Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone

Ivan Novikov

16/02/2023

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 1/5

Preliminaries (1)

Proposition (Dirac equation)

For each $(x,t) \in \varepsilon \mathbb{Z}^2$, where $t \ge 2\varepsilon$, we have

$$egin{aligned} & \mathfrak{a}_1(x,t,m,arepsilon) = rac{1}{\sqrt{1+m^2arepsilon^2}} (\mathfrak{a}_1(x+arepsilon,t-arepsilon,m,arepsilon) + marepsilon\,\mathfrak{a}_2(x+arepsilon,t-arepsilon,m,arepsilon) + marepsilon\,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,arepsilon,m,arepsilon,m,arepsilon,arepsilon,m,arepsilon,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,arepsilon,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,arepsilon,arepsilon,m,arepsilon,m,arepsilon,m,arepsilon,arepsilon,arepsilon,arepsilon,m,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,arepsilon,ar$$

Proposition

For each $(x,t)\inarepsilon\mathbb{Z}^2$, where $t\geqslant 2arepsilon$, we have

$$\begin{aligned} \mathsf{a}_1(x,t-\varepsilon,m,\varepsilon) &= \frac{1}{\sqrt{1+m^2\varepsilon^2}} (\mathsf{a}_1(x-\varepsilon,t,m,\varepsilon) - m\varepsilon \, \mathsf{a}_2(x+\varepsilon,t,m,\varepsilon)); \\ \mathsf{a}_2(x,t-\varepsilon,m,\varepsilon) &= \frac{1}{\sqrt{1+m^2\varepsilon^2}} (\mathsf{a}_2(x+\varepsilon,t,m,\varepsilon) + m\varepsilon \, \mathsf{a}_1(x-\varepsilon,t,m,\varepsilon)). \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) のQ(C)

Proof.

Use the Dirac equation.

Preliminaries (2)

Proposition (Symmetry) For all $(x, t) \in \varepsilon \mathbb{Z}^2$ with t > 0 we have $a_1(x, t, m, \varepsilon) = a_1(-x, t, m, \varepsilon);$ $(t - x)a_2(x, t, m, \varepsilon) = (t + x - 2\varepsilon)a_2(2\varepsilon - x, t, m, \varepsilon).$ Proof.

1) follows from the formula for $a_1(x, t, m, \varepsilon)$:

$$a_{1}(x,t,m,\varepsilon) = (1+m^{2}\varepsilon^{2})^{(1-t/\varepsilon)/2} \sum_{r=0}^{(t-|x|)/2\varepsilon} (-1)^{r} \binom{(t+x-2\varepsilon)/2\varepsilon}{r} \binom{(t-x-2\varepsilon)/2\varepsilon}{r} (m\varepsilon)^{2r+1}.$$

2) is proved using formula for $a_2(x, t, m, \varepsilon)$:

$$a_{2}(x,t,m,\varepsilon) = (1+m^{2}\varepsilon^{2})^{(1-t/\varepsilon)/2} \sum_{r=1}^{(t-|x|)/2\varepsilon} (-1)^{r} \binom{(t+x-2\varepsilon)/2\varepsilon}{r} \binom{(t-x-2\varepsilon)/2\varepsilon}{r-1} (m\varepsilon)^{2r}.$$

Main theorem (1)

Theorem

For each m > 0 and each point $(x, t) \in \varepsilon \mathbb{Z}^2$ such that $(x + t)/\varepsilon$ is even and t > |x| we have $P(x, t, m, \varepsilon) \neq 0$.

In other words, $P(x, t, m, \varepsilon) \neq 0$ if and only if there exists at least one checker path from (0, 0) to (x, t).

Proof.

Denote $M = \{(x, t) \in \varepsilon \mathbb{Z}^2 : (x + t)/\varepsilon \text{ is even}, t > |x|, P(x, t, m, \varepsilon) = 0\}.$ If $M = \emptyset$, then there is nothing to prove. Assume that $M \neq \emptyset$. Among the points of M, select the one with the minimal t-coordinate (if there are several such points, select any of them). Denote by (x_0, t_0) the selected point.

Main theorem (2)

Proof. For all $t \in \varepsilon \mathbb{Z}_+$ we have $P(-t+2\varepsilon,t) = m^2 \varepsilon^2 (1+m^2 \varepsilon^2)^{(1-t/\varepsilon)} \neq 0.$ Thus $x_0 \neq -t_0 + 2\varepsilon$. We have $a_1(-x_0, t_0, m, \varepsilon) = a_1(x_0, t_0, m, \varepsilon) = 0$; $a_2(2\varepsilon - x_0, t_0, m, \varepsilon) = (t_0 - x_0) \frac{a_2(x_0, t_0, m, \varepsilon)}{t_0 + x_0 - 2\varepsilon} = 0.$ We have $a_1(-x_0+\varepsilon,t_0-\varepsilon,m,\varepsilon) = \frac{a_1(-x_0,t_0,m,\varepsilon) - m\varepsilon a_2(-x_0+2\varepsilon,t_0,m,\varepsilon)}{\sqrt{1+m^2\varepsilon^2}} = 0;$ $a_2(-x_0+\varepsilon,t_0-\varepsilon,m,\varepsilon)=\frac{a_2(-x_0+2\varepsilon,t_0,m,\varepsilon)+m\varepsilon\,a_1(-x_0,t_0,m,\varepsilon)}{\sqrt{1+m^2\varepsilon^2}}=0.$ (0,...) (...,0) |t_o ˈ**t**₀-ε (0.0) $-x_0+\varepsilon$ $-x_0+2\varepsilon$ -X

Figure: The pair in a cell (x, t) is $(a_1(x, t), a_2(x, t))_{\mathbb{R}}$, $a_3(x, t)_{\mathbb{R}}$

Main theorem (3)

Proof.

Thus $P(-x_0 + \varepsilon, t_0 - \varepsilon, m, \varepsilon) = 0$. This contradicts to the minimality of t_0 , because $(x_0 - \varepsilon + t_0 - \varepsilon)/\varepsilon$ is even and $t_0 - \varepsilon > |x_0 - \varepsilon|$ by the condition $x_0 \neq -t_0 + 2\varepsilon$ above.

Figure: The pair in a cell (x, t) is $(a_1(x, t), a_2(x, t))$

<□ > < @ > < E > < E > E のQC 5/5