965 307 | 95 239 971 | 95 239 971

Table 1: Studied sequences with the found extensions in italic.
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Draft edits for A235604
(Underlined text is an addition; strikethrough text is a deletion.)

All edits since published version (omitting small deletions for readability):

NAME
DATA
OFFSET
COMMENTS

LINKS
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CROSSREFS

) KEYWORD
AUTHOR

m EXTENSIONS
STATUS

Number of equivalence classes of lattices of subsets of the power set 2”[n].

1, 1, 1, 4, 50, 7443, 95239971
0,4
This is also the number of inequivalent atomic lattices on n atoms or

inequivalent strict closure systems under Tl separation axiom on n
elements. - Dmitry I. Ignatov, Sep 27 2022

Donald M. Davis, <a href="http://arxiv.org/abs/1311.6664">Enumerating
lattices of subsets</a>, arXiv preprint arXiv:1311.6664_[math.CO], 2013.

Dmitry I. Ignatov, <a href="http://arxiv.org/abs/2209.12256"> On the
Cryptomorphism between Davis' Subset Lattices, Atomic Lattices, and
Closure Systems under T1 Separation Axiom</a>, arXiv:2209.12256 [cs.DM],
2022.

The number of inequivalent closure operators on a set of n elements where
all singletons are closed is given in A355517.

The number of all strict closure operators is given in A102894.

For T 1 closure operators, see A334254.

nonn,more,hard,changed
N. J. A. Sloane, Jan 21 2014

a(5) from Andrew Weimholt, Jan 27 2014
a(6) from Dmitry I. Ignatov, Sep 27 2022

appreved
proposed
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~ Our by-product is related to the problem of the maximal size union-free set family (the

asymptotic was given by D. J. Kleitman [22]), which is dually equivalent to the problem
~ of maximal size intersection-free family or the maximal size of a reduced formal context on
n objects as noted by B. Ganter and R. Wille [14]. We have found the value of the latter
sequence for n = 6 and have provided a concrete lower bound for this value in the case n = 7.
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\ n KLEITMAN'S INTERSECTION FREE FAMILIES A
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Another our contribution is related to the maximal size of the reduced contexts. The
first five members for n = 1,...,5 are known in the literature [14]: 1, 2, 4, 7, 13. While we
found the sixth term 24 by full enumeration with Algorithms 1 and 2.

For n = 6, one out of ten Moore families of length 24 in its equivalence class is as follows:

{7,11,13,14,19, 21, 22, 25, 26, 29, 30, 37, 38, 39, 41, 42,43, 44, 49, 50, 51, 52, 56, 60} .

For the 7th member, we state that it is not less than 41, since by combinatorial (though
non-exhaustive) search we found the largest set system of size 41 to form the reduced context
of the Moore family: {7,11,13, 14,19, 21, 22, 25, 26, 28, 35, 37, 38,41, 42, 44, 49, 50, 52, 56, 67,
69, 70,73,74, 76,81, 82,84, 88,97,98,100,104, 113,114, 116, 121,122,123, 124}. In total, 420
Moore families of size 41 are in the found equivalence class.

Note that the last results for n = 6 and 7 are also valid for Moore systems without
additional constraints.

1, |/
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In FCA, Ganter and Wille [14] showed that for any finite lattice L := (L, <), there exists

ﬁ a unique binary relation on join and meet irreducible elements, J(L) and M (L), respectively,

such that the lattice formed by all its rows (or columns) closures under intersection is iso-

O morphic to the original lattice; this relation is called a standard context and defined as the

restriction of <, i.e. as < NJ(L) x M(L). We use K(L) := (J(L), M(L), L), <) to denote the

standard context of a lattice L. A similar approach to represent and analyze finite lattices
based on a poset of irreducibles is employed by G. Markowsky (e.g., to answer the question M

from genetics: “What is the smallest number of factors that can be used to represent a given J
- L 1521 1 5 ST [
|

phenotype system?”) [8]. gy’ =l |
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—. REPRESENTATION OF L

) O (PHAN, 2006; MAPES 2009; IGNATOV 2022) O
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Theorem 15. The number of atoms of the lattice L, formed by all atomic closure families

onn > 1 is equal to 2" —n — 2 and each atom has the form {0,{1},...,{n},o,[n]}, where
o C[n] and 2 < |o| < n.

)

) Theorem 16. Each meet irreducible element in L, for n > 2 has the form 2"\ lo.[n] \ 7],
where o C [n] and 2 < |o| < n and i € [n]. The number meet irreducible elements for n # 1

O isn(2" ' —n) and 1 forn = 1.
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STANDARD CONTEXT OF L

