Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone

Ivan Novikov

16/02/2023

Preliminaries (1)

Proposition (Dirac equation)

For each $(x, t) \in \varepsilon \mathbb{Z}^{2}$, where $t \geqslant 2 \varepsilon$, we have
$a_{1}(x, t, m, \varepsilon)=\frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}}\left(a_{1}(x+\varepsilon, t-\varepsilon, m, \varepsilon)+m \varepsilon a_{2}(x+\varepsilon, t-\varepsilon, m, \varepsilon)\right) ;$
$a_{2}(x, t, m, \varepsilon)=\frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}}\left(a_{2}(x-\varepsilon, t-\varepsilon, m, \varepsilon)-m \varepsilon a_{1}(x-\varepsilon, t-\varepsilon, m, \varepsilon)\right)$.
Proposition
For each $(x, t) \in \varepsilon \mathbb{Z}^{2}$, where $t \geqslant 2 \varepsilon$, we have
$a_{1}(x, t-\varepsilon, m, \varepsilon)=\frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}}\left(a_{1}(x-\varepsilon, t, m, \varepsilon)-m \varepsilon a_{2}(x+\varepsilon, t, m, \varepsilon)\right) ;$
$a_{2}(x, t-\varepsilon, m, \varepsilon)=\frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}}\left(a_{2}(x+\varepsilon, t, m, \varepsilon)+m \varepsilon a_{1}(x-\varepsilon, t, m, \varepsilon)\right)$.
Proof.
Use the Dirac equation.

Preliminaries (2)

Proposition (Symmetry)

For all $(x, t) \in \varepsilon \mathbb{Z}^{2}$ with $t>0$ we have $a_{1}(x, t, m, \varepsilon)=a_{1}(-x, t, m, \varepsilon)$;
$(t-x) a_{2}(x, t, m, \varepsilon)=(t+x-2 \varepsilon) a_{2}(2 \varepsilon-x, t, m, \varepsilon)$.
Proof.

1) follows from the formula for $a_{1}(x, t, m, \varepsilon)$:
$a_{1}(x, t, m, \varepsilon)=\left(1+m^{2} \varepsilon^{2}\right)^{(1-t / \varepsilon) / 2} \sum_{r=0}^{(t-|x|) / 2 \varepsilon}(-1)^{r}\binom{(t+x-2 \varepsilon) / 2 \varepsilon}{r}\binom{(t-x-2 \varepsilon) / 2 \varepsilon}{r}(m \varepsilon)^{2 r+1}$.
$2)$ is proved using formula for $a_{2}(x, t, m, \varepsilon)$:

$$
a_{2}(x, t, m, \varepsilon)=\left(1+m^{2} \varepsilon^{2}\right)^{(1-t / \varepsilon) / 2} \sum_{r=1}^{(t-|x|) / 2 \varepsilon}(-1)^{r}\binom{(t+x-2 \varepsilon) / 2 \varepsilon}{r}\binom{(t-x-2 \varepsilon) / 2 \varepsilon}{r-1}(m \varepsilon)^{2 r} .
$$

Main theorem (1)

Theorem
For each $m>0$ and each point $(x, t) \in \varepsilon \mathbb{Z}^{2}$ such that $(x+t) / \varepsilon$ is even and $t>|x|$ we have $P(x, t, m, \varepsilon) \neq 0$.
In other words, $P(x, t, m, \varepsilon) \neq 0$ if and only if there exists at least one checker path from $(0,0)$ to (x, t).

Proof.
Denote $M=\left\{(x, t) \in \varepsilon \mathbb{Z}^{2}:(x+t) / \varepsilon\right.$ is even,
$t>|x|, P(x, t, m, \varepsilon)=0\}$.
If $M=\emptyset$, then there is nothing to prove.
Assume that $M \neq \emptyset$.
Among the points of M, select the one with the minimal t-coordinate (if there are several such points, select any of them). Denote by $\left(x_{0}, t_{0}\right)$ the selected point.

Main theorem (2)

Proof.
For all $t \in \varepsilon \mathbb{Z}_{+}$we have
$P(-t+2 \varepsilon, t)=m^{2} \varepsilon^{2}\left(1+m^{2} \varepsilon^{2}\right)^{(1-t / \varepsilon)} \neq 0$.
Thus $x_{0} \neq-t_{0}+2 \varepsilon$.
We have $a_{1}\left(-x_{0}, t_{0}, m, \varepsilon\right)=a_{1}\left(x_{0}, t_{0}, m, \varepsilon\right)=0$;
$a_{2}\left(2 \varepsilon-x_{0}, t_{0}, m, \varepsilon\right)=\left(t_{0}-x_{0}\right) \frac{a_{2}\left(x_{0}, t_{0}, m, \varepsilon\right)}{t_{0}+x_{0}-2 \varepsilon}=0$.
We have

$$
\begin{aligned}
& a_{1}\left(-x_{0}+\varepsilon, t_{0}-\varepsilon, m, \varepsilon\right)=\frac{a_{1}\left(-x_{0}, t_{0}, m, \varepsilon\right)-m \varepsilon a_{2}\left(-x_{0}+2 \varepsilon, t_{0}, m, \varepsilon\right)}{\sqrt{1+m^{2} \varepsilon^{2}}}=0 \\
& a_{2}\left(-x_{0}+\varepsilon, t_{0}-\varepsilon, m, \varepsilon\right)=\frac{a_{2}\left(-x_{0}+2 \varepsilon, t_{0}, m, \varepsilon\right)+m \varepsilon a_{1}\left(-x_{0}, t_{0}, m, \varepsilon\right)}{\sqrt{1+m^{2} \varepsilon^{2}}}=0
\end{aligned}
$$

$(0, \ldots)$		$(\ldots, 0)$
t_{0}		
	$(0,0)$	
$t_{0}-\varepsilon$		

Figure: The pair in a cell (x, t) is $\left(a_{1}(x, t), a_{2}(x, t)\right)$

Main theorem (3)

Proof.

Thus $P\left(-x_{0}+\varepsilon, t_{0}-\varepsilon, m, \varepsilon\right)=0$.
This contradicts to the minimality of t_{0}, because
$\left(x_{0}-\varepsilon+t_{0}-\varepsilon\right) / \varepsilon$ is even and $t_{0}-\varepsilon>\left|x_{0}-\varepsilon\right|$ by the condition $x_{0} \neq-t_{0}+2 \varepsilon$ above.

$$
\begin{array}{|c|l|l|}
\hline(0, \ldots) & & (\ldots, 0) \\
t_{0} \\
& (0,0) & \\
t_{0}-\varepsilon \\
\hline
\end{array}
$$

Figure: The pair in a cell (x, t) is $\left(a_{1}(x, t), a_{2}(x, t)\right)$