ﬁ 0
(IGNATOV 2022)
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D\ 2pag] || X [ x| x|x|x|x[x|x]|x
[\ 2'pow] || x[x|x|x|x]|x|[x]|x X
[\ 2 ‘po] |[ x| x| x|x|x|x]|x X
D\ P |[x|x|x|x|x|x]|x X
P\ 2pao] || x| x|x|x|x|x| |x]|x|x
P\ Pl |[x|x|x|x|x X | X [
D\ 2'pql |[ x| x| x[x|x] |x|x|x
P\ ‘po] |[x|x|x|x X| X |[x|x
[Q\ 1 po] || x| x| x]|x X | X | X X
P\ og] | x|x|x| |[x[x|[x|x]|x|x
P\ 19 |fx|x X[ X | X |x|x]|x
D\ 1 9q] |[ x| % X | X | X | X |%]|X
P\ o] || x| [x]| [x|x|x|x]|x]|x
[Q\ o] |[x| [x|x|x|[x|x|x| |x
P\ 1 ‘o] X | X XXX | X[ x|x
[\ 1] XX | XX [ x| [x|x|x
wools|s|e[S3 R s|EE

Figure 3: The standard context (10 x 16) of the lattice of atomic lattices Ly.
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We computed the resulting values of A334254 and A334255 for n = 3,4,5,6 with our
implementation of parallel NEXTCLOSURE algorithm (originally proposed by Ganter and
Reuter [13]) and thus confirmed the results of ArToMic ADDBYONE. The total computa-
tional time is hard to summarise properly per process, but it took about four days for our
approach and five days and 17 hours on a laptop with 12 core Intel i-9 processor in parallel
ﬁ mode (seven days and six hours in sequential mode) for NEXTCLOSURE.
Another interesting approach for enumeration of atomic lattices on n atoms was imple-
O mented by S. Mapes in Haskell [25]; even though its running time for n = 6 is not reported,

it took less than a second for n = 5.
@)
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n 01 2 3 4 5! 6
A193674, a(n) |1 |2 7 61 2480 | 1 385552 | 75 973 751 474
A334254, b(n) | 1|2 1 8 545 702 525 | 66 096 965 307
a(n)/b(n) 1{1]=0.14 | =0.13 | =0.22 | =0.51 ~().87
W Table 2: Ratio between nth members of sequences A193674 and A334254.
0O)

O Theorem 18. Let L, and M,, be the lattices of all atomic Moore families and all Moore

~ families on a set [n] (n > 1), respectively, then

|IL,| < M| —2"—n .

h 0
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We conclude with visiting another interesting venue, namely, extremal lattice theory,
where questions “Why finite lattices described by standard contexts are large?” are studied
based on the notion of VC-dimension [1]. As it was shown by Albano and Chornomaz [1], the
reason to have a huge number of elements of a lattice is the presence in its standard contexts
of the so-called contranominal scales, i.e. induced subcontexts (subrelations) of the form
Ne(k) .= ({1,...,k},{1,...,k}, #) (e.g., the rightmost binary relation in Fig. 1 is N¢(3)).

For example, the closure systems generated by a contranominal scale on n elements taken
as a standard context has 2" closed sets. ~
The breadth of a complete lattice is the number of atoms of the largest Boolean lattice that

the lattice contains as a suborder, i.e. the size of the largest contranominal scale subrelation
of its standard context (valid for all finite contexts) as noted by Ganter [16]. O

44 /
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Theorem 19 (Albano and Chornomaz [1]). Let K := ([n],U,I C [n| x U) be an N¢(k)-free

formal context, then

W In what follows, we denote the sum from Theorem 19 by fic(n, k).
0O)

Alexandre Albano received his MSc in Computer Science. He has worked as a
teaching assistant at the University of Sdo Paulo and at the Dresden University
of Technology, where he has recently submitted his PhD thesis. His research
interests mainly belong to the fields of Formal Concept Analysis, graph theory,
and knowledge representation systems.
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of research are lattice theory and Formal Concept Analysis, with occasional ~
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N | O (IGNATOV 2022)
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n 31415 6 7
|J(L,)| 3110 (25| 56 119
|J(M,,)] 7115|131 63 | 127
Estimated breadthof £,, |3 | 5 | 7 11 ?
ﬁ Estimated breadth of M,, | 3| 5 | 7 10 16
Breadth of L, 3|7 |13[>218|>25
0)

Table 3: Estimated breadths of lattices £,, and M,, for n = 3 up to 6 and 7, respectively.
0)
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By using this theorem and our knowledge on the number of meet-irreducible element

for the lattice of all atomic Moore families and Moore families, respectively, we obtain two
series (Table 3) for the estimated breadth of those two lattices for known |£,| and |M,,]|.
Note that |J(M,,)| = 2" — 1 follows from Definition 17 and Proposition 18 in Caspard and
Monjardet [5].
W For example, for n = 6 we know |J(Lg)| = 56. For k = 11 we get fac(56,11) =
@)

10
3 (%) = 44872116214 < |Lg| = 66096965307, while for k = 12 we have fac(n,k)(56,12) =
1=0
193774331494 > |Lg|. So, Lg contains a 2048-elements Boolean lattice and the breadth of
@) L is at least 11.

The actual breadth of £3 is indeed 3 since the standard context of L3 coincides with

N¢(3), while the actual breadth of £, is 7 since there are 80 embedded N¢(7) and that of
/ L5 is 13 since there are 10980 embedded N¢(13) (the last line in Table 3 is found by a )

combinatorial search).

~ l
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Thank youl!

Questions?



